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ABSTRACT 

First-mile and last-mile travel is the bottleneck of using the 

public transportation service. This paper considers the 

passenger matching and vehicle routing problem in the first-

mile ridesharing service connecting train schedules. Then a 

mixed integer model is proposed to formulate the problem. 

Since the problem is NP hard, we develop a simulated annealing 

(SA) algorithm with four neighborhood structures to solve this 

problem. Experiments are designed to test the proposed model 

and algorithm. The experimental results verify the effectiveness 

of the algorithm and demonstrate that the proposed algorithm 

can obtain satisfactory solutions within a reasonably short time.  

1. INTRODUCTION 

 Public transit is essential for supporting societies 

undergoing population growth, urban development, and climate 

change. A key challenge for using public transit is the first-and-

last-mile accessibility from/to transit hubs (e.g. train stations). 

The $61 billion public transportation industry, consisting of 

7,200 organizations in the U.S., faces an enduring challenge - 

how transit users travel between their locations and transit hubs. 

Literally, this is described as the “first mile and last mile” 

bottleneck. Numerous studies have found that travelers’ choice 

of public transportation is significantly affected by the first-

mile-last-mile accessibility from/to transit stations (e.g. railway 

station, bus stop). Individual transit users typically drive their 

personal vehicles or take taxis between their homes and transit 

hubs neither of which fully utilizes available seats, thereby 

sustaining a high traveling cost and increasing road congestion 

and parking demand. Using shared mobility service is an 

effective solution to these problems. 

In recent years, the number of shared mobility APPs in the 

market has been increasing exponentially, which provides 

travelers with a variety of alternative transportation services. 

Table 1 summarizes the existing smart phone mobility APPs in 

the market.  

Table 1 Summary of existing mobility APPs 

Characteristics 

Existing APPs 

Flywheel, 

Curb 

BlablaCar,  

CarpooleAR 

Scoop, 

Ford, 

Wazerider 

Transit 

Uber, 

Lyft, 

Via, 

Easy-

taxi 

Zipcar, 

Car2go 
Spinlister Chariot 

On demand √ √ √  √ √ √  

Ridesharing  √ √ √ √   √ 

Vehicles Taxi Private cars 
Private 

cars 

Public 

vehicles 

Private 

cars 

Business 

smart 

electric 

cars 

Smart 

bikes 

Business 

vehicles 

Application 

Door-to-

door 

short 

distance 

Long 

distance: 

inter-city 

Door-to-

workplace: 

commute 

Short 

distance 

fixed 

routes 

Door-

to-door 

short 

distance 

Short 

distance 

carsharing 

Short 

distance  

bikesharing 

Short 

distance 

fixed 

routes 

 

The table classifies the existing smart phone mobility APPs into 

eight categories. 

1) Flywheel [1], Curb [2] and etc. smartphone APPs provide 

passengers with the taxi hailing service. Passengers can send a 
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request for taxi using and pay for the service automatically with 

the phone after the passengers arrive at the destination. 2) 

Transit [3] APPs are passengers’ real-time urban travel 

companion using public transportation means including bus, 

trains, ferries, etc. They can help passengers navigate public 

transit system and make an optimal travel plan. 3) Chariot [4] is 

similar as Transit, but unlike Transit, Chariot only has one type 

of vehicles in one city. In addition, vehicles are owned by the 

company and thus can change the route based on the needs. 4) 

Zipcar [5], Car2go [6], Volug [7] etc. are car rental APPs that 

provide members with carsharing service – accessing 

automobiles for short-term use (usually hourly). 5) Spinlister 

[8] etc. APPs are similar as Zipcar and Car2go, but is designed 

for bikesharing. 6) Scoop[9], Wazerider [10], etc. APPs are 

used to provide commuters with the ridesharing service to 

commute between their homes and workplaces every day. 

Drivers, who are also commuters, can use these APPs to pick up 

other commuters and arrive at the same workplaces. 7) 

BlablaCara [11] and CarpooleAR [12] are another type of 

ridesharing mobility APPs. These APPs is used for city-to-city 

ridesharing service. The driver can offer a ride to other 

members in his or her car if he/she will have a long-distance 

travel. 8) The most widely used mobility APPs is the category 

of Uber [13], Lyft [14], Via [15] and Easy-taxi [16]. They can 

provide demand responsive door-to-door ridesharing service.  

The existing mobility services have achieved significant 

economic and social benefits. However, none of them are 

specifically developed for passengers’ first-and-last-mile 

transportation, and all these APPs except Transit are owned by 

private companies whose primary goal is maximizing their 

revenue. Therefore, almost all these APPs have certain 

limitations when being used for first-and-last-mile 

transportation.  

APPs, such as BlablaCar, CarpooleAR, Scoop, Ford and 

Wazerider, which are designed for specific purposes (e.g. long-

distance travel and commuting), are unable to provide the 

service of first-and-last-mile transportation. Taxi APPs 

(Flywheel and Curb) can help people to achieve the first-and-

last-mile travel by requesting a ride with the smartphone, but 

will not reduce the traveling cost, roadway congestion and 

emission without a ridesharing function. Fixed-route APPs 

(Transit and Chariot) have a high-level ridesharing service, but 

lack accessibility (passengers have to reach the pre-determined 

stop in time to get in the vehicle). It is inconvenient for 

travelers’ first-and-last-mile travel. Vehicle rental APPs, such as 

Zipcar, Car2go and Spinlister, can be used for first-and-last-

mile travel, and can reduce traveling cost and emissions. 

However, travelers have to find vehicles nearby when they start 

to travel and have to find a nearby place to park the vehicles 

after they finish the journey. These inconveniences significantly 

reduce its accessibility. Uber, Lyft, Via, Easy-taxi etc. are the 

only category APPs that can provide the service of first-and-

last-mile on-demand ridesharing transportation. However, their 

APPs are not linked to public transit schedules, and the system 

cannot provide drivers and passengers with information of 

transit schedules. Thus, if passengers choose to use these 

services, it is possible that they may miss the train or wait the 

train for a long time after they arrive at the train station (first-

mile). In addition, they may have to wait for a long time to be 

picked up at the train station before the last-mile travel. Many 

previous studies have been proposed to satisfy the practical 

demand of mobility. For example, researchers studied 

technology, impact, policy and future prospect of some 

formations of shared mobility, such as carsharing [17-19], 

bikesharing [20-29], and ridesourcing [30-34]. Ridesharing is 

another emerging mode of shared mobility and has been widely 

studied in academic fields. Several ridesharing patterns have 

been studied in literature. 

1) Scheduled carpooling [35-49]: scheduled service for 

travelers that share ride in a private vehicle with other 

appointed travelers. Typically, drivers and other participants 

have similar origins and destinations or the drivers has 

convenient pickup and drop-off routes for other participants. 

This service is usually provided for those who have regular 

travel plans, such as daily commuters. 

2) Flexible carpooling [50-56]: all participants will be matched 

at a predetermined spot and time, which are publicly known in 

advance, after they come to this spot. This type of ridesharing 

usually happens in long-distance travel cases. 

3) Dynamic ridesharing [57-68]: providing an automated 

process of ride-matching (routing, scheduling, and pricing) 

between drivers and passengers on very short notice [69]. 

Passengers send on-demand requests. The system will respond 

to requests in a very short time and then generate passenger 

matching and vehicle routing plan. 

However, no researchers have specifically designed the service 

for first-mile and last-mile transportation. More precisely, none 

of these researches connect the ridesharing service to train 

schedule. Based on the analysis of limitations and 

disadvantages of existing APPs and researches in providing the 

first-and-last-mile transportation service, it is obvious that to 

reduce the first-and-last-mile accessibility from/to transit hubs 

(e.g. train stations) is still a key challenging problem for using 

the public transportation service. To narrow the first-and-mast-

mile gap for public transit, some transportation companies such 

as Transit start to specifically develop an economic, convenient 

and efficient transportation service – first-and-last-mile 

ridesharing service. This service will transform the way 

travelers use public transit via demand-driven ridesharing. This 

paper will provide the forthcoming service system with 

methodology to eliminate the gap between the existing 

smartphone mobility APPs & travelers’ demand for more 

convenient, economic, and efficient first-mile transportation 

service.  

This paper contributes to solving the passenger matching and 

vehicle routing problem in the first-mile ridesharing 
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transportation (we name it as first-mile ridesharing problem for 

short, FMRP). The last-mile ridesharing problem is not 

considered in this paper because it is relatively easy to solve. 

Last-mile ridesharing problem is a classical vehicle routing 

problem (VRP), which can be solved by many existing 

approaches in literature [70-73].  

FMRP also has similarities to the classical VRP, but it has 

unique characteristics, which makes it difficult to handle. 

1)  In FMRP, available vehicles are randomly distributed at any 

locations. Vehicles finish their task when all they arrive at the 

train station dropping off all passengers. In traditional VRP, all 

vehicles are dispatched from one depot. After all tasks are 

finished, all vehicles should return to the depot. 

2) The first-mile ridesharing transportation service is linked to 

train schedule in the train station, and passengers will specify 

which train they will take. The train schedule will impose a 

“hard deadline” before which passengers must arrive at the train 

station. 

3) FMRP should take passenger matching problem into account, 

which is not considered in the classical VRP. 

This paper is structured as follows: Section 2 builds a 

mathematical model – mixed integer programming – to 

formulate the problem. Section 3 introduces the algorithm to 

solve the model. Experiments are designed in Section 4 to 

verify the effectiveness of the model and algorithm. Finally, 

conclusions are drawn and future work is proposed in Section 5. 

2. FORMULATION 

2.1 Problem Statement 

Suppose m  passengers in different regions near the 

train station are requesting the first-mile ridesharing service. 

They all have the same destination (e.g. the train station). The 

service company has n  available cars distributed randomly in 

the nearby regions to provide the first-mile ridesharing service. 

Each passenger will specify a train they will take. The train 

schedule imposes each passenger’ deadline before which they 

must arrive at the train station.  The problem is to determine a 

simultaneous optimal passenger matching plan and vehicle 

routing plan with the objective of minimizing travel cost. After 

the plan is determined, related information will be sent to 

drivers’ and passengers’ smartphones. Drivers can execute the 

transportation task based on the plan, and passengers can view 

the information of the upcoming travel. 

2.2 Assumptions 

The proposed mathematical model has the following 

assumptions. 

(1)  Each passenger is served by exactly one vehicle. The 

passenger does not change the vehicle on the way. 

(2)  All vehicles are the same type, i.e. all vehicles have the 

same capacity. 

The following part introduces what we have considered or not 

considered. 

(1) Only one transit hub is considered in this research. In other 

words, we only optimize the passenger matching and vehicle 

routing plan for only one transit hub. 

(2) We do not consider passengers’ waiting time as an objective 

function. As long as passengers can catch the train, the plan is 

feasible. 

(3) We only consider the optimization problem within a specific 

time period, and do not consider the impact of future 

passengers’ pickup request on the optimization plan. 

The model has the following inputs:  

a. Number of passengers; 

b. Number of vehicles; 

c. Location of each passenger; 

d. Location of each vehicle; 

e. Travel cost between each passenger pair; 

f. Travel cost from each passenger to the train 

station; 

g. Vehicle capacity; 

h. The train departure time for each passenger. 

 

2.3 Notations 

Suppose that n  cars are available to pick up passengers.  

 1, 2, ,V n represents the set of vehicles and the vehicles 

are indexed by k . The initial locations of all vehicles are 

donated by  1,2, ,LV n  . m passengers are waiting to 

be picked up.  1, 2, ,P n n n m     represents the set 

of passengers and each passenger is indexed by i . The train 

station is denoted by  0H  . 

Let 

L LV P  

M P H  

W LV P H  

1 vehicle  picks up passenger 
   

0 Otherwise

 ,

k

i

k i
y

k V i P
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1 vehicle  travels from node  to node 
      

0 Otherwise

  , ,

k

ij

k i j
x

k V i L j M


 


  

 

ijc : the transportation cost from node i to node j, 

,i L j M   

ijt :  the travel time from node i to node j, ,i L j M  ; 

Q :  the seat capacity of a vehicle; 

k

wT : the time moment when the vehicle k arrives at node w, 

{ }w M k . 

iDT : the departure time of the train that the passenger i will 

catch 

 

2.4 Model formulation 

 

The FMRP can be formulated as follows. 

 

Objective function: 

Minimize: 

k

ij ij

i L j M k V

x c
  

                                                                      (1) 

Subject to 

1       for all k

ij

k V i L

x j P
 

                                             (2) 

1       for all k

ij

k V j M

x i P
 

                                            (3) 

    for all k

i

i P

y Q k V


                                                   (4) 

     for all ,k k

ij j

i L

x y k V j P


                                      (5) 

     for all ,k i

ij k

j M

x y k V i P


                                      (6) 

0,    for all k

kT k V                                                         (7) 

 
{ }

  for all  ,k k k

j ij i ij

i k P

T x T t j M k V


                 (8) 

0 (1 )    for all ,k k

i iT y M DT k V i P                       (9) 

In the above formulation, the objective function Formula (1) is 

to minimize the total transportation cost. Formulas (2)-(9) are 

the constraints that the decision variables must satisfy. Formula 

(2) and (3) ensure that all passengers will be picked up by one 

vehicle and only be served once. Formula (4) represents that the 

capacity of each vehicle should not be exceeded. Formula (5) 

signifies that if passenger j is picked up by vehicle k, the vehicle 

k must come from one site. Formula (6) means that if passenger 

i is picked up by car k, the car k must travel to the next site, 

either the destination (train station) or the location of the next 

passenger. Formula (7) states that the departure times of 

vehicles are set to be zero. Formula (8) guarantees that if 

vehicle k travels from site i to site j, the arrival time at site j 

should be the arrival time at site i plus the travel time from site i 

to j. Formula (9) indicates that all the passengers should be 

transported to the train station before the departure times of 

their trains. 

3. APPROACH 

The problem defined is NP-hard [70]. Thus, it cannot 

be solved within a reasonable time using exact algorithms when 

the scale of problem is large. Regarding our problem defined, 

the locations of vehicles are updating very quickly, and 

passengers will be impatient if the waiting time is too long. 

Thus the reasonable computing time is very short for our 

problem. For example, if we spend one hour getting a 

satisfactory solution (a reasonable vehicle assignment plan and 

a short routing length), the result cannot be used because 

locations of cars has changed significantly within one hour, and 

passengers have already been impatient when they need to wait 

for one hour to be assigned to a vehicle. Furthermore, within 

one hour, there may be newly emerging passengers placing new 

order for pickups. Thus, for our problem, the reasonable time 

must be very short. For example, the computational time should 

be within one minute. 

Since the problem defined has a high requirement for the 

computing time, we need to develop an efficient heuristic 

algorithm. Simulated annealing (SA) is a promising algorithm 

for routing-related problems, whose effectiveness is 

demonstrated by several researchers [70, 72, 73]. We attempt to 

employ SA to solve the FMRP. However, the accuracy of 

simulated annealing is significantly influenced by neighborhood 

structure. In order to improve the efficiency and accuracy of 

simulated annealing algorithm, we test various neighborhood 

structures to find effective neighborhood structures. Finally, we 

select four neighborhood structures and combined them into the 

simulated annealing with a given probability for each 

neighborhood structure. We find the mixed neighborhood 

structures that can have the highest computational efficiency 

and accuracy. 

3.1 Neighborhood structures 

We firstly introduce the four neighborhood structures. Note that 

all the four neighborhood structures below have the possibility 
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of generating infeasible solutions (constraints of train departure 

time and vehicles’ capacity are not satisfied, formula (4) and 

(9)). Thus, when infeasible solutions are generated, we re-

generate a solution until the constraints are satisfied. 

The first neighborhood structure is to hand over all pickup tasks 

from one vehicle to another vehicle. We randomly select one 

vehicle (V1) without assigned passengers, and select another 

vehicle (V2) with assigned passengers. Then let the vehicle V1 

implements the transportation task instead of vehicle V2, as 

shown in Figure 1(a) 

No task vehicle

No task vehicle

Hand over all pickup tasks to another vehicle

vehicles passengers hub

Figure 1(a) The first neighborhood structure 

 

The second neighborhood structure is to exchange all tasks 

between two vehicles. We randomly select two vehicles with 

assigned passengers, and then exchange assigned passengers to 

finish transportation tasks. This neighborhood structure is 

shown in Figure 1 b. 

vehicles passengers hub

Exchange all pickup tasks between two vehicles
 

Figure 1(b) The second neighborhood structure 

The third neighborhood structure is to hand over one pickup 

task from one vehicle to another vehicle. We randomly select 

one vehicle and one of the passengers assigned to this vehicle, 

and select another vehicle which has available seats. Then the 

second vehicle replaces the first vehicle to transport this 

passenger to the train station, as shown in Figure 1(c). 

. 

vehicles passengers hub

Hand over one passenger to another vehicle
 

Figure 1(c) The third neighborhood structure 

 

Finally, the fourth neighborhood structure is to randomly break 

two links and build two new links based on the original routes. 

This neighborhood is the famous 2-opt neighborhood structure 

which is widely used in route-related problems. 

vehicles passengers hub

Break two links and re-build two new links (2-opt)  
 

Figure 1(d) The fourth neighborhood structure 
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3.2 Simulated annealing 

We use simulated annealing algorithm to conduct iterations with 

the four mixed neighborhood structures. The parameters and 

variables of simulated annealing are defined as follows. 

startt : initial temperature 

endt : final temperature 

currentt : current temperature 

0X : initial feasible solution 

currentX : current solution during iterations 

currentE : objective function value of the current solution 

currentX  

bestX : best solution obtained during the execution of the 

algorithm 

bestE : objective function value of the solution bestX  

Len: epoch length (number of inner-loop iterations) 

 : coefficient of temperature decrease  

it: accumulative number of current iterations 

( )Z X : the objective function value of a solution X 

The simulated annealing begins at the initial temperature (tstart), 

and ends at the final temperature (tend). The temperature is 

decreased at an exponential rate via multiplication by a cooling 

coefficient ( ) which is slightly lower than 1. At each 

temperature, SA performs Len (epoch length) iterations, and 

accepts a newly generated solution with a probability of  at 

each iteration. 

Algorithm: simulated annealing 

Using insertion heuristic algorithm to construct a feasible solution 

0X . 

Initialize
0,current start currentt t X X   ，

0 0 0, ( ), ( )best current bestX X E Z X E Z X    and 0it  . 

Do while 
current endt t  

Do while it Len  

Use the mixed four neighborhood structures to generate a 

neighbor solution ( 'X ) of currentX  

If ( ) ( ')
( ') ( ) || ( )current

current

current

Z X Z X
Z X Z X exp rand

t


 

 

Accept 'X  as the current solution currentX , 

i.e. 'currentX X  

( ')currentE Z X  

If ( ') bestZ X E  

', ( ')best bestX X E Z X   

End if 

End if 

it=it+1 

End do 

current currentt t   

End do 

Output bestX  and bestE  

 

4. NUMERICAL EXAMPLE 

4.1 Data setting 

In order to test the proposed algorithm, we use the computer to 

randomly generate numerical examples. We totally generate 

seven numerical examples with increasing scales. The data 

generated are show in Table 2, where N (0, 5) means that the 

coordinates, including abscissa and ordinate, are drawn from 

normal distribution with mean of 0 and standard deviation of 5. 

Traveling time between two nodes is 3 (0,0.1)ijd N , ijd is 

the distance between two nodes, and (0,0.1)N  is number 

drawn from normal distribution, with mean of 0 and standard 

deviation of 0.1. Note that the traveling time is not direct 

proportional to the distance considering different congestion 

conditions of different roads in practice.  

Table 2 Data setting 

Data 

Numerical examples 

1 2 3 4 5 6 7 

Number of 

vehicles 
10 20 20 40 30 60 100 

Number of 

passengers 
10 10 20 20 30 30 100 

Locations of 

cars and 

N (0, 

5) 

N (0, 

5) 

N (0, 

5) 

N (0, 

5) 

N (0, 

5) 

N (0, 

5) 

N (0, 

5) 
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passengers 

Location of 

transit hub 

(0, 

0) 

(0, 

0) 

(0, 

0) 

(0, 

0) 

(0, 

0) 

(0, 

0) 

(0, 

0) 

Traveling 

time 

between two 

nodes 

3 (0,0.1)ijd N  

4.2 Running condition 

The algorithm is tested with software implemented in Matlab on 

a 3.10GHz Windows 8 PC with 8GB RAM. 

4.3 Running results 

Each numerical example is performed for 10 times, and the 

running results are listed in Table 3. Row “minimum” means the 

minimum objective function value obtained within the ten 

times’ running. “Average” is the average objective function 

value of the ten solutions obtained. “standard deviation” is the 

standard deviation for the ten objective function values. 

Number of optimal solutions obtained means number of 

minimum objective function values obtained among the ten 

solutions. Running time is measured in seconds. 

Table 3 Running results 

Experiment results Numerical example 

Passenger number × 

vehicle number 
10×10 10×20 20×20 20×40 30×30 30×60 100×100 

Minimum  47.9 41.9 83.8 83.9 118.4 115.9 298.7 

Average  47.9 41.9 84.1 85.7 119.5 116.6 304.7 

Standard deviation 0 0 0.41 1.59 1.81 0.66 3.93 

Number of optimal 

solutions obtained  
10 10 4 2 4 3 1 

Running time 

(seconds) 
3.4 6.4 13.4 23.8 33.4 41.7 57.6 

From Table 3, we find that the algorithm can obtain ten same 

solutions for the small scale problems, 10×10, and 10×20 

problems. Furthermore, with the scale of problem increasing, 

the standard deviation still remains small. The standard 

deviations are all smaller than 4 for the seven numerical 

examples. Moreover, we can see that the algorithm can 

complete the computation within a reasonable time. Solutions of 

small scale problems (10×10, and 10×20) can be obtained 

within 10 seconds, and solutions of larger scale problem 

(100×100 problem, which is very large in practice) can be 

obtained in less than 1 minute. 

We also generate the figures of the best solutions, which is 

shown in Figures 2-8. The red points represent available cars, 

the stars represent passengers, and the circle in the middle 

represents the transit hub. We can see that routing plans are 

reasonable and all solutions obtained are satisfactory. The cars 

and routes selected are reasonable and length of all routes are 

short. Figure 9 shows the iteration process, which indicates that 

the quality of the solution is improved significantly from the 

initial feasible solution.  

-8 -6 -4 -2 0 2 4 6 8
-10

-5

0

5

10

15

 

Figure 2 Best solution of passenger number 10 × car number 10 

(the blue stars represent passengers, red points represent 

available vehicles and red circle is the train station) 

-20 -15 -10 -5 0 5 10
-15

-10

-5

0

5

10

15

 

Figure 3 Best solution of passenger number 10 × car number 20 
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-8 -6 -4 -2 0 2 4 6 8
-15

-10

-5

0

5

10

 

Figure 4 Best solution of passenger number 20 × car number 20  

 

-20 -15 -10 -5 0 5 10
-15

-10

-5

0

5

10

 

Figure 5 Best solution of passenger number 20 × car number 40 

-15 -10 -5 0 5 10
-20

-15

-10

-5

0

5

10

15

 

Figure 6 Best solution of passenger number 30 × car number 30 

-15 -10 -5 0 5 10 15
-15

-10

-5

0

5

10
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Figure 7 Best solution of passenger number 30 × car number 60 

-20 -15 -10 -5 0 5 10 15
-15
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Figure 8 Best solution of passenger number 100 × car number 

100 

0 0.5 1 1.5 2 2.5 3

x 10
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400
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Figure 9 Iteration process 
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5. Conclusions 

This paper studies the first-mile ridesharing problem for 

passengers to arrive at train station. A mathematical model is 

developed for the optimal passenger matching and vehicle 

routing to minimize total transportation cost. To achieve 

computational efficiency for a large-scale optimization problem, 

we develop an efficient metaheuristic algorithm called 

simulated annealing with four mixed neighborhood structures to 

solve this problem. Seven numerical examples with different 

scales are generated, and an experiment is designed to verify the 

effectiveness of the proposed algorithm. From the experimental 

results, we find that our method can obtain satisfactory 

solutions within very short time periods (seconds or minutes). 

6. Future research  

Our ongoing research includes the following:  

(1) This paper only considers static occasions. In other words, 

we only consider the optimization problem of a specific 

time period, and do not consider the impact of emerging 

passengers on the optimization plan. In practice, the 

problem is dynamic, so it is necessary to develop dynamic 

model and the corresponding algorithm for the problem. 

(2) Only a single transit hub is involved in the optimization 

problem. In real word, there may be more than one transit 

hub in a nearby region, and thus it is necessary to consider 

multiple transit hubs for the problem. 

(3) Future work can consider another objective, which is to 

minimize passengers’ waiting time, including the time they 

wait for the car coming and the time they spend in the car.  
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