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ABSTRACT 

 

This paper investigates the influence of rail age, annual 

traffic density, and inspection frequency on broken-rail-caused 

train derailment risk. First, we estimate the probability of a 

broken-rail-caused train derailment based on a sequence of 

stochastic processes including rail defect formation, growth, 

detection and the likelihood that a broken rail causes a 

derailment. In addition to derailment frequency, we also 

estimate derailment severity, which is measured by the 

average number of railcars derailed per train derailment, based 

on FRA-reportable train derailment data. The preliminary risk 

analysis model provides a quantitative approach to understand 

broken rail risk, and potentially aid in development of 

effective ways to mitigate derailment risk. 

 

INTRODUCTION 

Improving train operating safety has long been a priority 

of the rail industry and government. Broken rail is the leading 

derailment cause on U.S. freight railroads [1,2]. Inspecting 

either visually or with modern ultrasonic technology allows 

the railroad industry to detect rail defects before they grow 

and cause a derailment. Since more frequent inspections 

require greater capital investment, a risk-informed rail 

inspection schedule can aid in risk mitigation in a cost-

efficient manner. It is important to understand how the broken 

rail derailment risk varies with influencing factors, such as rail 

age (cumulative tonnage on the rail) and traffic density. In this 

paper, a practical risk analysis model is developed that 

accounts for rail defect formation, growth, detection and 

derailment likelihood. The model estimates annual broken-

rail-caused derailment frequency and severity (derailment 

severity is measured by the number of railcars derailed) on 

any specific track segment, given rail age, annual inspection 

frequency and annual traffic density.  

  

 

 

 

The paper is structured as follows. First, we present a step-by-

step procedure for calculating the derailment risk. Next, we 

estimate the risk parameters based on the literature and the 

FRA accident data [3]. A numerical case study is developed to 

illustrate the application of the risk model. Based on the 

results from the numerical example, we discuss the 

contribution of this research to the literature and practice. 

Lastly, we summarize principal findings of this study.  

 

METHODOLOGY  

In this research, the risk of a train derailment is defined 

as the product of the probability of a derailment and the 

consequences of that derailment. This paper focused on 

broken-rail-caused freight-train derailments on mainlines. The 

consequence of a derailment is represented by the number of 

railcars derailed per derailment [1]. The risk methodology can 

be adapted to account for other types of damages in the future.  

According to the risk definition, either an increase in the 

probability of a train derailment or the consequences of that 

derailment could increase the risk. The following analyses 

detail the assessment of the derailment likelihood and severity, 

due to broken rails. Figure 1 presents a technical roadmap for 

broken-rail-caused derailment risk assessment.  

 

 
Figure 1 Derailment risk analysis framework 

Step 1: Estimate the number 

of broken rails per track mile

Step 2: Estimate the number 

of broken-rail-caused 

derailment frequency 

Step 3: Estimate the average 

number of railcars derailed per 

derailment 

Step 4: Calculate derailment 

risk (frequency multiplied by 

severity) 
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R = B×F×S                                                                             (1) 

                                                  

where: 

R= annual derailment risk per track mile (total number of 

railcars derailed) 

B = annual number of broken rails per track mile 

F = proportion of broken rails that may cause derailments  

C = average number of railcars derailed per derailment 

 

Step 1: estimate the number of broken rails (B) 
A number of factors can affect the rate of broken rails, 

such as temperature differential, rail age, traffic density, 

curvature, roadbed condition, axle load, vehicle dynamics, rail 

wear and others [4]. The Volpe National Transportation 

Systems Center has developed an engineering model that 

incorporates rail defect formation, growth and detection 

processes [5,6]. According to the Volpe model, a rail defect is 

assumed to form at an increasing rate as the rail ages due to 

the accumulation of tonnage. The model for the rate of defect 

formation is derived based on a Weibull distribution. The 

Weibull distribution model was calibrated based on 

observations of defect occurrence on the Facility for 

Accelerated Service Testing (FAST) at the Transportation Test 

Center in Pueblo, Colorado and on several segments of 

revenue track studied by the Association of American 

Railroads. After a defect was formed, its size progression was 

calibrated from the original detail fracture growth test 

conducted at FAST and has been further verified and validated 

by tests conducted through a joint international research effort 

supported by the Union of International Railways/World 

Executive Council [4]. Temperature differential, axle load, 

track modulus, rail wear and other factors were found to affect 

defect size growth. The probability of detecting a rail defect 

depends on the equipment used and the size of the defect. 

Although larger defects are more likely to be detected, they 

still can be missed during the inspection process [4]. 

The Volpe model focuses on rail fatigue defects, such as 

detail fractures, transverse/compound fissures, and vertical 

split head defects. Note that the Volpe model was developed 

in 1990s based on rail infrastructure conditions then. We are 

unaware of recent updates to this model. This may introduce 

some level of uncertainty when applying this model to predict 

rail defects under today’s infrastructure conditions. A more 

detailed description of the Volpe model has been provided in 

Orringer (1990), and thus not duplicated herein.  

The outputs of the Volpe model were used to develop a 

statistical model that approximate the parametric relationship 

between the number of rail breaks and inspection frequency, 

given rail age and annual traffic density level [7]:  

 

B = a×exp(b×K)                                                                     (2) 

                          

where: 

a, b = parameter coefficients, depending on traffic density and 

rail age  

K = annual inspection frequency  

 

For example, when the initial rail age is 300 MGT and 

annual traffic density is 80 MGT, parameter coefficient a is 

equal to 0.7547 and b is -0.567, referring to Liu et al. in 2014. 

Therefore, if there are four inspections per year (K = 4), the 

estimated number of broken rails per track miles is 

0.7547×exp(-0.567×4) = 0.078.  

 

Step 2: estimate the proportion of broken rails causing 

derailments (F)  

Previous studies assumed that an average of 0.5 to 1 

percent of broken rail resulted in derailments [8,9]. This 

likelihood may vary depending on operating and infrastructure 

characteristics. Due to data limitations, for illustrative 

purposes, we set F = 0.01 in this paper.  

 

Step 3: Derailment severity (C)  

Train derailment severity can be evaluated using a range 

of metrics, such as the number of cars derailed, property 

damage, casualties, or environmental impact. Among these 

metrics, the number of cars derailed is related to accident 

kinetic energy and has been used in the literature [1, 2]. 

Accident speed was found to be a significant factor that affects 

the number of cars derailed [10,11]. Based on the FRA-

reportable Class I railroad freight-train derailment data on 

mainlines, Liu et al. (2011) developed a nonlinear function to 

estimate the average number of railcars derailed:  

 

S = C×VD                                                                               (3) 

 

where  

S = average number of cars derailed in a freight train 

derailment 

C, D = model coefficients by accident cause  

(C=1.83; D = 0.622 for broken rails) [10] 

V = train speed in mph 

 

For example, if the operating speed is 40 mph (V = 40), 

the average number of a derailment due to a broken rail is 

approximately 1.83×400.622  = 18.2. Note that the model from 

Liu et al. (2011) was based on all types of train configuration 

and length. Further research is needed to better understand 

train derailment severity by additional influencing factors.   

 

Step 4: Derailment risk (R) 

In this paper, derailment risk is interpreted as the total 

number of cars derailed due to broken rails. The risk 

methodology can be adapted to other derailment severities as 

well. Based on Equation (1), given initial rail age of 300 

MGT, annual traffic density of 80 MGT, operational speed of 

40 mph and annually four inspections, the estimated 

derailment risk due to broken rails is: 

 

R = B×F×S = 0.078×0.01×18.2 = 0.0142 broken-rail-caused 

cars derailed per track mile per year  

 

SENSITIVITY ANALYSIS 

 

To illustrate methodology application, we develop a 

sensitivity analysis to understand derailment risk by rail age, 

traffic density and annual rail inspection frequency. We 

consider a track segment with rail age of 300 million gross 
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tons (MGT) and annual traffic density of 80 MGT. It is 

assumed that the speed is 40 mph. Figure 2 illustrates annual 

broken-rail-caused derailment risk by rail defect inspection 

frequency. The analysis is based on the assumption that rail 

age is 300 MGT, annual traffic density 80 MGT, and the 

operating speed is 40 mph. The graph illustrates a negative 

exponential relationship between the annual inspection 

frequency and derailment risk. For example, when there are 

two inspections per year, the estimated annual derailment risk 

due to broken rails is 0.035. The derailment risk is reduced to 

0.009 when there are five inspections per year (a 74 percent 

reduction). The analysis shows that increased rail inspection 

frequency reduces the rate of undetected rail defects, thereby 

reducing derailment risk.  

  
Figure 2 Derailment risk by inspection frequency (rail age 

is 300 MGT, annual traffic density 80 MGT, operating 

speed is 40 mph) 

 

Next, a sensitivity analysis was conducted to understand 

how the risk varies with rail age (Figure 3). It is assumed that 

the annual traffic density is 80 MGT, there are 4 inspections 

per year, and the operating speed is 40 mph. It shows that a 

positive exponential relationship exists between the rail age 

and derailment risk. For example, at 300 MGT initial rail age, 

the annual broken rail caused derailment risk is 0.015. The 

risk increases to 0.038 if the rail age is 500 MGT. This is 

probably because that rail defect rate occurs at a faster rate 

when rail ages [5].  

  
Figure 3 Derailment risk by rail age (annual traffic density 

is 80 MGT, 4 inspections per year, operating speed is 40 

mph) 

 

 

Figure 4 describes the relationship between     the risk 

and annual traffic density. It is assumed that the rail age is 300 

MGT, there are 4 inspections per year, and the operating speed 

is 40 mph. A positive exponential relationship is seen in the 

figure, indicating that the more traffic a segment of rail 

experienced by the rail on an annual basis, the higher the risk, 

given all else being equal. For example, if annual traffic 

density is 50 MGT, the risk is 0.002 if the rail is inspected four 

times per year. This risk would increase to 0.015 if the annual 

traffic density is 80 MGT and there are still four inspections 

per year. This is probably because more loading cycles (higher 

traffic density) between inspections increase the rate of rail 

defect growth, thereby increasing the chance of rail breaks. 

This also partly explains the fact that higher density tracks 

typically receive more frequent inspections to control the risk.  

 

 
Figure 4 Derailment risk by annual traffic density (rail age 

is 300 MGT, 4 inspections per year, operating speed is 40 

mph) 

CONCLUSION 

 

        This paper describes a preliminary analytical framework 

to quantitatively evaluate the effect of rail age, annual 

inspection frequency, and annual traffic density on broken-

rail-caused derailment risk, which is measured by total number 

of cars derailed per track mile. The analysis found that, given 

all else being equal, derailment risk is reduced when 

inspection frequency increases. Also, a higher traffic density 

or rail age is associated with a higher derailment risk level. A 

further study can be developed to optimize annual rail 

inspection frequency, accounting for the tradeoff between the 

safety and cost.  
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