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ABSTRACT 

Analyzing track geometry defects is of crucial 

importance for railway safety. Understanding when a defect 

will need to be repaired can help in both planning a preventive 

maintenance schedule and reducing the probability of track 

failures. This paper discusses the data cleaning and analysis 

processes for modeling track geometry degradation. An 

analytical data model named the Support Vector Machine 

(SVM) was developed to model the deterioration of track 

geometry defects. This paper mainly focuses on the following 

three defect types - surface, cross level and dip. The model 

accounts for traffic volume, defect amplitude, track class, 

speed and other potential factors. Results demonstrate that the 

proposed analytical data model can have a prediction accuracy 

above 70%.  

 
INTRODUCTION 

Infrastructure safety is the top priority of the railroad 

industry. Track geometry defects are a common cause of train 

accidents and service disruptions in the United States. There 

are various track geometry defects, such as surface, cross level 

and dip. According to the Railway Applications Section 

(RAS) of the Institute of Operations Research and the 

Management Sciences (INFORMS), surface is uniformity of 

the rail surface, which is measured in short distances along the 

top of the rail, measured over a 62-foot chord. Cross level is 

the difference in elevation between the top surfaces of the rails 

at a single point along a straight segment of track. Dip is the 

largest change in elevation of the centerline of the track within 

a 31 foot moving window. These defects are identified 

periodically by track geometry cars. Track geometry defects 

can be classified into two severity levels, i.e. red tags and 

yellow tags. The U.S. Federal Railroad Administration (FRA) 

requires severe defects (aka. red tags), to be fixed 

immediately, while the less severe defects (aka. yellow tags),  

 

 

shall be fixed within a planned period. Nevertheless, the 

yellow tags could become red tags if left unfixed. In order to 

facilitate risk-based track maintenance planning, it is 

important to accurately predict when a yellow-tag defect may 

grow to a red-tag defect.  

 
LITERATURE REVIEW 

There have been several track condition prediction 

methods developed by researchers. Ferreira and Murray 

(1997) provided an early overview of several important track 

deterioration models up to the late 1990’s and summarized 

three major categories of predictors frequently used, namely, 

dynamic forces, train speeds and axle loads [1]. Alfelor et al. 

(2001) built a track degradation database that recorded 

information from insert preposition (i.e. “the,” “a”) Gauge 

Restraint Measurement System (GRMS), which included 

gauge restraints, track geometry parameters, traffic loads and 

environmental factors [2]. Using this database, the relationship 

between track degradation and a specified influencing factor 

can be estimated using regression techniques. In China, Chen 

et al. (2006) developed an Integrated Factor Method (IFM) to 

predict track geometry parameters in the next month, based on 

the assumption that the monthly track geometrical conditions 

are correlated [3]. Veit and Marschnig (2010) used an 

exponential model to predict track condition over five-meter-

long track sections between two successive maintenance 

activities of the same kind (e.g., ballast temping) [4]. 

Recently, Liu et al. (2010) developed a short-range prediction 

model which employs linear regression and repeated 

substitution to predict track irregularity over short track 

sections of a unit length [5]. Xu et al. (2012) proposed a 

multistage linear method to describe track condition 

deterioration processes [6]. Later, Xu et al. (2013) estimated 

the historical deterioration rate by aggregating historical 

values of track geometrical parameters and then predicted 

future track failure  using a linear formulation that is updated 
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dynamically [7]. He et al. (2014) proposed a log-transformed 

linear regression model to characterize degradation processes 

of different types of yellow tag geometry defects [8]. 

In addition to using regression modeling, some 

researchers also used stochastic modeling to characterize track 

geometry degradation processes. Mercier (2009) estimated 

track deterioration through a bivariate Gamma process 

constructed by a trivariate reduction [9]. Their model was 

applied to fitting the empirical data from the Paris-Lyon high 

speed line. Andrade et al. (2012) found that longitudinal 

leveling track defects can be characterized by a simple linear 

equation where the parameters follow a correlated bivariate 

lognormal distribution and can be estimated by a 

corresponding random field [10]. Costello et al. (2012) 

presented a stochastic rail wear model in which future track 

deterioration can be predicted using a stationary Markov 

process where the transition probability matrix is obtained by 

historical data [11]. Alemazkoor et al. (2015) conducted a 

survival analysis with a Weibull distribution assumption to 

model the probability of track failure [12].  

Data mining techniques have emerged as a new research 

tool. Andrade and Teixeira (2012) proposed a Bayesian model 

to assess the linear relationship between the standard deviation 

of longitudinal leveling defects and the accumulated tonnage 

[10]. Sinha et al. (2015) introduced a hybrid predictive 

framework which includes logistic regression, decision trees 

and clustering to analyze track geometry degradation data 

[13]. Cárdenas et al. (2015) created an ensemble classifier 

based on Gamma process approximation, logistic regression 

and SVM, in order to improve the prediction accuracy of track 

geometry defects [14]. Elleuch et al. (2015) adopted the 

Variable Neighborhood Search (VNP) algorithm to look for 

the optimal solution set by minimizing mean absolute errors 

[15].  

 

PROBLEM STATEMENT 

The primary objective of this paper is to build an 

analytical data model that allows railroads to predict when a 

yellow-tag defect will evolve into a red-tag defect that requires 

immediate repair. That is to say, the ultimate response variable 

is the binary Yellow/Red tag. There are two major challenges 

in the track geometry data provided by the INFORMS RAS. 

First, within the study period, one specific type of defect at the 

same location may occur only once or twice, making it 

imperative to somehow group some records so as to create 

repetitive data points. Second, the raw data contains a large 

amount of records that are either missing or suspicious, thus 

making it inevitable to either aggregate the information or 

exclude the problematic observations. The following section 

explains a data cleaning process for modeling data.  

DATA CLEANING 

Data investigation and cleaning is an important step prior 

to conducting any statistical analysis. The following sections 

explain how the raw data were treated and the assumptions 

made given data limitations.  

The dataset used in this paper was provided by the RAS 

Problem Solving Competition 2015. The original dataset 

contains four line segments for all three defect types as 

mentioned before. For simplicity, only data on the 2nd line is 

used in the following analysis. There are 921 inspection 

records of dip, 2,039 inspection records of surface, and 4,437 

inspection records of cross level. Each inspection record has 

several potential predictor variables (Table 1.). RAS contends 

that the Yellow/Red tags are deterministically decided by both 

defect amplitude (field name is DEF_AMPLTD) and class of 

tracks. Therefore, instead of modeling the binary outcome 

Yellow/Red directly, modeling the continuous 

DEF_AMPLTD over time is also a reasonable choice. In the 

following analysis, the variable DEF_AMPLTD and track 

class are of importance in aggregating the dataset.  

 

Table 1. Variables in the Track Geometry Dataset 

 

Variable Name Description 

MILEPOST Point on the track 

TRACK_SDTK_NBR Track type 

TEST_DT Inspection date 

DEF_NBR Defect sequence number 

GEO_CAR_NME Track geometry car name 

DEF_PRTY 
Severity of the defect: Yellow or 

Red 

DEF_LGTH Length of defect in feet 

DEF_AMPLTD 
Defect Amplitude -  

Maximum size of defect  in inches  

TSC_CD Track type (tangent, spiral and 

curve) 

CLASS Class of Track 

TEST_FSPD Operating speed of freight train 

TEST_PSPD Operating speed of passenger train 
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DFCT_TYPE Defect type (Cross Level, Surface, 

Dip) 

TOT_CAR_EAST Total number of cars traveling east 

TOT_CAR_WEST Total number of cars traveling west 

TOT_TRN_EAST Total number of trains traveling east 

TOT_TRN_WEST Total number of trains traveling west 

TOT_DFLT_MGT Sum of total gross tons  

 

Step 1: Segmentation 

In order to create repetitive data points, the raw dataset is 

restructured into a number of 100-foot-long sections, a 

benchmark adopted in the literature [8] and also in the 

information provided by RAS. For each defect type, the 

minimum MILEPOST is set as the initial value for the first 

100-foot section. The segmentation is conducted until the last 

section covers the maximum MILEPOST. Finally, the data is 

sorted first by section number, then by TEST_DT, and lastly 

by MILEPOST. 

To illustrate this procedure, examine the data of defect 

type “dip” as an example. In this case, the minimum 

MILEPOST is 2.1392 (in miles), therefore, the first section 

(referred to as “section 1”) covers all the track geometry 

defects whose milepost locations are between 2.1392 and 

2.1581 (the segment length is 100 feet). Similarly, section 2 

covers all defects whose milepost locations are between 

2.1581 and 2.1771. Based on this procedure, the last section 

starts at milepost 281.9309 and ends at milepost 281.9498, 

with the maximum MILEPOST of 281.93326 included.  

Using this segmentation procedure, the same track 

section can be assumed to be “spatially homogeneous.” In 

other words, they are close enough in location to be 

considered as the same record.  

Step 2: Aggregation 

Within each section, some of the records were from the 

same test date, but had different values for variables such as 

track class, defect length and defect amplitude. The following 

is an example from data of defect type “dip.” Note that 

INFORMS RAS did not clarify the source for track class. In 

this paper, we assume that the track class is delineated based 

on the maximum operating speed.  

 

Table 2. Example of Data Aggregation  

 

MILEPOST TEST_DT DEF_PRTY DEF_AMPLTD CLASS 

5 18-Aug-13 YEL 1.69 4 

5 18-Aug-13 YEL 1.82 3 

 

MILEPOST TEST_DT DEF_PRTY DEF_AMPLTD CLASS 

5 21-May-13 YEL 1.33 5 

5 21-May-13 YEL 1.45 5 

 

The following assumptions were made in this paper to 

account for this and other data challenges.  

Assumption 1: For the records with the same test date but 

different values for other variables, if they are of the same 

track class and the same severity of defect (i.e. Yellow or 

Red), then they are combined. The resulting values for 

differing variables are simply the corresponding average 

values from the original records. Otherwise, such 

contradictory information is excluded from the analysis. 

As mentioned before, Yellow/Red is largely defined by 

both DEF_AMPLTD and class, suggesting records from 

different defects should never be aggregated since different 

classes may have different paths for deterioration of defects. 

Therefore, records from Class 3 and 4 were dropped from the 

analysis since they are from different classes. Thus records in 

Table 2. can be aggregated into the following new 

observation. 

 

Table 3. Example of Data Aggregation (continued) 

MILEPOST TEST_DT DEF_PRTY DEF_AMPLTD 
CLASS 

5 21-May-13 YEL 1.39 5 

 

Step 3: Filtration 

A close scrutiny of the segmented and aggregated data 

shows that within each section, the DEF_AMPLTD- our 

potential response variable- can experience a complex 

increase/decrease pattern. Here is an example from the data of 

defect type “dip.” 

 

Table 4. Example of Data Filtration 

 

MILEPOST TEST_DT DEF_PRTY DEF_AMPLTD 
CLASS 

105.4569 7-May-09 YEL 1.41 5 

105.4597 1-Jun-11 YEL 1.30 5 

105.4674 26-Apr-12 YEL 1.47 5 

105.4563 17-Sep-12 YEL 1.48 5 

 

Assumption 2: Any decrease in DEF_AMPLTD suggests 

a maintenance action.  

The INFORMS RAS did not provide information on 

maintenance records; hence, it is difficult to validate this 

assumption. However, the amplitude of a defect may not 

reduce as traffic accumulates unless a maintenance action was 
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executed. Another possibility is that the track geometry 

measurement might be erroneous. But such a problem is 

beyond the scope of this paper.  

This analysis only includes the sections with increasing 

values of DEF_AMPLTD only. In summary, for each section, 

only inspection records that form the longest complete path of 

defect evolution without disruption from maintenance are 

retained in the new dataset. For the example in Table 4., the 

final sub-section is kept as follows. 

Table 5. Example of Data Filtration (continued) 

 

MILEPOST TEST_DT DEF_PRTY DEF_AMPLTD 
CLASS 

105.4597 1-Jun-11 YEL 1.30 5 

105.4674 26-Apr-12 YEL 1.47 5 

105.4563 17-Sep-12 YEL 1.48 5 

 

Time intervals between two consecutive inspection 

records within the same section are calculated. Some time 

intervals are very large. Here is an example from data of 

defect type “dip.” 

Table 6. Example of Data Filtration (continued) 

MILEPO

ST TEST_DT DEF_P

RTY 

DEF_AMP

LTD 
CLAS

S 

Time 

Interv

al 

279.1637 8-May-09 YEL 1.54 4 NA 

279.1653 17-Jun-09 YEL 1.58 4 40 

279.1611 6-Oct-09 YEL 1.73 4 111 

279.1641 15-Apr-11 RED 1.85 4 556 

 

The example shows that the 4th and 3rd records are almost 

one year and a half apart in time.  

Assumption 3: Inspection is conducted at least once a 

year. 

This assumption eliminates the inspection records that are 

too temporally distant from the last inspection record. In Table 

6, it is reasonable to imagine that there must be some missing 

inspection records between 6-Oct-09 and 15-Apr-11, thus 

making the last inspection record less consistent with its 

predecessors than it should be. As a result, the final record was 

dropped from the analysis. 

After the above three-step cleaning procedure, there are 

281 inspection records left for the defect type “dip,” 443 

inspection records for “surface,” and 805 inspection records 

for  “cross level.”  

 

TRAFFIC ACCUMULATION 

Traffic volume is an important factor for track 

degradation [16]. The traffic volume (number of trains, 

number of cars, total gross tons) between any two consecutive 

inspections along the same section was estimated. INFORMS 

RAS also provided monthly traffic volumes on different 

sections of the selected line segment. The following 

assumption is made to allow for estimating accumulated 

traffic volume between inspections.  

Assumption 4: Due to a lack of daily traffic information, 

it is assumed that traffic is uniformly distributed within any 

month.  

For instance, if the total tonnage of January is 31 million 

gross tons, the daily tonnage in January is assumed to be 1 

million gross tons. This assumption makes it easier to 

extrapolate the traffic volumes between any two specific dates. 

Note that such calculations are conducted only for inspection 

records that are within the same section. Also, the first record 

in any section is set to be the starting point for traffic 

accumulation (Table 7.).  

Table 7. Example of Traffic Accumulation 

TEST_

DT 

TOT_CAR_

EAST 

TOT_CAR_

WEST 

TOT_TRN_

EAST 

TOT_TRN_

WEST 

TOT_DFLT_

MGT 

8-

May-

09 
NA NA NA NA NA 

17-

Jun-09 
13210.32 13210.32 1070.258 838.5763 12.56534 

 

Again the first record is the starting point of the section; 

hence, no calculation is carried out. The traffic volume 

between the two defect records is the accumulated number of 

total cars and trains, and total gross tons running within the 

studied section from May 9th, 2009 to June 9th, 2009. Note 

that although the total number of trains and the total number of 

cars are computed in the above example, they are actually 

omitted in the analysis that will be introduced in the next 

section. This is because a significantly large portion of train 

and car information was missing in the RAS dataset. Hence, 

only TOT_DFLT_MGT is retained for future analysis. 

Besides traffic volume, changes in DEF_AMPLTD are 

also obtained between consecutive inspection records within 

the same section. DEF_AMPLTD in the “cross level” defect 

type can be positive or negative. For cross level data, absolute 

values of DEF_AMPLTD are used instead of the original 

values. The next section will introduce a two-stage approach 

which will model DEF_AMPLTD first and then predict 

whether a defect will be classified into a Yellow or Red tag 

based on the predicted track geometry defect amplitude.  

TWO-STAGE PROCEDURE 

The objective of this paper is to predict when Yellow tags 

will become Red tags. Recall that the Yellow/Red tags are 

actually determined by DEF_AMPLTD and track class. In this 
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case, the underlying variable that should be modeled first is 

the main determinant of the deterioration, i.e. DEF_AMPLTD. 

A two-stage procedure is formulated as below: 

Stage 1: Model the changes in DEF_AMPLTD (denoted 

as “diff” hereafter) for each defect type. Then add the 

predicted diff and the DEF_AMPLTD of the last inspection to 

obtain the DEF_AMPLTD for the next inspection. 

Stage 2: Classify a defect as a Yellow or Red tag based 

on the predicted DEF_AMPLTD. The classification thresholds 

for Yellow and Red tag defects were provided by the RAS of 

INFORMS.   

Note that only DEF_AMPLTD and track class should be 

inputs for Stage 2 analysis because all other variables are 

irrelevant in the determination of Yellow/Red tag as 

mentioned before. 

SUPPORT VECTOR MACHINE DATA MINING 
TECHNIQUE 

The Support Vector Machine (SVM) is applied to the 

two-stage procedure above. SVM is one of the most popular 

machine learning methods that can be used for both 

classification and regression analysis [17]. Given training data, 

SVM categorizes new data through optimal separation of 

hyperplanes that maximize the margin of the training data. In 

the field of data mining, the SVM represents one type of 

supervised learning models with associated learning 

algorithms that analyze data used for classification and 

regression analysis. Given a set of training examples, each 

belonging to one of two categories, an SVM training 

algorithm builds a model that assigns new examples into either 

one category or the other. Like classical techniques, SVMs 

also classify the category of each observation.  

In this paper, all numerical analyses were conducted on 

the platform of R 3.1.1 with package e1071. For each defect 

type, 60% of the cleaned RAS data are used as the training 

data and the other 40% were used for blind prediction. To 

reduce sampling errors, the SVM analysis was repeated 50 

times. For Stage 1 analysis, the input variables are track class, 

traffic volume and time intervals. For Stage 2 analysis, the 

input variables are track class and the predicted 

DEF_AMPLTD. The average prediction accuracy for dip is 

76.18%, the average prediction accuracy for surface is 

82.81%, and the average prediction accuracy for cross level is 

72.93%. 

In order to investigate the effects of other variables not 

included in the Stage 1 analysis, they were added to the model 

in succession. Additional variables can be retained in the 

model only if this variable can significantly improve the 

model fit. Table 8. demonstrates the highest prediction 

accuracy with the variables retained in the final model. 

 

Table 8. Prediction Accuracy of the Overall Procedure 

 

Defect Type Highest Average 

Prediction Accuracy Predictors 

DIP 76.82% 

Traffic, Class, 

Time Interval, 

TRACK_SDTK_NBR, 

TSC_CD, TEST_PSPD 

SURFACE 84.42% 
Traffic, Class,  

Time Interval, 

DEF_NBR 

CROSS 

LEVEL 73.10% 

Traffic, Class,  

Time Interval, 

DEF_LGTH, TSC_CD, 

TEST_FSPD,TEST_PSPD 

 

CONCLUSION 
 

This paper applies data mining techniques to analyzing 

track geometry degradation. A Support Vector Machine 

(SVM) model was used to predict the change in track 

geometry defect amplitude and when a yellow tag defect may 

grow large and become a red tag defect. The model accounts 

for traffic volume, track class, inspection interval and other 

potential factors. The analysis shows that the SVM model can 

achieve an overall prediction accuracy above 70% for all three 

selected track geometry defect types.  
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