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a  b  s  t  r  a  c  t

The  United  States  is experiencing  an  unprecedented  boom  in  shale  oil  production,  leading  to  a  dramatic
growth  in  petroleum  crude  oil  traffic  by rail.  In 2014,  U.S.  railroads  carried  over  500,000  tank  carloads  of
petroleum  crude  oil,  up from  9500  in  2008 (a  5300%  increase).  In light  of  continual  growth  in crude  oil
by  rail,  there  is  an  urgent  national  need  to manage  this emerging  risk.  This  need  has  been  underscored
in  the  wake  of several  recent  crude  oil release  incidents.  In contrast  to highway  transport,  which  usually
involves  a  tank  trailer,  a crude  oil train  can carry  a large  number  of  tank  cars,  having  the potential  for
a  large,  multiple-tank-car  release  incident.  Previous  studies  exclusively  assumed  that  railroad  tank  car
releases  in the same  train  accident  are  mutually  independent,  thereby  estimating  the  number  of  tank  cars
releasing  given  the  total  number  of  tank  cars  derailed  based  on  a binomial  model.  This  paper  specifically
robability accounts  for  dependent  tank  car releases  within  a train  accident.  We  estimate  the  number  of tank  cars
releasing  given  the number  of  tank  cars  derailed  based  on a  generalized  binomial  model.  The generalized
binomial  model  provides  a  significantly  better  description  for the  empirical  tank  car  accident  data  through
our  numerical  case  study.  This  research  aims to provide  a new  methodology  and new  insights  regarding
the  further  development  of  risk  management  strategies  for improving  railroad  crude  oil transportation

safety.

. Introduction

The United States is experiencing an unprecedented boom in
he production of petroleum crude oil and natural gases from shale,
riven by technological advances in hydraulic fracturing and hor-

zontal drilling. This has consequently led to a significant rise in
he rail transport of petroleum crude oil. In 2014, there were over
00,000 carloads of petroleum crude oil transported over U.S. rail
etwork, up from 9500 in 2008, or a 5300% increase (Barkan et al.,
015) (Fig. 1). The fast-growing crude oil traffic puts railroad safety
nder the national spotlight, especially in the wake of a chain of
rude oil release incidents in 2013 and 2014, such as those in Lac-
égantic, Canada in July 2013; Aliceville, Alabama in November

013; Casselton, North Dakota in December 2013; and Lynchburg,
irginia in April 2014.
Differing from roadway transport of hazardous materials,
hich usually involves a single tank trailer, a train may  carry
ultiple tank cars loaded with hazardous materials. In partic-

lar, railroads promote the use of unit-trains (a unit-train may
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E-mail addresses: xiang.liu@rutgers.edu (X. Liu), yilihong@vt.edu (Y. Hong).
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contain 50 to over 100 loaded hazardous materials cars) to trans-
port crude oil as a means of achieving greater transportation
efficiency (AAR, 2015). In view of continual growth in railroad
crude oil traffic, a proper risk management becomes a high priority
for railroad carriers, regulators, shippers and related stakeholders
(CRS, 2014).

In railroad hazardous materials transportation risk analyses, the
number of tank cars releasing per train accident is an important
variable (Glickman et al., 2007; Bagheri et al., 2011, 2012, 2014;
Liu et al., 2014). Previous studies were almost exclusively based
upon the same assumption that tank car releases in the same train
accident are mutually independent. Based on this assumption, a
binomial (or Poisson binomial) model was developed to estimate
the number of tank cars releasing per accident, given the total num-
ber of tank cars derailed. However, it is possible that there exists
interdependency between tank car releases within the same train
accident, due to the interactive effects of derailed tank cars that
are coupled together in the same block, or due to certain common

accident conditions. If such dependency exists, it will affect the
estimation of the probability of a large, multiple-car release inci-
dent. To our knowledge, there is no prior research that specifically
focused on modeling dependent tank car releases within the same
accident.
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Fig. 1. Traffic of rail transport of petroleum crude oil on U.S. Class I railroads.
ource: Association of American Railroads, adapted from Barkan et al. (2015).

To narrow this knowledge gap, we first formulate each railroad
ank car release as a Bernoulli variable and analyze their sum using

 generalized binomial model. Next, we present a numerical exam-
le to illustrate the application of the new model, with comparison
o the previous binomial model. Finally, we discuss the implica-
ions of this study with respect to rail safety policy and practice.
he methodology developed in this paper can be expanded to a
arger risk management framework for improving the safety of rail
ransport of crude oil and other hazardous materials.

. Literature review

Each derailed tank car containing hazardous materials has one
f two outcomes: release or no release. The release of each derailed
ank car can be viewed as a Bernoulli variable, whose Bernoulli
robability is referred to as the conditional probability of release
CPR) (Barkan et al., 2007; Barkan, 2008). The total number of tank
ar releases in a train accident can be viewed as the sum of a series
f Bernoulli variables. If the Bernoulli variables are independent
nd identically distributed (IID), their sum follows a binomial dis-
ribution (Ross, 2007). Previous studies almost exclusively used

 binomial model to estimate the number of tank cars releasing
iven the number of tank cars derailed (e.g., Nayak et al., 1983;
lickman et al., 2007; Bagheri et al., 2011, 2012, 2014). Liu et al.

2014) extended the prior work by accounting for heterogeneous,
ndependent tank car releases based on a Poisson binomial model.

However, we are unaware of any published study yet to consider
he total number of dependent tank car releases in a train accident.
his paper aims to narrow this knowledge gap by proposing a new
eneralized binomial model.

. Methodology

The release of each derailed tank car is a Bernoulli variable.
et Di denote the release of the ith derailed tank car in a train.

he Bernoulli probability (denoted as Pi) measures tank car safety
erformance in an accident (Barkan et al., 2007; Barkan, 2008)
Table 1).

able 1
utcomes of a derailed tank car in a train accident.

Bernoulli variable (Di) Probability

Release 1 Pi

No release 0 1 − Pi
d Prevention 84 (2015) 20–26 21

If there are n tank cars derailed in a train accident, the total
number of tank cars releasing (denoted as R) is expressed as:

R =
n∑

i=1

Di (1)

If the releases of individual derailed tank cars are independent
and identically distributed, the total number of releases, R, follows
a binomial distribution (Nayak et al., 1983; Glickman et al., 2007;
Bagheri et al., 2011, 2012, 2014). When the Di’s are non-identical
but independent, R follows a Poisson binomial distribution (Liu
et al., 2014). In this paper, we analyze the probability distribution of
total number of dependent tank car releases, given the total number
of tank cars derailed.

First, we define the dependencies among tank car releases
within the same accident. We  assume that the release probabil-
ity of the ith derailed tank car within all tank cars derailed depends
on the total number of cars releasing prior to it (Eq. (2)):

P(Di = 1|D1, D2, . . .,  Di−1) = P(Di = 1|D1 + D2 + · · · + Di−1) (2)

This assumption indicates that whether a derailed tank car
releases depends on the total number of tank cars releasing prior
to the car in question, regardless of which of the prior cars have
released. This total-kinetic-energy-related assumption appears to
agree with the prior railroad engineering research (Barkan et al.,
2003; Liu et al., 2011, 2012). For all the tank cars derailing prior
to the ith car (D1, D2, . . .,  Di−1), the total number of their releases
would range from 0 to i − 1. For illustration simplicity, we use
the following notation, originally developed by Yu and Zelterman
(2002):

Cn(s) = P(D1 = 1|D1 + D2 + · · · + Dn−1 = s − 1 (3)

where Cn(s) = the conditional probability that the nth derailed
tank car would release, given that there are (s − 1) tank cars releas-
ing prior to it (s ≥ 1).

We also define that C1(1) = P(D1 = 1). Let Pn(s) represent the
probability of releasing s tank cars out of n derailed tank cars, that
is:

Pn(s) = P(D1 + · · · + Dn = s) (4)

Based on the Law of Total Probability (Ross, 2007), we have

Pn(S) = Cn(s − 1)P(D1 + · · · + Dn−1 = s − 1)

+ [1 − Cn(s)]P(D1 + · · · + Dn−1 = s) (5)

Eq. (5) can be re-written in an equivalent but more concise way:

Pn(S) = Cn(s − 1)Pn−1(s − 1) + [1 − Cn(s)]Pn−1(s) (6)

Eq. (6) provides a recursive algorithm to calculate the proba-
bility mass function (PMF) of the number of dependent tank car
releases (s) given the number of tank cars derailed (n). If n − 1 < s,
Pn−1(s) is 0. Pn(0) can be calculated as a complementary proba-
bility of Pn(s ≥ 1). To explicitly describe the dependency structure
among Bernoulli variables, Yu and Zelterman (2002) proposed the
following Cn(s) based on a medical research study. In the context of
railroad safety, this particular type of dependency structure takes
into account the number of tank cars derailed, which is a proxy
related to train accident kinetic force and, correspondingly, to the
degree of severity (Barkan et al., 2003). Therefore, this paper starts

with this dependency structure. In future research, the recursive
algorithm proposed in Eq. (6) can be adapted to other possible
dependency structures:

Cn(s) = ˛s + p

n  ̨ + 1
(7)
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Table  2
Illustrative comparison of generalized binomial versus binomial distributions.

Number of tank
cars releasing
(s)

Probability in the
generalized binomial
model

Probability in
the binomial
model

Percent
difference

(a) Generalized binomial (n = 4; p = 0.6;  ̨ = 0.05); binomial (n = 4; p = 0.6)
0  0.043 0.026 69.8%
1  0.179 0.154 16.8%
2  0.328 0.346 −5.2%
3  0.315 0.346 −8.9%
4  0.135 0.130 4.1%
(b) Generalized binomial (n = 4; p = 0.6;  ̨ = −0.05); binomial (n = 4; p = 0.6)
0  0.010 0.026 −61.7%
1  0.114 0.154 −25.8%
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2  0.364 0.346 5.3%
3  0.391 0.346 13.1%
4  0.121 0.130 −6.4%

here 0 < p < 1 and  ̨ ≥ −p/N (where N is the largest number of tank
ars derailed per accident). Based on Eqs. (6) and (7), we  can derive
he probability distribution of dependent tank cars releasing in the
ame accident. The mean and variance of the number of tank cars
eleasing are:

[R] = np (8)

Var[R] = np(1 − p){1 + (n − 1)˛/(˛  + 1)}  (9)

The covariance between any two tank car releases in a train
ccident is

ov[Di, Dj] = ˛p(1 − p)/(a + 1) (10)

Eq. (8) shows that the generalized binomial model (based on a
articular dependency structure) has the same mean value with
he binomial model. However, the generalized binomial model has

 different variance function (Eq. (9)). In Eq. (10),  ̨ indicates the
ign of the correlation between tank car releases. If  ̨ = 0, the gen-
ralized binomial model is identical to the binomial model. If  ̨ > 0,
ank car releases within the same accident are positively corre-
ated, and the generalized binomial model will allow for a greater
ariance than the binomial model. Otherwise, if  ̨ < 0, tank car
eleases are negatively correlated, and the generalized binomial
odel would have a smaller variance than the binomial model. Eq.

10) shows that the value of parameter  ̨ also indicates the degree
f dependency. The larger the value of ˛, the larger the covari-
nce between tank car releases. To better understand the effect
f the dependency factor ˛, consider the following hypothetical
xample in which n = 4 (4 tank cars derailed in an accident). In the
inomial distribution, it is assumed that p = 0.60. For comparison,

n the generalized binomial distribution, it is assume that p = 0.60,
 = 0.05(or −0.05). Using the recursive algorithm introduced in Eq.

6), we calculated the probability distribution of the number of tank
ars releasing in the binomial distribution versus in the general-
zed binomial distribution (Table 2) (the calculation details are in
ppendix A).
Table 3 shows that if tank car releases within the same train
ccident are positively correlated (in the hypothetical example,

 = 0.05), the generalized binomial model will have a higher prob-
bility estimation on a no-release or small release incident. The
eneralized binomial model also estimates a higher probability

able 3
arameter estimates based on a sample of train accident data.

Binomial Generalized binomial

Average release probability (p) 0.2162 0.2223
Correlation parameter (˛) 0 0.6558
Likelihood 7.80E−22 1.13E−19
Log-likelihood −48.60 −43.62
d Prevention 84 (2015) 20–26

for an all-tank-car-release incident. It indicates that the derailed
tank cars tend to release (or do not release) together, when their
release probabilities are positively correlated. By contrast, if tank
car releases within the same train accident are negatively cor-
related (in the hypothetical example,  ̨ = −0.05), the generalized
model will result in a lower estimation on a small release (or no
release) as well as on an all-car release incident.

In the generalized binomial model, the parameter p is inter-
preted as the average release probability of a derailed tank car; the
parameter  ̨ represents the correlation parameter between tank
car releases. Both parameters can be fitted to the empirical data
using the method of maximum likelihood (ML):

(p, ˛)ML = arg(p,˛) max
∏

k

ln[P(Rk)] (11)

where (p, ˛) = parameters in the generalized binomial model and
P(Rk) = probability of releasing Rk tank cars in the kth train accident.

4. Numerical example

4.1. Dataset

To further illustrate our methodology, we assembled an anony-
mous sample of 56 hazardous-materials train accidents from 1990
to 2010. The data used for the statistical analysis are in Appendix B.
In those train accidents, all the derailed tank cars conform to non-
jacketed DOT 111A100W1 tank car design features (e.g., 7/16 in.
tank thickness). This was one of common hazardous materials tank
cars used in North America. The derailment speed is around 30 mph.
Each train accident resulted in 10 railcars derailed (including both
hazmat cars and non-hazmat cars). The selection of “homogeneous”
accident conditions could better isolate the effect of tank car release
dependency by controlling other factors. Based on Eq. (11), we fitted
the empirical data using:

(1) Binomial model (previous model). The average release prob-
ability was estimated based on the empirical data. The
correlation parameter was assumed to be zero.

(2) Generalized binomial model (new model). Both the average
release probability and correlation parameter were estimated
based on the empirical data.

4.2. Parameter estimates

In this paper, we  used the ML  method to determine the esti-
mates of the unknown parameters. Because there is no closed-form
expression for the ML  estimates (p, ˛), a numeric method was
applied based on the optim() function in software R. The results
of parameter estimation are in Table 3.

The binomial distribution model has a single parameter p
(average release probability of a derailed tank car), whereas the
generalized binomial model has two  parameters, which are the
average release probability (p) and the correlation (˛) between the
releases of tank cars in the same train accident. There are several
observations:

• The parameter p is very close in both models. This is not surprising
because both models have the same mathematical expression of

the mean (Eq. (8) of this paper).

• The real difference between the two models is that the general-
ized binomial model accounts for the dependencies among tank
car releases in the same train accident. By contrast, the binomial
model assumes independency.
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ig. 2. Distributions of tank cars releasing by different models (10 tank cars derailed
odel, p = 0.2223,  ̨ = 0.6558 based on the sample data described in Section 4.

Each model’s goodness-of-fit is evaluated based on the likeli-
ood value at the ML  estimate (or the corresponding log-likelihood
alue). A higher likelihood value indicates a better fit with the
mpirical data. As shown in Table 3, the likelihood of the gener-
lized binomial model (1.13E−19) is significantly higher than the
inomial model (7.80E−22). This distinction indicates that our sam-
le train accident dataset exhibits an interdependency among tank
ar releases that is not captured by the binomial model. To further
alidate this conclusion, we conducted a likelihood ratio (LR) test
Agresti, 2007) to examine whether the correlation parameter, ˛,
s zero.

Null Hypothesis H0:  ̨ = 0 (no tank car release dependency within
the same train accident).
Alternative Hypothesis Ha:  ̨ is not equal to 0.

To test the hypothesis, a statistic called Deviance is calculated
s follows:

 = 2 × [ln L(generalized binomial) − ln L(binomial)] (12)

here D = deviance, ln L(generalized binomial) = logarithmic like-
ihood of a generalized binomial model and ln L(binomial) =
ogarithmic likelihood of a binomial model.

According to the statistical theory, the deviance approxi-
ately follows a chi-square distribution (Agresti, 2007). Using

he information from Table 3, D = 2 × [−43.62 − (−48.60)] = 9.96.
he corresponding P-value is 0.002 (degree of freedom is one),
ndicating that the null hypothesis is rejected. Therefore, the corre-
ation parameter (˛) is significantly different from zero. Therefore,
he inclusion of an additional correlation parameter better fits
he empirical dataset. Due to information limit, we are unable to
uplicate the analysis for all historical tank car accidents. For the
articular sample data used in this paper, the generalized binomial
odel shows a better fit and appears to be a promising approach

o estimating the total number of dependent tank car releases.
The LR test above shows that the generalized binomial model

utperforms the binomial model, based on the sample data. Next,
e conduct a Chi-square goodness-of-fit test to study whether

he generalized binomial model adequately fits the empirical data,

sing the following equation:

2 =
n∑

i=1

(Oi − Ei)
2

Ei
(13)
cident). Notes: (1) In the binomial model, p = 0.2162. (2) In the generalized binomial

where Oi = observed number of tank cars releasing per accident and
Ei = expected number of tank cars releasing per accident.

Using the generalized binomial (Table 3) and raw data
(Appendix B), �2 = 61.2. The corresponding P-value is 0.31 (degree
of freedom = 55). These outcomes show that the generalized bino-
mial model can adequately fit the empirical data used in this paper.

5. Discussion

In this section, we  discuss the implications of our research with
respect to rail safety policy and practice. The generalized binomial
model appears to be a promising alternative to the previous bino-
mial model for analyzing the number of railroad tank car releases.
Statistically, a generalized binomial model can be viewed as the
sum of dependent Bernoulli variables, whose special case is the
binomial model when the dependency is zero. If the dependency
exists, it is important to understand how the use of different mod-
els (generalized binomial versus binomial) can affect risk analysis.
To illustrate, consider the following example.

Given that a train derailment results in 10 tank cars derailed,
what is the probability distribution of the number of tank cars
releasing (ranging from 0 to 10)? Using the parameter estimates
developed in the previous section (Table 3), the generalized bino-
mial model predicts a higher probability for either no-release or a
large release (five or more cars releasing). By contrast, the binomial
model predicts a higher probability on other release magnitudes
(Fig. 2).

Similarly, we  consider the distributions of the number of tank
cars releasing, given 5, 15, 20, and 25 tank cars derailed, respec-
tively, using the same fitted parameters (Fig. 3).

The spate of recent crude oil release incidents has raised inter-
est in better understanding the likelihood of a large, multiple-car
release incident. This paper shows that, if there are positive corre-
lations between tank car releases within the same train accident,
the binomial model may  underestimate the probability of a large,
multiple-car release incident, when compared with the generalized
binomial model. Therefore, when the interdependency exists, we
propose consideration of the generalized binomial model to better
understand the risk of a large, multiple-car release incident. The
magnitude of the dependency may  depend on both train operating

factors and accident characteristics, which might be specific to dif-
ferent datasets. In this paper, we conduct a proof-of-concept pilot
study based on a specific sample dataset. The data limit constrains
us to perform a nationwide analysis at this moment. Also, the anal-
ysis of various other tank car release dependency structures using
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ig. 3. Model comparison for other derailment severity scenarios. Notes: (1) In the
ased  on the sample data described in Section 4.

ther datasets is left for more extensive longer-term research, as
hat information becomes available.

This paper focuses on releases from derailed tank cars, with-
ut accounting for possible releases from non-derailed cars due to
hermal tear in a fire event. The fire impinging on the tank would
eaken the steel on the upper side, reduce its strength and possibly

ause a tank car release (Barkan et al., 2015). Industry and gov-
rnment had sponsored the development of an engineering tool
nown as the Analysis of Fire Effects on Tank Cars (AFFTAC) to
valuate increases in thermally induced pressure and the effective-
ess of designs for pressure relief devices (Runnels, 2013; Barkan
t al., 2015). Future research could be developed to incorporate fire-
aused tank car releases into railroad risk analysis modeling. Also,

 large body of the literature assumes that train accidents are inde-
endent. Future research might be needed to explore the scenarios

n which inter-dependencies among train accidents exist as well,
n addition to accounting for inter-dependency between tank car
eleases within the same train accident.

. Conclusion

This paper focuses on modeling the probability distribution
f the number of dependent tank car releases within the same
rain accident, through a proof-of-concept study based on a sam-
le train safety data. A generalized binomial model is developed

n order to analyze the total number of dependent railroad tank

ar releases, given the number of tank cars derailed. The gen-
ralized binomial model exhibits a better fit to the empirical
ample data than the binomial model. In view of growing national
nterest in managing the risk of the rail transport of petroleum
rude oil and other types of chemicals, this research can provide
ial model, p = 0.2162. (2) In the generalized binomial model, p = 0.2223,  ̨ = 0.6558

new methods to improve the accuracy and reliability of railroad
transportation risk analysis. In the next step, the methodology
developed in this paper will be expanded to a larger integrated risk
management framework for improving the safety of rail transport
of hazardous materials.
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Appendix A. Example calculation of recursive algorithm

It is assumed that a binomial distribution (n = 4; p = 0.6) and a
generalized binomial distribution (n = 4; p = 0.6;  ̨ = 0.05). The prob-
ability mass function (PMF) of a generalized binomial distribution
is estimated using the recursive algorithm described in Eq. (6). The
section below shows a step-by-step manual calculation process for
illustration purpose. A computer program is developed to automate
all the analyses presented in this paper.

Step 1: By definition, P1(0) = 0.4; P1(1) = 0.6.
Step 2: Using Eq. (7), C2(0) = 0.545; C2(1) = 0.590; C2(2) = 0.636.
Using Eq. (6), P2(1) = C2(0)P1(0) + [1 − C2(1)]P1(1) = 0.464. Simi-
larly, P2(2) = C2(1)P1(1) + [1 − C2(2)]P1(2) = 0.355. Note that, by

definition, P1(2) = 0. Finally, P2(0) = 1 − P2(1) − P2(2) = 0.182.
Step 3: Repeat the procedure to estimate P3(0), P3(1), P3(2), P3(3)
based on P2(0), P2(1), P2(2).
Step 4: Repeat the procedure to estimate P4(0), P4(1), P4(2), P4(3),
P4(4) based on P3(0), P3(1), P3(2), P3(3).
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ppendix B. Tank car release dataset and results

ID Number of
tank cars
derailed

Number of
tank cars
releasing

Estimated probability
using binomial model

Estimated probability
using generalized
binomial model

Difference in
estimated
probability

1 1 0 0.78 0.78 −0.29%
2  1 1 0.22 0.22 1.05%
3  1 0 0.78 0.78 −0.29%
4  1 1 0.22 0.22 1.05%
5  2 0 0.61 0.67 10.67%
6  4 0 0.37 0.56 52.09%
7  1 0 0.78 0.78 −0.29%
8  5 0 0.29 0.53 83.02%
9  1 0 0.78 0.78 −0.29%
10  3 0 0.47 0.61 28.23%
11  2 1 0.34 0.21 −39.15%
12  2 0 0.61 0.67 10.67%
13  1 0 0.78 0.78 −0.29%
14  1 0 0.78 0.78 −0.29%
15  1 0 0.78 0.78 −0.29%
16  6 4 0.02 0.06 191.25%
17  2 0 0.61 0.67 10.67%
18  1 0 0.78 0.78 −0.29%
19  2 0 0.61 0.67 10.67%
20  2 0 0.61 0.67 10.67%
21  1 1 0.22 0.22 1.05%
22  1 0 0.78 0.78 −0.29%
23  3 0 0.47 0.61 28.23%
24  3 0 0.47 0.61 28.23%
25  1 0 0.78 0.78 −0.29%
26  1 0 0.78 0.78 −0.29%
27  1 1 0.22 0.22 1.05%
28  1 0 0.78 0.78 −0.29%
29  1 0 0.78 0.78 −0.29%
30  3 0 0.47 0.61 28.23%
31  1 0 0.78 0.78 −0.29%
32  1 1 0.22 0.22 1.05%
33  1 0 0.78 0.78 −0.29%
34  1 0 0.78 0.78 −0.29%
35  2 1 0.34 0.21 −39.15%
36  2 1 0.34 0.21 −39.15%
37  2 1 0.34 0.21 −39.15%
38  4 1 0.42 0.18 −56.33%
39  2 0 0.61 0.67 10.67%
40  3 3 0.01 0.08 634.67%
41  2 1 0.34 0.21 −39.15%
42  1 0 0.78 0.78 −0.29%
43  1 0 0.78 0.78 −0.29%
44  1 1 0.22 0.22 1.05%
45  2 2 0.05 0.12 143.57%
46  1 0 0.78 0.78 −0.29%
47  6 0 0.23 0.50 122.45%
48  1 0 0.78 0.78 −0.29%
49  4 2 0.18 0.11 −34.93%
50  3 0 0.47 0.61 28.23%
51  1 0 0.78 0.78 −0.29%
52  3 0 0.47 0.61 28.23%
53  1 0 0.78 0.78 −0.29%
54  1 1 0.22 0.22 1.05%
55  4 0 0.37 0.56 52.09%
56  4 0 0.37 0.56 52.09%
Total  111 24
Likelihood 7.80E−22 1.13E−19
Log-likelihood −48.60 −43.62

ote: In the binomial distribution, the maximum likelihood (ML) estimator of tank car probability of release is 0.2162 (24/111 = 0.2162).
robability estimates were rounded.
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