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ABSTRACT 

Railroads support the national economy by carrying 43 percent of inter-city freight ton-

miles in the United States. At the same time, train accidents damage infrastructure and 

rolling stock, disrupt operations, and may result in casualties and environmental damage. 

While the majority of previous studies focused on the safety risks associated with train 

derailments or highway-rail grade crossing incidents, much less work has been 

undertaken to evaluate train collision risk. This paper develops a statistical risk analysis 

methodology for freight-train collisions in the United States occurring between 2000 and 

2014. Negative binomial regression models are developed to estimate the frequency of 

freight-train collisions as a function of year and traffic volume, both by track type and 

accident cause. Overall, the rate of train collision declined in the study period on both 

mainline and yard tracks. Train collision severity, as measured by the average number of 

railcars derailed, varied with the type of track and accident cause. Train collision risk, 

defined as the product of collision frequency and severity, is predicted for 2015 to 2017, 

based on the 2000 to 2014 safety trend. The statistical procedures developed in this paper 

can be adapted to various other types of consequences, such as damage costs or 

casualties. Ultimately, this paper and its sequent studies aim to provide the railroad 

industry with data analytic tools by which to discover useful information from historical 

accidents so as to make risk-informed safety decisions.  
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1 INTRODUCTION 
The American economy hinges on freight railroads, which transport 43 percent of ton-

miles of cargo. This reliance places importance on mitigating train accidents, which can 

damage infrastructure and rolling stock, disrupt operations, and cause casualties and 

environmental damage. There are three major accident types on U.S. freight-railroads: 

derailment, collision, and highway-rail grade crossing incidents. There is extensive 

research on derailment risk analysis (1-11) and highway-rail grade crossing safety (12-

14). However, less work has been undertaken to evaluate train collision risk. To the 

authors’ knowledge, few published studies are dedicated to statistical risk analysis of 

U.S. freight-train collisions. This knowledge gap motivates the development of this 

paper, which aims to address the following research inquires:  

1) How can train collision risk be quantified?  

2) How does train collision risk vary with time, traffic exposure, type of track, and 

accident cause?  

3) How can collision risk be predicted? 

 

2 DATA SOURCES  
The Federal Railroad Administration (FRA) of the U.S. Department of Transportation 

(USDOT) requires railroads operating in the U.S. to submit detailed reports of accidents 

or incidents whose damage costs to track infrastructure, rolling stock, and signals 

exceeded a specified monetary threshold (15). The FRA compiles the submitted accident 

reports into a Rail Equipment Accident (REA) database. The REA database contains 

useful information on the type of railroad (e.g., freight railroad, passenger railroad), the 

type of accident or incident (e.g., derailment, collision, grade crossing incident, etc.), type 

of track (mainline, yard, siding, industrial), accident cause (e.g., track failures, 

mechanical failures, human errors), accident consequences (e.g., number of railcars 

derailed, track and rolling stock damage costs, casualties), and other accident 

circumstances. The FRA REA database has been used in many previous studies (1-3, 11, 

16). In addition to reporting accident data, the railroads also report their monthly train-

mile data through the FRA Operational Database. These data sources can be integrated 

and used to model freight-train collision risk. Note that each railroad carrier may also 

maintain an internal accident database containing those accidents that result in damage 

costs that fall below the FRA mandatory reporting threshold. The Non-FRA-reportable 

accidents are typically not publicly available, and thus are excluded from the analysis.  

3 RESEARCH OBJECTIVES AND SCOPE  
This paper aspires to make the best use of historical FRA-reportable freight-train 

collision data to understand major collision causes and the temporal change in train 

collision risk. The risk analysis will ultimately inform decision-makers in the process of 

data-driven safety policy development. Specifically, this research aims to produce the 

following deliverables:  

 Develop a quantitative methodology for freight-train collision risk analysis 

 Develop statistical procedures and toolboxes for modeling the frequency and 

severity of freight-train collision by influencing factors 

 Project future train collision risk based on the current safety trend. The risk 

projection provides a scientific basis for evaluating the safety benefit of 
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prospective collision avoidance technologies  

 

The majority of train accidents occur on Class I railroads (5). Each Class I railroad 

has annual operating revenue exceeding $478.5 million (2014 dollars). Class I railroads 

accounted for approximately 68% of U.S. railroad route miles, 97% of total ton-miles 

transported, and 94% of the total freight rail revenue (17). Therefore, this paper focuses 

on Class I railroad freight-train collisions from 2000 to 2014. Depending on data 

availability and questions of interest, the methodologies can be adapted to other types of 

train accident.  

The analyses in this paper focus on collisions between freight trains, as well as on 

collisions between freight trains and non-train consists, such as maintenance vehicles, cut 

of cars, and locomotives. However, this paper excludes collisions between freight trains 

and passenger trains. This type of collision needs to account for both freight and 

passenger train operations and their possible interactions. Modeling this type of freight-

and-passenger train collision requires a separate research study.  

This paper is structured as follows. First, some key definitions are presented to 

clarify the scope of this analysis. Second, statistical models are developed to estimate 

collision frequency as a function of year and traffic volume, both by track type and 

accident cause. Third, collision severity (measured by the average number of railcars 

derailed per train collision) is estimate based on historical accident data. Fourth, future 

train collision frequency and severity are projected based on the 2000 to 2014 safety 

trend. Finally, the paper discusses the implications of the analyses with respect to 

research and practice.   

 

4 DEFINITIONS  
Collision. According to the FRA, a collision is defined as “an impact between on-track 

equipment consists while both are on rails and where one of the consists is operating 

under train movement rules or is subject to the protection afforded to trains.” (15) This 

definition includes instances in which a portion of a consist occupying a siding fouls the 

mainline and is struck by an approaching train. In the FRA REA database, there are six 

types of collision: head-on, rear-end, side, raking, broken train, and railroad crossing. A 

head-on collision occurs when the trains or locomotives involved are traveling in 

opposite directions on the same track. A rear-end collision occurs when the trains or 

locomotives involved are traveling in the same direction on the same track. A side 

collision occurs at a turnout where one consist strikes the side of another consist. A 

raking collision occurs between the parts or lading of a consist on an adjacent track, or 

with a structure such as a bridge. A broken train collision occurs when a moving train 

breaks into parts and an impact occurs either between these parts or between a portion of 

the broken train and another consist. A railroad crossing collision occurs between on-

track railroad equipment at a point where tracks intersect (15). 

 

Safety. Safety can be defined as the number of accidents, evaluated by kind and severity, 

which are expected to occur on the entity during a specified period (18). Liu (11) 

provides a theoretical explanation for this definition from a stochastic process 

perspective. One highlight of the safety definition is “expected to occur.” The difference 

between the observed and expected number of accidents represents the statistical 
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uncertainty of accident occurrence (11). The expected rate of accident frequency or 

accident severity can be estimated using multivariate regression techniques, which will be 

detailed later.  

 

Risk. The risk can be defined as the likelihood and consequence of an incident (19). In 

practice, researchers sometimes use the expected consequence to measure the risk (3, 6, 

7). For example, if the accident consequence is measured by damage cost, the risk is 

interpreted by the expected damage cost.  

 

The above-mentioned definitions form the basis of the following statistical analyses. 

Depending on data availability and questions of interest, analysts may choose to use 

alternative definitions. If so, they can adapt this paper’s methodology accordingly.  

 

5 STATISTICAL METHODOLOGY FOR TRAIN COLLISION RISK 

ANALYSIS 

 

5.1 Model Development  

The FRA REA database records four types of track: main, siding, yard, and industrial 

tracks. These track types are used for different operational functions and consequently 

entail different accident types, causes, and consequences (5). Train accidents are 

categorized according to derailment, collision, highway–rail grade crossing incident, and 

several other less frequent types. Liu et al. (5) presents an analysis of train derailment 

frequency and severity by the type of track and type of accident using data from 2000 to 

2010. Table 1 shows an updated analysis that includes more recent data. In this paper, the 

collisions include those between freight trains, as well as those between freight trains and 

non-train consists (e.g., maintenance vehicles, cut of cars, locomotives).  

The analysis shows that collisions accounted for approximately 6 percent of total 

accident frequency and 4 percent of total number of railcars derailed on Class I freight 

railroads. Derailment was the most common type of accident on each track type, 

accounting for 72 percent of train accidents and 94 percent of the total number of railcars 

derailed, across all types of track. On main tracks, the frequency of freight-train collisions 

is 80 percent lower than in grade crossing incidents (429 versus 1,929). However, on 

mainlines the average number of railcars derailed per collision is nine times greater than 

in grade crossing incidents (4.3 versus 0.5). Ninety-nine percent of highway–rail grade 

crossing incidents occurred on main tracks and accounted for 21% of all types of 

accidents on the main tracks of Class I freight railroads. Chadwick et al. (14) found that 

many grade crossing incidents exceeded the FRA reporting threshold for monetary 

damages, but did not result in a derailment.  
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TABLE 1 Accident Frequency and Severity  

by Accident Type and Track Type, U.S. Freight Railroads, 2000–2014 

 

Number of Freight Train Accidents  

 

 

Derailment Collision Highway-Rail Other Total 

Main 6,026 429 1,929 874 9,258 

Yard 4,220 524 14 518 5,276 

Siding 632 33 7 66 738 

Industry 1,286 76 9 190 1,561 

Total 12,164 1,062 1,959 1,648 16,833 

 

 

Number of Railcars Derailed in Freight Train Accidents  

 

 

Derailment Collision Highway-Rail Other Total 

Main 51,993 1,793 901 685 55,372 

Yard 19,763 998 10 737 21,508 

Siding 3,353 116 5 68 3,542 

Industry 5,793 121 12 119 6,045 

Total 80,902 3,028 928 1,609 86,467 

 

 

Average Number of Railcars Derailed  

per Train Accident  

 

 

Derailment Collision Highway-Rail Other Total 

Main 8.6 4.2 0.5 0.8 6.0 

Yard 4.7 1.9 0.7 1.4 4.1 

Siding 5.3 3.5 0.7 1.0 4.8 

Industry 4.5 1.6 1.3 0.6 3.9 

Total 6.7 2.9 0.5 1.0 5.1 

Note: The number of derailed railcars includes both empty and loaded railcars. Where 

there are multiple trains involved in a collision, the total number of railcars 

derailed from all the trains is counted as the collision severity. 

 

A statistical model is developed to correlate train collision frequency with 

influencing factors. Based on data from the FRA REA database, this paper focuses on 

two potential affecting factors: year and annual traffic exposure. The “year” variable tests 

whether there is a temporal change in train collision frequency given traffic exposure. 

The “traffic exposure” variable describes whether and how train collision count varies 

with traffic volume in a given year. A basic model structure is as follows:  

 

μi = exp(α+×Ti+
 θ×Mi)Mi                                 (1) 

where: 

µi   = expected number of freight-train collisions in year i  

Ti    = year (for example, Ti is 2000 for year 2000) 
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Mi   = million train-miles in year i 

α, ,θ  = parameter coefficients  

 

Collision rate is defined as the number of train collisions, normalized by traffic exposure. 

According to this definition, Equation (1) is re-written as: 

 

Zi = μi /Mi= exp(α+×Ti+θ×Mi)
              (2)  

 

A similar model was used in several previous studies (11, 20-22). Those studies 

assumed that train accident rate is independent of traffic exposure. In order to understand 

whether and how train collision frequency varies with traffic volume, our model 

generalizes the previous model by introducing a new parameter θ. θ > 0 means that if 

traffic increases, collision rate will increase with traffic volume, given all else being 

equal. The previous model (11, 20-22) is a special case of the generalized model, given 

θ = 0.  

The next step is to estimate the unknown parameters based on historical data. The 

literature contains numerous regression models, of which the negative binomial 

regression is used frequently. A technical review of the negative binomial model can be 

found in (23). This paper starts with negative binomial regression. Where the goodness of 

fit is inadequate, alternative models will be used. The negative binomial regression 

results are presented in Table 2. The last column is the P-value of a parameter estimator, 

which represents the statistical significance of a predictor variable using the Wald Test 

(23). A generally acceptable rule is that if a predictor variable has a P-value smaller than 

5 percent, this variable is significant. The analysis found that the parameter coefficient 

for the variable “year” is significantly negative ( = -0.0414; P < 0.0001), indicating that 

there is a significant temporal decline in train collision rate, given traffic exposure.  

 

TABLE 2 Negative Binomial Regression of Train Collision Frequency,  

Class I Freight Railroads, All Types of Track, 2000 to 2014 

Parameter Estimate Standard 

Error 

Wald 95% Confidence 

Limits 

Wald Chi-

Square 

Pr > ChiSq 

α 79.6894 17.3774 45.6303 113.7485 21.03 <.0001 

 -0.0414 0.0086 -0.0582 -0.0246 23.25 <.0001 

θ 0.0020 0.0010 0.0001 0.0039 4.07 0.0438 

Deviance = 13.3, Degree of Freedom = 12, P = 0.35 
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The goodness-of-fit of a negative binomial model can be evaluated using a statistical 

criterion called “Deviance.” Statistical theory dictates that the Deviance asymptotically 

follows a Chi Square distribution (23). Based on this property, the P-value in the 

deviance test can be calculated. In general, if the P-value in the deviance test is larger 

than 5 percent, the model will appear to be an adequate fit to the empirical data. In our 

example, the deviance is 13.3, the degree of freedom is 12 and the corresponding P-value 

= 0.35 (Table 2). Based on the fitted parameters, the expected frequency of U.S. freight-

train collision is estimated using the following equation: 

 

μi  = exp(79.6894-0.0414Ti+0.0020Mi)Mi                              (3) 

 

Equation (3) is written in a mathematically equivalent way:  

 

Zi = Yi/ Mi = exp(79.6894-0.0414Ti+0.0020Mi)                                   (4)  

 

Equation (4) estimates Class I railroad freight-train collision rate on all types of 

track. The analysis shows that the expected annual collision rate declines between 2000 

and 2014. In addition to the temporal change, collision rate increases with traffic volume 

given all else being equal. Table 3 compares the observed versus the predicted number of 

freight-train collisions using the negative binomial regression model described above.  

 

TABLE 3 Empirical versus Predicted Freight-Train Collision Frequency, All 

Tracks, Class I Freight Railroads, 2000 to 2014 

Year 
Total Train-Miles 

(Million) 

Observed 

Collision 

Frequency 

Estimated 

Collision 

Frequency 

2000 599.97 91 92 

2001 580.90 97 82 

2002 596.68 65 83 

2003 610.74 76 84 

2004 634.08 101 88 

2005 649.45 106 89 

2006 666.29 74 91 

2007 642.99 82 80 

2008 621.41 65 71 

2009 516.87 46 46 

2010 554.00 45 51 

2011 566.12 52 51 

2012 577.27 56 51 

2013 589.85 52 51 

2014 605.01 54 52 
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In addition to the Deviance, another common goodness-of-fit test is the Chi-square 

test, which assesses the relative difference between each observation and estimation.  

               (5) 

Where: 

Oi = observed number of collisions in year i 

Ei = estimated number of collisions in year i  

n = sample size (number of years)  

 

Based on Table 3,  = 17.7. The corresponding P-value is 0.22 (degree of freedom 

is 14). Therefore, it indicates that the estimated collision frequency reasonably matches 

the observed count. Both the Deviance test and the Chi-square test show that a negative 

binomial regression model can be used to fit the empirical freight-train collision data in 

this paper. In the next section, this regression technique is applied to major collision 

causes on mainline and yard tracks.  

 

5.2 Major Collision Causes   
The FRA REA database records over 300 accident cause codes. Each cause code 

describes a specific accident circumstance. The train accident cause codes are 

hierarchically organized and categorized into major cause groups: track, equipment, 

human factors, signal, and miscellaneous (15). Within each cause group, FRA organizes 

individual cause codes into subgroups of related causes, such as roadbed and track 

geometry, within the track group and similar subgroups within the other major cause 

groups. A variation on the FRA subgroups was developed by Arthur D. Little (ADL), in 

which similar cause codes were combined into groups on the basis of expert opinion (24). 

The ADL groupings are similar to FRA’s subgroups but are more fine-grained for certain 

causes, thereby allowing greater resolution in some cases. For example, the FRA 

grouping combines broken rails, joint bars, and rail anchors in the same subgroup, 

whereas the Arthur D. Little grouping distinguishes between broken rail and joint bar 

defects. These groups were used to analyze cause-specific collision frequency and 

severity. Note that the ADL accident cause grouping might not be the only grouping 

approach. Furthermore, the same cause may fall into multiple groups. Therefore, if 

analysts use a different accident cause grouping scheme, the analyses should be adapted 

accordingly.  

According to Figure 1, on main tracks (including siding tracks thereafter), failure to 

obey or display signals and violation of train speed rules are the top two collision causes, 

whereas on yard tracks (including industrial tracks thereafter),violation of switching rules 

is the top cause group. A detailed breakdown of the cause codes within each ADL cause 

group can be found in ADL (24).  
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FIGURE 1 Top collision cause group (ADL cause group) on mainline and yard 

tracks, Class I freight railroads, 2000 to 2014. 

 

Using the negative binomial regression described above, a cause-specific train 

collision frequency model is developed (Table 4). All the models presented in Table 4 

have been validated based on the Deviance test and Chi-square test. Each model 

represents the “best” fit to the empirical data.  

 

TABLE 4 Selected Freight-Train Collision Frequency Regression Models 

 Collision Frequency (μi)  

by Year (Ti)  and Million Train-Miles (Mi) 
Failure to obey/display signals 

on main tracks  
μ
𝑖
= exp⁡(101.27 − 0.0526𝑇𝑖)𝑀𝑖 

Violation of train speed rules on 

main tracks  
μ
𝑖
= exp⁡(−9.90 + 0.0096𝑀𝑖)𝑀𝑖 

Total mainline collisions μ
𝑖
= exp⁡(83.61 − 0.0442𝑇𝑖 + 0.0039𝑀𝑖)𝑀𝑖 

 

  
Violation of switching rules on 

yard tracks 
An average of 19 collisions per year, no significant 

temporal and traffic effects  
Total yard collisions 
 

μ
𝑖
= exp⁡(90.28 − 0.0453𝑇𝑖)𝑀𝑖 

  
Total train collisions on all types 

of tracks  μ
𝑖
= exp⁡(79.69 − 0.0414𝑇𝑖 + 0.002𝑀𝑖)𝑀𝑖 
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6 COLLISION SEVERITY  
In addition to collision frequency, severity is another important element in train collision 

risk analysis. This paper uses the average number of railcars derailed per freight-train 

collision as a proxy to measure collision severity. This metric is related to accident 

kinetic energy and has been extensively used in the prior work (1, 4-8). On average, 

mainline collisions tend to derail more railcars as compared to collisions on yard and 

industrial tracks. A Wald-Wolfowitz runs test (25) was used to understand whether there 

is any significant temporal trend in collision severity. This statistical test checks if a data 

set results from a random process. When the P-value in the test is larger than 0.05, we 

may conclude that there is no statistically significant trend in terms of the average annual 

collision severity. Table 5 shows that the severities for all of the selected cause groups 

have no significant temporal trend. The yearly severity fluctuation is largely due to 

random variations. Therefore, in the following risk analysis, we will use the average of 

collision severity by type of track and accident cause (Table 5).  

 

TABLE 5 Number of Railcars Derailed per Train Collision,  

Class I Freight Railroads, 2000 to 2014 

 

 

 

 

 

 

 

 

 

 

Year All Tracks, 

All Causes

Failure to 

Obey/Display 

Signals

Violation of 

Train Speed 

Rules

All Causes 

on  

Mainlines

Violation of 

Switching Rules

All Causes 

on Yard 

Tracks

2000 1.9 1.9 2.4 1.7 1.3 2.1

2001 3.9 19.0 2.8 7.2 1.0 1.5

2002 3.6 12.8 1.7 7.5 0.4 1.0

2003 2.5 8.0 8.3 3.9 1.3 1.4

2004 3.7 7.9 4.5 5.5 1.6 2.1

2005 3.2 5.6 4.8 4.4 0.9 1.7

2006 2.1 5.6 4.0 3.0 1.6 1.4

2007 2.8 7.2 0.7 4.6 1.4 1.5

2008 2.7 10.9 3.0 4.8 1.1 1.5

2009 1.7 5.2 0.7 2.6 1.0 1.2

2010 1.9 3.8 1.7 2.7 1.3 1.4

2011 2.3 5.4 0.5 2.9 1.0 1.9

2012 2.5 7.8 23.0 4.0 0.7 0.9

2013 3.8 17.8 0.0 6.9 1.4 1.3

2014 3.0 2.5 6.0 6.0 0.9 1.3

Average 2.8 8.1 4.3 4.5 1.1 1.5

Standard Error 0.2 1.3 1.5 0.5 0.1 0.1

P-value in Runs Test 0.11 0.09 0.16 0.25 0.20 0.20

Mainline Yard 
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7 COLLISION RISK ANALYSIS 
Train collision risk can be defined as the product of collision frequency and severity:  

 

R = F×S                  (6) 

 

Where: 

R  = estimated annual collision risk 

F  = estimated annual collision frequency 

S  = estimated collision severity (number of railcars derailed per train collision)   

 

Both the estimated frequency and severity are subject to statistical uncertainty. 

Correspondingly, there is uncertainty associated with the risk estimator. The variance of 

the risk estimator can be calculated using the following equation by assuming that the 

variances of the estimators of collision frequency and severity are independent. A 

statistical proof of the variance of two random variables can be found in Goodman (26),  

 

Var(R) = Var(F×S) = Var(F)Var(S)+Var(F)E(S)2+Var(S)E(F)2           (7) 

 

Where: 

Var(R) = variance of collision risk estimator 

Var(F) = variance of collision frequency estimator 

Var(S) = variance of collision severity estimator 

E(F) = the estimator of collision frequency  

E(S) = the estimator of collision severity  

 

Furthermore, the 95-percent confidence interval of the collision risk estimator (CI95%(R)) 

is: 

 

95%( ) [ 1.96 ( ), 1.96 ( )]CI R R Var R R Var R  
                                  (8) 

 

Based on Equations (6) to (8), the estimated annual collision risk and its 95-percent 

confidence interval is calculated (Table 6) using the average traffic volume between 2000 

and 2014. For example, if the traffic volume in 2017 is 533 million train-miles on Class I 

mainlines, the projected collision frequency is 19, with a 95-percent confidence interval 

of 14 to 25. This projection entails a 95-percent chance that the actual number of 

collisions will be between 14 and 25. Collision risk, measured by the expected number of 

railcars derailed, is estimated to range between 55 and 116 in year 2017. At the time of 

analysis, the future traffic volume was not available. A sensitivity analysis was conducted 

to predict the range of train collision risk at different traffic levels (Table 6). It shows that 

collision risk varies with traffic volume. The change of mainline risk is more sensitive to 

traffic than the risk on yard track. For example, if the traffic volume increases from 533 

to 549 million train-miles on mainlines in year 2015 (3 percent increase), the estimated 

collision risk increases from 95 to 104, at a 9-percent increase (scenarios 2 and 3 in Table 

6). By contrast, the collision risk on yard track increases at 3 percent. This is because 

mainline collision frequency increases exponentially with traffic volume in a given year, 
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whereas yard collision frequency increases linearly with traffic, according to the 

regression models in Table 4.  

Note that implementation of certain collision avoidance technologies (e.g., positive 

train control) may change the safety trend described in this paper. We recommend that all 

train accident analyses be periodically updated to reflect up-to-date safety statuses. As in 

the highway safety community, the change of risk before and after the installation of a 

specific safety measure could be used to evaluate that particular measure’s safety benefit. 

A before-after safety evaluation of train collision risk mitigation strategies is the next step 

of this research.  

 

 

TABLE 6 Projected Collision Frequency, Severity and Risk in 2015 to 2017,  

Class I Freight Railroads, at Different Traffic Volumes 
Scenario 1: Baseline traffic decreases by 3 percent 

 

 

 

Scenario 2: Baseline traffic volume (average traffic volume between 2000 and 2014) 

 

 
 

 

 

 

 

 

 

(a) Mainline

Year

Mainline Million 

Freight-Train 

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 517.0 19 15 24 4.5 3.6 5.4 86 59 112

2016 517.0 18 14 23 4.5 3.6 5.4 81 55 107

2017 517.0 17 13 23 4.5 3.6 5.4 77 49 104

(b) Yard

Year

Yard Switching 

Million Train-

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 65.5 27 22 32 1.5 1.3 1.7 41 31 50

2016 65.5 26 21 31 1.5 1.3 1.7 39 30 48

2017 65.5 24 20 30 1.5 1.3 1.7 36 27 45

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)

(a) Mainline

Year

Mainline Million 

Freight-Train 

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 532.99 21 16 26 4.5 3.6 5.4 95 65 124

2016 532.99 20 15 26 4.5 3.6 5.4 90 59 121

2017 532.99 19 14 25 4.5 3.6 5.4 86 55 116

(b) Yard

Year

Yard Switching 

Million Train-

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 67.53 27 23 33 1.5 1.3 1.7 41 31 50

2016 67.53 26 21 32 1.5 1.3 1.7 39 29 49

2017 67.53 25 20 31 1.5 1.3 1.7 38 28 47

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)
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Scenario 3: Baseline traffic volume increases by 3 percent  

 

 
 
 

8 DISCUSSIONS 

In this section, we discuss the contributions of this study with respect to the literature and 

practice. We also discuss the data limitations of the current research and suggest possible 

future research directions.  

 

8.1 Contributions to the literature 

Because the FRA has been collecting train accident data since the 1970s, researchers are 

able to look into historical accident data, discover useful information, and propose risk-

informed decisions. Compared with the highway safety community, in which statistical 

modeling of accident data is normative for research and policy making, there has been 

much less statistical modeling work in the U.S. railroad sector. While most existing 

railroad safety studies have concentrated on derailments or grade crossing incidents, very 

limited statistical research has been spent on train collision risk analysis. This paper 

intends to develop an implementable statistical methodology for estimating freight-train 

collision frequency and severity. One of the most important lessons learned by 

transportation safety analysts in the past decades has been a statistical phenomenon called 

“Regression to the Mean” (RTM). The RTM refers to the tendency of a random variable 

that deviates from the mean to return to "normal" given nothing has changed (18). In the 

context of rail safety, RTM implies that a high accident rate in one year may be followed 

by a low rate in the next year due to the random fluctuation, even if there is no actual 

safety change (11). As Liu (11) mathematically proves, the RTM is inherent in any 

empirical train accident data and must be addressed through statistical approaches in 

order to understand the “true” safety trend. The collision analysis presented in this paper 

provides a step-by-step procedure for identifying the data-driven safety performance 

function (SPF) in the railroad industry, accounting for random fluctuations in accident 

occurrence and severity. The general approaches and procedures herein can be adapted to 

other types of train accidents and severities.  

 

8.2 Contributions to the practice   

The Rail Safety Improvement Act (RSIA) requires railroads to adopt risk-based 

approaches to ensure operational safety. However, there is no definitive, normative, 

practical methodological framework to guide the process of risk assessment. By contrast, 

(a) Mainline

Year

Mainline Million 

Freight-Train 

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 548.98 23 17 29 4.5 3.6 5.4 104 69 138

2016 548.98 22 16 29 4.5 3.6 5.4 99 64 134

2017 548.98 21 15 28 4.5 3.6 5.4 95 60 129

(b) Yard

Year

Yard Switching 

Million Train-

Miles

Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% Upper 

Bound
Mean

95% 

Lower 

Bound

95% 

Upper 

Bound

2015 69.56 28 23 34 1.5 1.3 1.7 42 32 52

2016 69.56 27 22 33 1.5 1.3 1.7 41 31 50

2017 69.56 26 21 32 1.5 1.3 1.7 39 29 49

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)

Collision Frequency

Collision Severity (Number of 

Cars Derailed per Collision)

Collision Risk (Total Numer of 

Cars Derailed)
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the Federal Highway Safety Administration (FHWA) publishes an extensive manual to 

guide the statistical modeling of vehicle crash data, based on decades of research (27). 

The highway safety manual (HSM) provides practitioners with easy-to-understand 

tutorials on the basic concepts of transportation statistics and with toolboxes for 

statistically analyzing and interpreting accident data. The author hopes to use this paper, 

in conjunction with its sequent studies, to promote industry-academic-wide dialogues in 

order to develop a railroad safety analysis manual, just as the highway sector has done 

over the past decade. One primary application of the statistical modeling of safety data is 

to evaluate potential collision avoidance technologies. By calculating the accident 

prediction models before and after implementation of certain risk reduction strategies, 

decision makers can better understand how a specific technology changes the safety 

trend, as well as the magnitude of its safety benefit. Ultimately, the railroad research 

community could develop a data-driven guideline for optimal safety investment.  

 

9 CONCLUSIONS  

This paper develops a statistical risk analysis of freight-train collisions in the United 

States, based on data from 2000 to 2014. The analysis shows that there is a temporal 

decline in collision rate on both mainline and yard tracks during the study period. The 

relationship between annual collision frequency and traffic exposure may vary with the 

type of track and accident cause. The statistical model can be used to project freight-train 

collision risk in the future, enabling a data-driven assessment of the safety effectiveness 

of certain accident prevention strategies.  

 

10 NEXT STPES  

First, the methodology will be adapted to account for other collision consequences, such 

as casualties, property damages, or environmental impact. These modifications will 

enable a comprehensive risk evaluation of train collision risk. Second, the methodology 

can be applied to passenger or rail transit accident analyses. Third, there is recent concern 

regarding crude oil transportation risk. The collision frequency and severity prediction 

models will be incorporated into a hazardous materials risk analysis model to estimate the 

amount of affected population due to a potential crude oil release. Fourth, a before-

versus-after safety evaluation framework can be developed to assess how certain 

technologies affect collision risk. Finally, this paper focuses on freight-train collision 

accident statistics in the United States. Other researchers studied train accidents in 

Canada (3, 28, 29) or Europe (22). Although the full comparison between U.S. rail safety 

statistics and those in other regions is beyond the main scope of this paper, it might be 

interesting to adapt the statistical methodology to other rail systems in future research.  
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