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Abstract
Using freight trains is a cost-effective and safe method for transporting numerous products over long distances. However,
freight train derailments have significant consequences. Derailment severity, measured by the number of cars derailed per
derailment, is an important risk factor. Based on prior literature and Federal Railroad Administration data, this research ana-
lyzes and estimates derailment severity of freight railroad transportation using a statistical method: the Truncated Geometric
(TG) model. The methodology accounts for three train types: manifest train, loaded unit train, and empty unit train. Train
length, speed, and gross tonnage per car are the input features, and the output variable is the number of cars derailed in a
derailment incident. The TG model quantifies the influence of these factors contributing to derailment severity and estimates
train derailment severity with a performance of the mean square error (MSE) of 68.91 and mean absolute error (MAE) of
6.05. When data outliers such as abnormally high or low severity are excluded, the MSE drops to 36.82 and the MAE drops
to 4.22. Overall, the results indicate that the train derailment severity estimation performance based on the given factors is
satisfactory. With all other factors being equal, a loaded unit train is likely to derail more cars than a manifest train and an
empty unit train. When data outliers are excluded, there is no significant difference between manifest trains and empty unit
trains as regards derailment severity, and both are less likely to derail than a loaded unit train.
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Railroads are some of society’s most critical infrastruc-
tures for transporting goods across great distances. It is
essential to manage and minimize railroad safety risks to
avoid potentially massive loss of life and public property.
Freight railroads account for about 40% of the United
States’ long-distance freight volume, which is more than
any other mode of transportation (1). In recent years,
there have been several incidents of train derailments on
freight railways, some of which were associated with
hazardous material leaks. In October 2022, twenty tan-
ker cars of paraffin wax from a 101-car train derailed in
Sandusky, Ohio (2). In January 2023, sixteen total cars
derailed from a train and two of them leaked chemicals
in Keachi, Louisiana (3). In February 2023, a total of
thirty-eight trains derailed in East Palestine, near the
Ohio–Pennsylvania border, and eleven out of twenty
tank cars carrying hazardous material subsequently
ignited (4).

Unit trains and manifest trains are the two main types
of freight trains in the U.S. Unit trains are designed to
carry a single commodity, such as coal or grain, and are
shipped from one shared origin to one destination. Unit
trains are cost-effective and efficient because of reduced
operating expenses, bulk loading, improved asset utiliza-
tion, and cost savings through increased scale (5–9). Unit
trains have been used to transport an increasing propor-
tion of hazmat over the past two decades, and unit trains
accounted for approximately 21% of hazmat carloads in
2018 (9). Manifest trains, as opposed to unit trains, are
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used for transporting a variety of goods and commodi-
ties and typically consist of different types of rail cars for
multiple shippers (10).

According to train derailment data from the Federal
Railroad Administration (FRA) rail equipment accident
database, there were 2,669 unit train derailments and
5,931 manifest train derailments on mainlines from 1996
to 2021 (11). Zhang et al. conducted an empirical analysis
of freight train derailment rates for unit trains and mani-
fest trains using FRA mainline freight train derailment
data for the years 1996 to 2018 and found that the weight
and length of trains involved in derailments of unit trains
are statistically larger than those of manifest trains (9).
Additionally, the average number of cars derailed in unit
trains and manifest trains was significantly different, with
11.3 and 7.6 cars derailed on average, respectively (9).
Thus, the derailment risk and severity for manifest trains
and unit trains are different.

Train derailment severity analysis is an essential part
of hazmat transportation risk analysis. This report
belongs to a broader study of the effects of train config-
uration on railroad hazmat transportation risk.
Therefore, estimating the train derailment severity for
two major trains and quantifying the relationship
between train derailment severity and associated affect-
ing factors are pivotal for comprehending risks associ-
ated with freight transportation, including hazardous
material by rail, as well as for aiding the rail industry
and government to develop, evaluate, prioritize, and
implement cost-effective safety-enhancement strategies.

For a train derailment incident, the number of
derailed cars is greater than or equal to one and less than
or equal to the residual train length, including locomo-
tives and railcars. In this paper, the number of derailed
cars following a train derailment is used to measure the
derailment severity. Previous studies focused on the
probability of a train derailment and developed various
methods to measure derailment severity (12–15). The
truncated geometric (TG) model is one of the most main-
stream and effective of these methods. The TG model
can truncate the number of derailed cars starting from
one and extending to the residual train length. Although
previous research has focused on attributes such as resi-
dual train length, derailment speed, and loading factor,
relatively few studies have investigated the derailment
rates of unit trains and manifest trains on the mainlines
of freight networks. There remains a lack of more fine-
grained quantity analysis of derailment severity for dif-
ferent types of trains. In this research, we conduct a
detailed exploratory data analysis of the most recent
train accident data from the FRA and investigate and
clarify the corresponding impact of train types and fac-
tors, including train length, gross tonnage, and train
speed. Based on selected train derailment data from the

FRA, the TG model is utilized to estimate derailment
severity for different types of freight trains. There might
be a significant difference between loaded unit trains,
empty unit trains, and manifest trains in train length,
gross tonnage, and train speed, which might inversely
affect derailment severity. Ultimately, the relationship
between train derailment severity and train types and
related affecting factors can be quantified for the govern-
ment and railroad industry to develop more cost-
effective accident-prevention strategies.

Literature Review

Statistical models have been developed using historical
accident data to estimate expected severity based on
associated factors such as train speed, position of the
derailment, and the proportion of loaded and empty cars
within a train (12–15). These models are effective at esti-
mating train derailment severity as well as identifying
risk factors that influence train derailment severity.

For instance, Liu et al. developed zero-truncated neg-
ative binomial regression and quantile regression models
to estimate the conditional mean of freight train derail-
ment severity based on residual train length, derailment
speed, and loading factor, using data from historical
derailments on U.S. Class I railroad mainlines from 2001
to 2010 (12). Additionally, Saccomanno and El-Hage
developed a TG model to estimate the mean number of
cars derailed as a function of derailment speed, residual
train length, and accident cause (16, 17). Martey and
Attoh-Okine developed a joint mixed copula-based
model to estimate derailed cars and monetary damage,
and conducted a combined analysis of their relationship
with a set of covariates that might affect both outcomes
(13). Martey and Attoh-Okine employed a vine copula
quantile regression model, an interval estimation
approach, to predict conditional mean and quantiles of
derailment severity outcomes, considering derailment
speed, residual length, loading factor, derailed cars, and
monetary damage (14). Bagheri used a TG model to esti-
mate the number of cars derailed per train derailment
(18). Liu built a negative binomial regression model to
estimate the number of cars derailed in the United States
between 2000 and 2014 based on year, track type, annual
traffic volume, and accident cause (19). Li et al. con-
ducted a quantitative analysis of the derailment charac-
teristics of loaded and empty unit trains to determine the
frequency of derailments for both (7). Kang et al. devel-
oped a probabilistic risk analysis model for railroad haz-
mat transportation risk modeling and presented a
practical case study comparing unit and manifest trains
transporting hazardous materials (20).

These studies show that statistical methods can be
applied and train types can be considered in train
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derailment estimation. In the past decade, some research-
ers have used machine learning to investigate the relation-
ship between train derailment and associated factors (21,
22). Lotfi et al. predicted the severity of train derailment
utilizing decision tree, random forest, support vector
machine, and other machine learning techniques (21).
Song et al. conducted a quantitative analysis of freight
train derailment severity with structured and unstructured
data by combining latent dirichlet allocation (LDA) and a
zero-truncated negative binomial model (22). Machine
learning-based methods are increasingly a research focus
and continue to yield valuable insights.

Knowledge Gaps and Our Goals

Previous machine learning-based studies do not show a
great ability to quantify and explain the impact of each
factor on train derailment. Current methods based on
the TG model focus on limited attributes and only esti-
mate the mean of freight train derailment severity.
Limited previous research has estimated derailment
severity pertaining to the use of different types of trains
(9, 23, 24). Even fewer studies have focused on the differ-
ence between loaded and empty unit trains versus other
types of trains for the same traffic demand. This research
addresses these gaps by presenting a comprehensive
freight train derailment factor analysis and derailment
severity estimation based on the TG model, train types,
and other associated factors.

This paper aims to: (1) define and identify factors that
influence derailment severity, given a train derailment
incident; (2) build a TG model to estimate derailment
severity, given a set of influencing factors; and (3) esti-
mate train derailment severity based on the dataset from
the FRA using the TG model. The remainder of this
paper is organized as follows: the next section describes
the data sourced from the FRA and corresponding
exploratory data analysis. Following that section is an
explanation of the methodology implemented in this
work, namely the TG model, to identify factors that
influence derailment severity and to estimate derailment
severity. Subsequently, the results are interpreted and
implications are discussed. The last section concludes the
estimation of train derailment severity and analysis of
influencing factors, clarifies the contribution of this
paper, and discusses future work.

Data Source and Exploratory Data Analysis

Data Source

The Rail Equipment Accident/Incident Form 6180.54
(REA), published by the FRA of the U.S. Department of
Transportation (USDOT), records the time, cause, sever-
ity, consequence, and contributing factors of each train

accident (11). This research uses freight train derailment
data on the main tracks of Class I railroads, the largest
railroads by revenue operating in the United States, from
1996 to 2021 for train derailment severity analysis, which
covers all available data consistent with our derailment
rate analysis.

Many previous studies have used the ‘‘number of
derailed cars’’ to measure derailment severity (7, 12, 16,
17). The generic term ‘‘cars’’ refers to all types of vehi-
cles, such as locomotives, railcars, and cabooses, unless
specifically stated otherwise. Monetary damage and the
number of casualties are also used to assess derailment
severity. However, prior studies have stated that mone-
tary damage is prone to substantial variation because of
factors such as the cost difference between locomotives
and railcars and differences in repair costs between regu-
lar track and special track (like turnouts and crossings),
and that casualties are more appropriately included in
the measurement of passenger train derailments (13, 25).
As this research focuses on freight train derailments, this
section primarily uses the number of cars derailed as a
derailment severity metric in its study of unit train and
manifest train derailment severity analysis.

Figure 1 shows the average train derailment severity
for each year to demonstrate whether there is a statistical
trend over the years from 1996 to 2021. This figure does
not show an obvious increasing or decreasing trend in
average derailment severity from 1996 to 2021. We use
the Mann–Kendall Trend Test to verify the significance
of increasing or decreasing trends in derailment severity.
The Mann–Kendall Trend Test (26) is a non-parametric
test for analyzing time series data with consistent increas-
ing or decreasing trends. We find that train derailment
severity does not have a significant increasing or decreas-
ing trend over time. This is because the p-value (0.895) is
greater than the 0.05 confidence level, and we can thus
reject the null hypothesis that the data have a significant
increasing or decreasing trend. Therefore, we can con-
clude that, statistically, derailment severity for the
25 years from 1996 to 2021 does not change significantly
over time, and we can conduct an integrated analysis of
derailment severity for all years from 1996 to 2021
instead of a separate derailment severity analysis for each
individual year.

Using the freight train derailment data collected from
1996 to 2021, the distribution of the number of cars
derailed is plotted in Figure 2, excluding data with derail-
ment speed equal to ‘‘0 mph’’ or the number of derailed
cars equal to ‘‘0’’. Figure 3 presents the same data sepa-
rated by train type for the unit trains and manifest trains’
distributions of the number of derailed cars, and the
comparison between them. Table 1 presents descriptive
statistics for train derailment severity analysis. Most
derailment accidents are manifest train derailments
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(69%), and the corresponding average number of
derailed cars is 7.7, whereas the average numbers of
derailed cars for all train types and for unit trains specifi-
cally are 8.8 and 11.3, respectively. These facts indicate
that manifest trains may primarily affect the estimation
of train derailment severity.

Exploratory Data Analysis

Before developing statistical models to estimate train
derailment severity, we conduct data screening to exclude
data with inappropriate attributes which may degrade
the model’s performance. The following screening condi-
tions are applied; 8,160 train derailments (94.88% of all
8,600 derailments) are selected for analysis.

� Speed ø 1: In the dataset, 145 derailment inci-
dents’ speeds are 0 miles per hour. We assume
that a train will not derail when train speed is

extremely slow. Thus, we set the lowest derailment
speed as ‘‘1 mile per hour’’ and these 145 derail-
ment incidents (1.68% of all 8,600 derailments)
are excluded from subsequent analysis.

� Number of derailed cars ø 1: In the original data-
set, some numbers of derailed cars and locomo-
tives were zero. However, when the number of
derailed cars is zero, we deem that the train did
not derail, and thus the incidents with zero
derailed cars are excluded from our analysis. This
screening criterion removes sixty-seven derailment
incidents (0.78% of all 8,600 derailments) from
the dataset.

� Number of cars behind the point of derailment
(POD) ø Number of derailed cars: In this paper,
POD refers to the position of the first derailed
vehicle (FDV). It is impossible for the number of
cars behind the POD to be less than the number
of derailed cars, and thus we only consider data

Figure 2. Number of railcars derailed per freight train derailment (all train types) from 1996 to 2021.

Figure 1. Average train derailment severity each year.
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Figure 3. Number of railcars derailed per freight train derailment in: (a) unit trains, (b) manifest trains, and (c) comparison.

Table 1. Descriptive Statistical Results

Sample size
(number of train

derailments)

Mean (average
number of

derailed cars)

Median
(the median
number of

derailed cars)

Variance
(the variance of

numbers of
derailed cars)

Standard deviation of
numbers of
derailed cars

All train types 8,417 8.8 6 92.3 9.6
Unit trains 2,611 11.3 8 135.9 11.7
Manifest trains 5,806 7.7 5 68.8 8.3
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with the number of cars behind the POD greater
than or equal to the number of derailed cars. In
addition, we assume there is only one POD per
accident. The POD information is from the FRA
safety database and its accuracy could potentially
affect the results. In the dataset, there are 179
derailment incidents (2.08% of all 8,600 derail-
ments) whose numbers of cars behind the POD
are less than the numbers of derailed cars, and
these data are excluded from our analysis.

� Other data with apparent errors (seventy-nine data
records [0.92% of all 8,600 derailments], e.g., tons
per car equal to 0, two data records for one derail-
ment incident) are excluded.

Out of the 8,160 train derailments, 2,120 data points refer
to loaded unit trains, 414 data points refer to empty unit
trains, and 5,626 data points refer to manifest trains.

The response variable is the total number of railcars
derailed, including loaded railcars, empty railcars, and
locomotives. Several engineering and operational factors
may affect train derailment severity. Based on the litera-
ture, estimator variables are identified for statistical anal-
ysis, and include train derailment speed, residual train
length, gross tonnage per car, and train type.

Train Speed. Train derailment speed is the speed of train
operation when the accident occurs. This factor’s effect
on derailment severity is most widely studied in the liter-
ature (12, 17, 27, 28). It has been found that, given all
other factors are equal, derailment speed is positively
associated with the number of cars derailed. This finding
is reasonable because speed is an indicator of an acci-
dent’s kinetic energy.

Residual Train Length. Residual train length is defined as
the number of railcars behind the POD, which is the
maximum number of cars potentially subject to derail-
ment. Figure 4 illustrates the POD and residual train
length. Saccomanno and El-Hage (17), Anderson (27),
and Liu et al. (12) found that a greater residual train
length is associated with more derailed cars if a derail-
ment occurs.

Gross Tonnage per Car. Liu et al. verified the hypothesis
that a train carrying a larger proportion of loaded cars is
expected to derail more cars (12). Therefore, we consider
the gross tonnage per car as a factor that influences
derailment severity. Higher gross tonnage per car in the
train may also indicate greater kinetic energy in the
derailment, thereby causing more cars to derail, given all
else being equal.

Train Type. Train type is the new factor considered in this
research. There is no data field in the FRA REA data-
base to directly identify train type (i.e., unit or manifest
train). In this research, we classify train types based on
previous studies (7, 9). We identify unit trains and mani-
fest trains using the railroad code, train symbol ID, caus-
ing car reporting mark and number, number of empty
cars, number of loaded cars, number of locomotives, and
narratives recorded in the REA database. According to
several variables extracted from the accident database,
including the number of empty cars, the number of
loaded cars, the number of locomotives, the length of the
train considering the total number of cars and locomo-
tives, and the percentage of loaded or empty railcars in
the train, a train is classified as loaded if 95% or more of
its cars are loaded, or as empty if 95% or more of its cars
are empty (Figure 5) (9). These percentages were calcu-
lated by dividing the number of loaded or empty cars by
the total number of cars in the train. The percentage of
‘‘95%’’ of loaded or empty cars is used as the threshold
to measure whether a train is a unit train or a manifest
train (instead of the percentage of ‘‘100%’’) because of
the buffer cars required by federal regulation (29) whose
loading condition is independent of the loading condi-
tion of the rest of the train. This same threshold was
used in the previous study (7) to determine the loading
conditions of freight trains. Buffer cars can either be
empty or loaded with an inert material. In this research,
a train that is not more than 95% loaded or not more
than 95% empty is directly defined as manifest train. To
determine whether a train is a unit train or a manifest
train, further steps are required to identify train type
when it is more than 95% loaded or empty, while the
remaining trains with partially loaded consists are gener-
ally manifest trains. For example, train numbers with
prefixes of ‘‘C,’’ ‘‘G,’’ or ‘‘U’’ stand for loaded unit coal
trains, loaded unit grain trains, and loaded unit trains
carrying materials other than coal or grain, respectively,

Figure 4. An illustrative example of point of derailment and
residual train length.
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whereas ‘‘M’’ represents manifest trains, following BNSF
Railway’s symbol guide (30).

We consider three types of trains: loaded unit trains,
empty unit trains, and manifest trains. There may be sig-
nificant differences in train length, gross tonnage, and
train speed for loaded unit trains, empty unit trains, and
manifest trains, which may influence derailment severity,
as shown in Table 2. The average total numbers of cars
per train for both the loaded unit train and empty unit
train are greater than the manifest train, with a small dif-
ference between the loaded unit train and empty unit
train. The average tonnage per car of a loaded unit train
is remarkably larger than empty unit trains and manifest
trains, which may increase the corresponding train
derailment severity. We use the one-way analysis of var-
iance (ANOVA) to analyze the differences between the

means of two or more groups. The one-way ANOVA
(31) compares the variance within groups with the var-
iance between groups and, based on the results, it deter-
mines whether there is a statistically significant difference
between the means of the groups being compared. As
shown in Table 3, one-way ANOVAs are performed to
evaluate the existence of statistical differences in these
attributes among train types. We find that these attri-
butes among train types considered in the one-way
ANOVA are significant, with all p-values being less than
0.05. The results indicate that there was a statistically sig-
nificant difference in these attributes between all three
train types. These attributes of all three train types with
different distributions indicate that these factors have sig-
nificant influences on derailment severity. Moreover,
train type represents some unobserved, hidden factors
besides tonnage, train length, speed, and so forth.
Therefore, train type is also treated as a variable. Table 4
summarizes the input variables considered for the sever-
ity estimation model.

Methodology

Truncated Geometric Model

Given that a train derailment incident occurs, the num-
ber of cars derailed must be greater than or equal to ‘‘1’’
and less than or equal to the residual train length. As ver-
ified by Bagheri (18), the number of cars derailed follows
a TG distribution and the TG model can truncate the
number of derailed cars beyond the range from ‘‘1’’ to
the residual train length. For a train derailment event
with train length L and POD j (the residual train length

Figure 5. Methodology for classifying type of derailed trains (9).

Table 2. Attributes of Loaded Unit Trains, Empty Unit Trains, and Manifest Trains

Train types

Average residual train length
(number of cars behind

point of derailment)
Average tonnage

per car
Average total number

of cars per train
Average derailment

speed (mph)

Loaded unit trains 58 131 109 25.3
Empty unit trains 72 32 111 26.7
Manifest trains 50 85 86 24.5

Table 3. One-way ANOVA Result of Train Types and Attributes

Factor DF F-value p-value

Average residual train length (number of cars
behind point of derailment)

2 89.97 \ 2310216

Average tonnage per car 2 2060 \ 2310216

Average total number of cars per train 2 392 \ 2310216

Average derailment speed (mph) 2 4.961 0.00703

Note: ANOVA = analysis of variance; DF = degrees of freedom.
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Lr=L – j + 1), the probability of derailing x cars can
be calculated by:

P(X = x POD at jj )=

p(1� p)x�1

1� (1� p)Lr
if x= 1, 2, :::, Lr

0 otherwise

8><
>:

ð1Þ

where
Lr: residual train length
x: number of cars derailed
p: the probability of success at each trial, which is a

constant probability. In other words, if a derailment has
occurred, ‘‘x’’ cars derailing before the first non-derailing
car is a geometric distribution and the probability of a
car derailing is equal to (1 – p). This probability p is
assumed to be related to the factors/covariates through
the logit link function:

p=
eZ

1+ eZ
ð2Þ

where Z is a linear function (Equation 3) of influencing
factors, including derailment speed, residual train length,
gross tonnage per car, and train type.

Z =b0 +b1 speedð Þ+b2 cars residualð Þ
+b3 tons per carð Þ+b4 empty unit trainð Þ
+b5 loaded unit trainð Þ

ð3Þ

speed: Train derailment speed (miles per hour)
cars residual: Number of cars behind POD
tons per car: Average gross tonnage per car
empty unit train: If the train is an empty unit train,

empty unit train=1, otherwise empty unit train=0
loaded unit train: If the train is a loaded unit train,

loaded unit train=1, otherwise loaded unit train=0
The model uses the manifest train as a reference,

which means that the manifest train type variable is not
included in the model. A detailed introduction of the TG
model can be found in Bagheri (18).

We use the VGAM package in R to fit the TG model.
The VGAM package (32) in R aims to fit Vector
Generalized Linear and Additive Models (VGLMs and
VGAMs), as well as reduced-rank VGLMs (RR-
VGLMs) and quadratic RR-VGLMs (QRR-VGLMs). It
is a general program for maximum likelihood estimation.
In this research, the VGAM package is able to fit the
TG model using the function ‘‘truncgeometric()’’.

Model Results

Table 5 presents the results of the model. We find that
except for the variable ‘‘empty unit train,’’ all other vari-
ables considered in the TG model are significant, with all
p-values being less than 0.05. Thereafter, we get the
model result of the Z function in Equation 4.

Z = � 0:908� 0:0313 speedð Þ � 0:00239 cars residualð Þ
� 0:00240 tons per carð Þ � 0:340 loaded unit trainð Þ

ð4Þ

In Equation 4, if the coefficient of a variable is nega-
tive, then increasing this variable would tend to increase
derailment severity. In contrast, if the coefficient of a
variable is positive, then increasing the variable would
tend to decrease derailment severity. The reason can be
interpreted as follows. Based on Equation 2, the prob-
ability of a car not to derail (p) is a monotone increasing
function of ‘‘Z,’’ and thus the probability of a car to
derail (1 – p) is a monotone decreasing function of ‘‘Z.’’
When a variable is increased, given that its coefficient in

Table 4. Variables in Derailment Severity Estimation Models

Variables Data type

Model input
Gross tonnage per car Continuous variable
Train derailment speed (miles per hour) Continuous variable
Number of cars behind point of

derailment
Integer

Train types including loaded unit trains,
empty unit trains, and manifest trains

Category

Model output
Number of cars derailed in one

derailment
Integer

Table 5. Truncated Geometric Model Results for All Train Types with Outliers

Variables Definition Coefficient p-value

Intercept The constant 20.908 \ 2310216

speed Train derailment speed (miles per hour) 20.0313 \ 2310216

cars residual Number of cars behind point of derailment 20.00239 3.6531028

tons per car Average gross tonnage per car 20.00240 1.2331026

empty unit train If the train is an empty unit train, empty unit train = 1,
otherwise empty unit train = 0

0.0783 0.243

loaded unit train If the train is a loaded unit train, loaded unit train = 1,
otherwise loaded unit train = 0

20.340 5.19310216
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Z function is negative, Z decreases and then the prob-
ability of a car to derail increases, and thus derailment
severity tends to increase, and vice versa. Based on this
discussion, we offer the following interpretation of the
obtained model.

� The coefficient of derailment speed is 20.0313.
This indicates that higher derailment speed is asso-
ciated with increased derailment severity.

� The coefficient of residual train length is
20.00239. The negative value indicates that longer
residual train length is associated with increased
derailment severity.

� Similarly, greater gross tonnage per car is associ-
ated with increased derailment severity.

� The coefficient of ‘‘loaded unit train type’’ is
20.340. This means that a loaded unit train tends
to have more cars derailed compared with a mani-
fest train or an empty unit train, given all else
being equal.

We use the mean number of cars derailed as the esti-
mated derailment severity, as formulated by Equation 5.

D=E X½ �=
XLr

x= 1
P(x)x=

1

p 1� (1� p)Lr
� � ð5Þ

Figure 6 plots the estimated severity versus the observed
severity. Because of low-severity outliers (i.e., those inci-
dents where estimated severity is high but observed severity
is low) and high-severity outliers (i.e., those incidents where
estimated severity is low but observed severity is high), the

R square is not sufficiently large (0.61), which indicates
that the model does not estimate the severity perfectly.

One of the concerns identified by this result is that
there are different types of behaviors in the derailment
data and the variation cannot be represented well by
this type of model. Thus, we analyze train derailment
data through a physical model (33) that can model typ-
ical derailments. For example, the derailment data
include a significant number (approximately 20%) of
single-car derailments (severity=1) with a wide range
of derailment speeds. These often result from mechan-
isms like a broken wheel or axle, and are situations
where a single truck might derail but the problem is
identified and the train is brought to rest by the opera-
tor, initiating no larger derailment severity. All cars in
the train remain connected and upright, primarily
aligned with the track. Liu et al. analyzed the causes of
major train derailment and revealed that equipment is
the main cause of train derailment at derailment speeds
greater than 25 mph (34).

In other extreme derailments, the train is moving very
slowly and an initiating event, such as extreme weather,
causes a long string of connected cars to fall over,
remaining aligned with the track. According to our find-
ings based on accident narratives in the FRA REA data-
base, we can assume that if there are empty tank cars
with double shelf couplers and one of these cars rolls off
its tracks in a derailment, the strong rotational coupling
between the cars could result in a long line of trailing
cars rolling over. These events can have very high severi-
ties even at low speeds or no speed.

Consequently, we conducted additional analysis of
the data where we excluded the high-severity and low-
severity outliers. Nayak et al. proposed a positive non-
linear relationship between derailment speed and the
mean of derailed cars, and expressed the mean number
of derailed cars as a function of the square root of the
derailment speed (15). Martey and Attoh-Okine
employed a vine copula quantile regression model to
analyze the relationship between derailment speed and
derailment, which showed the marginal effects of derail-
ment speed in their model with different alpha values
(14). Therefore, we developed a method to exclude these
outliers and then used the TG model again to estimate
derailment severity. Considering that we covered most of
the derailment data and improved the TG model’s per-
formance, we determined the threshold for excluding
outliers by inferring from previous research (14, 15, 33,
34) and several trials. Derailment data outside the range
from 0.1 3 derailment speed to 1.6 3 speed are treated
as outliers and are excluded from analysis (Figure 7).
The derailments outside these bounds are assumed to
have a ‘‘unique behavior’’ compared with typical derail-
ments. Using this outlier elimination method, 5,849

Figure 6. Estimated severity versus observed severity with
outliers.

38 Transportation Research Record 2678(4)



derailment data are selected from the total 8,160 train
derailments; 2,311 outliers are excluded, among which
2,004 derailment data are low-severity outliers and 307
derailment data are high-severity outliers. Among the
5,849 train derailments, there are 1,581 data records
from loaded unit trains, 299 data records from empty
unit trains, and 3,969 data records from manifest trains.
The result of the TG model is presented in Table 6 and
Equation 6.

Z = � 0:587� 0:0709 speedð Þ � 0:00171 cars residualð Þ
� 0:00252 tons per carð Þ � 0:332 loaded unit trainð Þ

ð6Þ

Mean squared error (MSE, Equation 7) and mean
absolute error (MAE, Equation 8) are selected to mea-
sure the performance of TG models in estimating train
derailment severity. For all data with outliers, the MSE
and MAE of the model are 68.91 and 6.05, respectively.

For the data without outliers, the MSE and MAE of the
model are 36.82 and 4.22, respectively. The MAE indi-
cates that the average gap between the estimated number
of derailed cars and the observed number of derailed cars
is ‘‘6.05’’ and ‘‘4.22’’ for the data with and without out-
liers, respectively. Figure 8 plots the estimated severity
versus the observed severity without outliers.

MSE=mean estimated severity � observed severityð Þ2
h i

ð7Þ

MAE=mean
h
jestimated severity � observed severityj

i

ð8Þ

The TG regression model is also used to separately fit
the derailment severities for the loaded unit train, empty
unit train, and manifest train. Equations 9 and 10 calcu-
late the TG model results for loaded unit train derail-
ment severity based on the data including and excluding
outliers, respectively. The effect of average gross tonnage
per car on the derailment severity for the data both with
and without outliers is insignificant.

Z = � 1:492� 0:0423 speedð Þ � 0:00119 cars residualð Þ
ð9Þ

Z = � 1:216� 0:0785 speedð Þ � 0:00504 cars residualð Þ
ð10Þ

Equations 11 and 12 calculate the TG model results for
empty unit train derailment severity based on the data
including and excluding outliers, respectively. In the
model based on the data with outliers, the effects of aver-
age gross tonnage per car on the derailment severity are
insignificant. In the model based on the data without
outliers, the effects of average gross tonnage per car and
residual train length on the derailment severity are
insignificant.

Z = � 0:597� 0:0330 speedð Þ � 0:00573 cars residualð Þ
ð11Þ

Figure 7. Method to exclude outliers.

Table 6. Truncated Geometry Model Results for all Train Types without Outliers

Variables Definition Coefficient p-value

Intercept The constant 20.587 4.90310216

speed Train derailment speed (miles per hour) 20.0709 \ 2310216

cars residual Number of cars behind POD (point of derailment) 20.00171 0.0025
tons per car Average gross tonnage per car 20.00252 5.0231025

empty unit train If the train is an empty unit train, empty unit train = 1,
otherwise empty unit train = 0

0.123 0.151

loaded unit train If the train is a loaded unit train, loaded unit train = 1,
otherwise loaded unit train = 0

20.332 7.84310210
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Z = � 0:416� 0:0614 speedð Þ ð12Þ

Equations 13 and 14 calculate the model results for
derailment severity of manifest trains based on the data
with and without outliers, respectively. All considered
variables and the intercept are significant for both mod-
els based on the data with and without outliers.

Z = � 0:858� 0:0289 speedð Þ � 0:00335 cars residualð Þ
� 0:00291 tons per carð Þ

ð13Þ

Z = � 0:498� 0:0699 speedð Þ � 0:00320 tons per carð Þ
ð14Þ

Table 7 summarizes the performance of TG models at
estimating train derailment severity for loaded unit
trains, empty unit trains, and manifest trains. The
MSE (Equation 7) and MAE (Equation 8) are used as
criteria to measure performance. We found that the
TG model has a better performance when outliers are
excluded. Overall, the performance of the TG model is
acceptable: the models with outliers all have MAEs less
than 7.5, and the models without outliers all have
MAEs less than 5. Based on these results excluding
data outliers, we propose the following interpretations
of the obtained model.

� The coefficient of derailment speed is 20.0709.
This reveals that higher derailment speed is associ-
ated with increased derailment severity.

� The coefficient of residual train length is
20.00171, which is also negative, indicating that
longer residual train length is associated with
increased derailment severity.

� The coefficient of gross tonnage per car is
20.00252. Correspondingly, greater gross tonnage
per car is associated with increased derailment
severity.

� Similar to the situation considering the data out-
liers, the coefficient of ‘‘loaded unit train type’’ is
also negative, with a value of 20.332. Given all
else being equal, this means that a loaded unit
train tends to have more cars derailed compared
with a manifest train and an empty unit train.

Table 7. Summary of Model Performance of Truncated Geometry Model

Data Model results Mean square error Mean absolute error

All train types
With outliers Z = � 0:908� 0:0313 speedð Þ � 0:00239 cars residualð Þ

�0:00240 tons per carð Þ � 0:340 loaded unit trainð Þ
68.91 6.05

Without outliers Z = � 0:587� 0:0709 speedð Þ � 0:00171 cars residualð Þ
�0:00252 tons per carð Þ � 0:332 loaded unit trainð Þ

36.82 4.22

Loaded unit trains
With outliers Z = � 1:492� 0:0423 speedð Þ � 0:00119 cars residualð Þ 96.91 7.04
Without outliers Z = � 1:216� 0:0785 speedð Þ � 0:00504 cars residualð Þ 39.46 4.34

Empty unit trains
With outliers Z = � 0:597� 0:0330 speedð Þ � 0:00573 cars residualð Þ 83.76 6.13
Without outliers Z = � 0:416� 0:0614 speedð Þ 45.71 4.80

Manifest trains
With outliers Z = � 0:858� 0:0289 speedð Þ � 0:00335 cars residualð Þ

� 0:00291 tons per carð Þ
56.80 5.60

Without outliers Z = � 0:498� 0:0699 speedð Þ � 0:00320 tons per carð Þ 34.84 4.11

Figure 8. Estimated severity versus observed severity without
outliers.
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Concluding Remarks

This research identifies factors that influence derailment
severity, given a train derailment incident, and develops a
TG model to estimate train derailment severity based on
these factors. First, we conduct a comprehensive explora-
tory data analysis of train derailment severity and select
appropriate data from the FRA for statistical analysis.
Second, we systematically summarize factors that can sig-
nificantly influence train derailment severity, with the
train types being loaded unit train, empty unit train, and
manifest train. Third, we utilize these factors to estimate
train derailment severity and quantify the influence of
these factors, which provides further insights into train
derailment severity.

Based on the severity estimation results obtained by
the TG model, factors that can significantly influence
train derailment severity are identified; these include train
speed, residual train length, gross tonnage per car, and
train type. The results indicate that increased derailment
severity is associated with higher derailment speed, longer
residual train length, and greater gross tonnage per car.
Given all other factors are the same, a loaded unit train
tends to have more cars derailed compared with a mani-
fest train and an empty unit train.

We conducted additional analysis excluding low and
high-severity outliers, and estimated derailment severity
using the TG model. The results show that the TG model
achieves better estimation performance when outliers are
excluded. Given all other factors being equal, a loaded
unit train tends to have more cars derailed compared
with a manifest train and an empty unit train, whereas
there is no significant difference in derailment severity
between a manifest train and an empty unit train. For
the empty unit train and loaded unit train, the effect of
average gross tonnage per car on the derailment severity
is insignificant for the data both with and without out-
liers, whereas the average gross tonnage is significant for
the derailment severity of the manifest train.

However, statistical models may have difficulty predict-
ing extreme derailment events that fall outside historical
experience. Physical models are able to capture the condi-
tions of a specific train derailment scenario by mathemati-
cally describing the physical dynamics of the derailment.
In the future, we will leverage physical modeling, which
could help in understanding the derailment mechanism
determined by train speed, tonnage, train length, and so
forth, and compare it with the statistical model to estimate
train derailment severity more accurately.
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