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Abstract
Crowd analysis and management is a key area of study for transit agencies seeking to optimize their operations and to facili-
tate safety risk management activities. Key features of crowd analytics include passenger flow volume, crowd density, and
walking speed. This study proposes a generalized artificial intelligence (AI)-based crowd analytics model framework for rail
transit stations, by analyzing and visualizing crowd analysis data from video records of high-density crowds. Specifically, we
propose a generalized AI-aided methodological framework (AI-Crowd) for calculating flow volume, crowd density, and walk-
ing speed. You Only Look Once (YOLO) and Deep SORT are integrated into the model framework to detect and track each
individual’s dynamic position. Camera calibration is utilized to transform detected trajectories into a real-world coordinate
system. Methods for calculating crowd dynamic metrics are formulated based on the data. To validate the model framework,
several video records from a platform scenario at a major rail transit station are used. The model’s pedestrian counting accu-
racy can reach 95% and the fundamental diagrams of density–speed are shown to be consistent with empirical studies.
Further crowd analysis of a stair scenario and a transferring passage scenario using the proposed model framework shows
some differentiations in walking behavior. The methodology has further practical applications, such as monitoring social
distancing.
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Understanding crowd dynamics is important for transit
providers (1). Flow volume in stations can be correlated
to system capacity, which is an essential metric for help-
ing transit agencies evaluate the quality of service and
make critical scheduling decisions (2). Crowd density is
another essential metric for evaluating transit service and
safety (3), and allows transit agencies to monitor the
safety of their passengers (4). Individual movement tra-
jectories are important for analyzing passenger beha-
viors, and provide insights into facility design and layout,
which might help to improve customer experience (5).

Various approaches and solutions have been used to
acquire critical crowd data. Many passenger counting
technologies have been developed to obtain flow volume.
According to a survey of over 50 city metro authorities,
commuter railroads, and surface transport providers
around the world (1), manual methods (e.g., staff count-
ing, manual estimation based on train arrivals/depar-
tures) still dominate the practice of passenger counting.

This traditional method is rated most useful for disaggre-
gating data on an individual level (6). However, the tasks
of acquiring and analyzing this data are labor intensive
and time consuming. Automatic fare collection devices
(AFCs) (7) have been widely used in some countries
(e.g., China). Nevertheless, card penetration is crucial to
obtain accurate ridership. Automatic passenger counting
is another popular system for passenger counting, which
includes infrared sensors, treadle mats, and so forth (7).
However, most of these methods are only suitable for
slow passenger flows or low-density crowds. To
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determine crowd density, commonly used manual meth-
ods include field surveys which entail counting the num-
ber of people in a specific area (4), and manually
counting people in the area under observation based on
closed-circuit television (CCTV) records (8). To analyze
elements of passenger movement, such as walking speed,
the most commonly used manual methods include field
surveys with stopwatches and manually reviewing walk-
ing length and duration from video records (5). These
methods are also labor intensive and time consuming.

Computer vision-based techniques are the most pro-
mising methods to overcome such drawbacks with low
cost and high efficiency. These methods are receiving
increased attention from academia and industry for their
crowd analytics, which can automatically detect and
track people from video records (8–10). However, exist-
ing studies have mainly focused on counting passengers
from a static image to estimate crowd density (11, 12),
which cannot determine dynamic information on walk-
ing passengers. Especially for high crowd density scenar-
ios with occlusion, which is the typical scenario in rail
transit stations, regression-based methods with image
features are used to estimate crowd volume, although
these methods cannot process each individual.

In this study, a head detection and tracking model
framework is used to obtain individual trajectories from
high-density crowds, and a camera calibration method is
integrated to obtain real trajectory data for analyzing
crowd dynamics. The remainder of this paper is orga-
nized as follows. The literature review offers a compre-
hensive summary of existing research focused on
pedestrian counting and crowd density calculation using
computer vision techniques. The methodology section
specifies the method framework proposed in this study.
The model implementation section implements the model
and validates it using video data from a major rail transit
station. The applications and discussion section discusses
applications of the proposed model framework for
crowd analysis and social distancing monitoring. Finally,
the conclusion summarizes the paper’s findings and pro-
poses future improvements.

Literature Review

Flow volume, crowd density, and walking speed are the
basic metrics for crowd analysis, and their relationships
are defined as fundamental diagrams. These are used to
estimate the capacity and level of service of various facil-
ities in transit stations. With improved artificial intelli-
gence techniques, these metrics can be acquired using
various methods, including computer vision.

Computer vision-based methods are categorized into
regression-based methods and detection-based methods
(8–10). Regression-based methods are proposed to

estimate the number of people in extremely dense crowds
in static images (10), which formulate the relationship
between the image features (e.g., blob area) of people
and crowd density using regression models. Therefore,
this method is mainly used to estimate global crowd den-
sity in an image, but because this method cannot be used
to segment each individual, it cannot calculate dynamic
passenger flow and walking speed. These methods iden-
tify low-level features (e.g., blob area, perimeter–area
ratio) (13) and texture features (e.g., contrast, homogene-
ity, entropy) (14), which are also commonly used in
detection-based methods.

Detection-based methods count the number of people
by detecting each person in an image and calculate crowd
density using the number of people counted within the
region (11). Monolithic detection is another commonly
used technique, which identifies the crowd based on fea-
tures extracted from a whole body (8, 10). For example,
binary classifier feature extraction methods for scanning
a window detector show a detection rate of about 93% in
typical surveillance scenarios (15). However, occlusion in
high-density crowds adversely affects the performance of
whole-body detection models. Head-like detection meth-
ods were proposed to tackle this challenge. Haar wavelet
transform for feature extraction of the head-like contour
(16), omega shape (O) feature for the head-shoulder part
(17), and three-dimensional shape model using three
ellipsoids (18) are robust to partial occlusions and atypi-
cal part appearances.

Convolutional neural network (CNN) is a state-of-
the-art computer vision method that has superior cap-
abilities for learning non-linear functions from input data
(19). Therefore, CNN has been used to formulate many
CNN regression-based models for estimating numbers of
people from images by determining the relationship
between image features and the number of people in the
image (20). To determine the crowd number in a high
crowd density image with varied head sizes, CNN-based
models with multi-column architecture have been pro-
posed to extract multi-scale features (21), which improves
the robustness of scale awareness (22). However, multi-
column architecture is bloated, and single-column archi-
tecture was proposed to make models simpler and more
efficient (23, 24). Furthermore, auxiliary-task models
have been proposed, which can conduct one or more
tasks related to crowd counting (22, 24, 25). Therefore,
special event detection, crowd density classification,
crowd speed map prediction, and so forth, can be per-
formed alongside crowd counting (22). These studies pro-
vide some inspiration for the present study.

Additionally, studies have used CNNs for feature
extraction (26) and demonstrated CNNs’ suitability for
pedestrian detection, and have thus provided a powerful
method for detection-based counting models. R-CNN,
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which stands for region-based CNN, is one of these
feature-based CNNs with superior performance (27) that
extracts many region proposals from an input image and
computes features for each proposal using CNN. Objects
are detected by classifying each region by features.
Following R-CNN, Fast-RCNN (28) and Faster-RCNN
(29) were developed to improve the computational effi-
ciency and model performance. You Only Look Once
(YOLO) is a recent development in CNN detectors that
isolates objects using CNN in a single analysis of an
image. This methodology has greatly improved computa-
tional efficiency and achieved high detection accuracy
(30, 31). Although the detection accuracy of YOLO is
lower than that of Faster-RCNN, its superior computa-
tional efficiency makes YOLO a promising solution for
practical applications.

Most previous studies, as stated above, have focused
on pedestrian detection in an image, static counting, and
density estimation, but have not implemented dynamic
analysis which requires individual trajectories. Some
studies have aimed to tackle this challenge by tracking
individual trajectory, such as the Kanade-Lucas-Tomasi
(KLT) tracker, which is a commonly used tracking meth-
odology (32, 33). As an optical flow-based method, KLT
tracks people using displacements of the dominant points
and acquires people’s walking trajectories. A ‘‘virtual
gate’’ is defined to count people with trajectories (32),
and the trajectories can also be employed to calculate
walking speed (34, 35). However, these methods are sus-
ceptible to occlusion or illumination changes. Recently, a
simple online real-time tracking method with a deep
association metric (or Deep SORT) (36) was developed.

In Deep SORT, persons are detected in each frame, and
the detections are matched based on feature similarity to
acquire their tracks. Deep SORT solves occlusion track-
ing problems effectively and is more suitable for high-
density tracking, such as in the context of a rail transit
station.

Altogether, there are two gaps in existing studies on
computer vision-based crowd analytics, which limit aca-
demic research and practical applications of computer
vision techniques: (i) few studies focus on individual
dynamic trajectory extraction from high-density crowd
videos, and (ii) existing studies ignore the calculation of
basic metrics for crowd analysis from on-site detection
data.

Methodology

We develop a comprehensive model framework with
the following three layers to implement crowd dynamic
analysis with computer vision techniques, as shown in
Figure 1: (i) head tracking for individual trajectory
extraction, (ii) camera calibration for undistorting and
scale converting, and (iii) crowd analysis with proposed
calculation methods.

We propose a detection and tracking model frame-
work to acquire individual trajectories. Head features are
employed to adapt to high-density crowd scenarios.
Camera calibration rectifies barrel distortion of video
frames caused by fisheye lenses and converts the image
scale to real-world scale. We propose a trajectory-based
people counting method, an individual-based crowd den-
sity calculation method, and a walking speed calculation

Figure 1. Research architecture.
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method to obtain basic crowd metrics. These results can
be displayed or archived for specific application or fur-
ther analysis.

People Detection and Tracking

A generalized head detection and tracking framework
that integrates techniques of YOLO and Deep SORT
(Simple Online and Realtime Tracking with a Deep
Association Metric) is proposed to obtain individual
trajectories from a high-density crowd, as shown in
Figure 2.

Video feeds are input into YOLO and each image
frame is extracted to detect all the identifiable people
within it. YOLO resizes the image into a square (e.g.,
448 3 448) and divides the resized image into multiple
grid cells (e.g., 7 3 7). Bounding boxes are predicted for
each cell based on a CNN, and a non-maximum suppres-
sion algorithm is used to select the best bounding boxes
for detecting results, as shown in Figure 3. To detect
each individual in a crowd, the head is used as an

identifying feature. More details can be found in the
work of Redmon et al. (31).

The detected bounding boxes, corresponding confi-
dence scores, and features are input into the Deep SORT
module. A Kalman filter, which is an excellent estimator
of unknown variables based on observations over time,
is employed to predict positions of the detected bounding
boxes for the next time step, when new detections are
input. A predicted position and a new detection are
matched by using the matching cascade algorithm with
similarity of motion information (e.g., the position of
bounding boxes) and similarity of appearance features.
This method integrates multiple similarities and helps
improve robustness against missed tracking caused by
partial occlusion. More details can be found in the work
of Wojke et al. (36).

Camera Calibration

Crowd metrics calculation requires accurate trajectories
in a real-world coordinate system. We locate each point

Figure 2. People detection and tracking framework.

Figure 3. People detection architecture.
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in a camera image by pixel, which is the basic unit of
image coordinate systems. Moreover, wide-angle cam-
eras (e.g., fisheye lens cameras), which are widely used in
urban rail transit stations, distort image lines to capture
more space. Therefore, we need to remap the points from
the image coordinate system into the real-world coordi-
nate system to rectify the distorted images and obtain
accurate trajectories via camera calibration.

Extrinsic parameters of a camera are used to trans-
form a point in the real-world coordinate system into the
camera coordinate system. Meanwhile, intrinsic para-
meters of a camera were used to transform a point in the
camera coordinate system into the pixel coordinate sys-
tem. For a wide-angle camera, the position of a point will
be distorted when it is projected onto the image plane,
and this distortion can be modeled using distortion para-
meters (37).

With the intrinsic parameters and distortion para-
meters, we can undistort video image frames and proj-
ect points from image coordinates to camera
coordinates. When an individual moves a distance of
dc, as shown in Figure 4, the displacement on the undis-
torted video image frames will be d. With the focal
length from intrinsic parameter f, we can determine the
angle a using the first formula in Equation 1. From the
extrinsic parameter, we obtain the camera installation
height H; with the body height h of a human being and

the angle u of the camera’s visual axis, we can deduce
the moving distance dc with the Law of Sines, as shown
in Equation 1. We use this distance to position the real-
world coordinates of each person. Using these equa-
tions, moving distance can be calculated with camera
parameters.

a= arctan d=fð Þ
dc

sina
=

H � hð Þ= sin u

sin u� að Þ ) dc =
H � hð Þ= sin u

sin u� að Þ sina

=
H � h

f sin2u=d � cos u sin u
ð1Þ

Crowd Dynamic Metrics Calculation

Flow Volume. We designated a rectangular ‘‘virtual door’’
(VD) as a region of interest for counting flow volume.
We also defined two walking directions for flow counting
(i.e., enter in and step out), and an ‘‘In/Out’’ (IO) match-
ing method to count people walking through the VD.

We established two real-time attributes for each
tracked pedestrian: walking direction and IO status.
Individual walking direction D is updated over time
based on the average direction, which is itself based on
the lastest n trajectory points when the trajectory point
amount is larger than the threshold min_last. This study
sets the threshold at five, but it can be set to any suitable
value based on test results. The benefits of this process
are twofold: first, it mitigates the counting disturbance
of some misidentified individuals; second, it avoids mis-
judging walking direction by using limited trajectory
points.

IO status is updated based on the IO matching
method, as shown in Figure 5. At time t, the position of
people i (xi

t, yi
t) can be obtained via the tracking algo-

rithm, and the trajectory vector Trji
t (Dxi

t, Dyi
t) can be

calculated using the position of people i at time t-1.
When the trajectory point amount is larger than the
threshold min_last, the walking direction Di

t will be cal-
culated. If the trajectory vector does not intersect with
any edges of the VD, the IO status of people i will be set
as ‘‘tentative’’ for further analysis. If the trajectory inter-
sects with one edge of VD, then we can identify whether
people i are walking in or walking out of the VD region
using their walking direction, and the IO status of people
i will be set as In (I) / Out (O) status. For the people i
whose IO status is O, if their previous status was I, we
will set the IO status of people i as ‘‘matched’’; if there
is no previous status for people i, we will calculate the
similarity of walking speed between people i and the
people with tentative status as the matching index Sw,
and the people whose matching index is larger than a
predefined threshold SThres is set as the matched one of
people i, and their IO statuses are all set as matched. If

Figure 4. Illustration of video calibration.
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the trajectory of people i intersects two edges of the
VD at time t, the IO status of people i will be set as
matched directly. The people with matched IO status
will be counted in the flow volume of the correspond-
ing walking direction.

The IO matching method can efficiently tackle track-
ing identification changing problems and significantly
improve counting accuracy.

Crowd Density. In a high-density crowd, people can only
perceive the crowd density around themselves. To reflect
this heterogeneity, we use the Voronoi diagram to for-
mulate an individual-based crowd density calculation
method.

The Voronoi diagram (38) is a plane partition method
that divides a plane into regions based on a given set of
points in the plane. First, we formulate a triangulated
irregular network that meets the Delaunay criterion using
points in the plane (38), so that no vertex lies within the
interior of any of the circumcircles of the triangles. Then,
the perpendicular bisectors for each triangle edge are gen-
erated to form the edges of the Voronoi cells. The occu-
pancy area Ai for a point i is the region containing the

point. Consequently, we calculate the individual-based
crowd density Di using Equation 2.

Di = 1:0=Ai ð2Þ

However, some people in the image frames may not
be detected because of occlusion or view angle, and we
cannot determine their positions in some frames. Failing
to detect these occluded individuals will negatively affect
the accuracy of the calculated crowd density. To over-
come this challenge, we propose a position prediction
method to obtain coordinates for ‘‘missing’’ people.

We regard the unmatched tracking identifiers at frame
t as the ‘‘missing’’ identifiers. We assume that they will
maintain their walking speed vt (vxt, vyt) at frame t. Their
position (x, y) at frame t+ n is predicted by Equation 3.

x= vxt t + nð Þ3 Dt+ xt; y= vyt t+ nð Þ3 Dt + yt ð3Þ

where (xt, yt) is the position of the ‘‘missing’’ people at
frame t and Dt is the time interval of one frame, while
other variables remain the same as described above.

Considering that the prediction error increases over
time, a maximum effective time threshold is predefined.
If the update time of an unmatched tracking identifier is
larger than the threshold, the identifier will be removed
from the prediction process and will be considered as
lost. In this study, we set the value of the threshold max_-
age in the tracking model as the maximum effective time
threshold.

Walking Speed. Walking speed is an essential indicator
for flow volume counting and crowd density calculation,
as well as a crucial metric for crowd analytics. For each
tracked person, we record their coordinates in real time.
Therefore, we can calculate their instantaneous walking
speed vt (vxt, vyt) at frame t by Equation 4.

vxt = xt � xt�1ð Þ=Dt; y= yt � yt�1ð Þ=Dt ð4Þ

where (xt21, yt21) and (xt, yt) are the positions of the
tracked people at frames t21 and t, respectively, and Dt
is the time interval of one frame.

As stated in the crowd density calculation section, we
will maintain walking speed vt (vxt, vyt) for ‘‘missing’’
people. Walking speed will be recorded until the ‘‘miss-
ing’’ time reaches a maximum effective time threshold
max_age.

Model Implementation

Data Description

To validate the model framework proposed in this study,
we analyzed video data from a major rail transit station.
The validation video is captured from a top-view fisheye

Figure 5. Architecture of ‘‘In/Out’’ (IO) matching method.
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lens camera, and it records passengers walking on a plat-
form heading toward a staircase, as shown in Figure 6. It
shows the walking behavior of passengers in front of the
entrance to the staircase. The video frame width and
height was 352 3 240 pixels, and their frame rate is 30
frames per second. In this study, we selected two clips
(each is about 30min long) from this video record: one
clip is used to train the model, and the other is used to
test the model.

Model Training

To develop a high-performance model for detection and
tracking, we need to train the detection and tracking
model to obtain weights files and optimized parameters.
We extracted 500 frame images from each training video
and labeled the heads of all identifiable people in the
images with rectangular boxes, as shown in Figure 7.
The coordinates and classification (i.e., head class) of
label boxes in an image are recorded in an annotation
file.

These data are split into a training set, validation set,
and test set. First, we use these datasets to fine-tune the
hyper-parameters of the optimizer. Then, we train the
model with those hyper-parameters to acquire the best
model weights file. Meanwhile, we extract camera para-
meters from video records. We use the ground floor with
its checkerboard plane to calibrate camera parameters.
To further reduce the labor required, we employ the
checkerboard floor tiles shown in the videos for camera
calibration. We extract several images with floor tiles and
draw grid cells covering the floor tiles exactly, as shown
in Figure 8a; the floor tiles are squares with 0.65m edges.
The checkerboard images and the edge length are input
into the camera calibration tool; camera parameters and

the undistorted images are output as shown in Table 1
and Figure 8b.

Model Validation

We configured the model framework with a trained
model weight file and optimized parameters. A VD was
set up in the middle of the frames with a width of 20 pix-
els. The test video record was input into the model frame-
work. We selected a clip recording passengers’ walking
behaviors over a timespan of 250 s to validate the model
results, which covers the headway of a train. Utilizing the
CV-based flow volume counting method, we obtained
the flow volume for every 5 s interval, as shown in Figure
9. The ground truth of the flow volume for every 5 s
interval was counted manually and the error between
ground truth and model results was calculated, as shown
in Figure 9. The total number of passengers from ground
truth was 200, while the total number counted by the
proposed method was 190. Therefore, the counting accu-
racy of the proposed CV-based people counting method
is 95%. We analyzed the negative error and found that
errors were mainly caused by long time occlusion in high-
density crowds.

We recorded individual-based crowd density and
walking speed for each frame and validated the results
using the fundamental diagram of density–speed. We
reorganized the data by averaging walking speed with a
crowd density interval of 0.01 people/m2 to reduce the
data amount and noise data. The CV-based model results
are shown in Figure 10 along with the benchmark survey
results of Older (39) and M�ori and Tsukaguchi (40). The
figure shows that the relationship between crowd density
and walking speed from the CV-based model results is
consistent with benchmark datasets. When crowd density
is less than three people/m2, the model result is consistent

Figure 6. Surveillance video record of passengers walking on
platform in a subway station.

Figure 7. Extracted images from top-view videos.
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with Older’s survey result, and when crowd density is
larger than three people/m2, the model result is consistent
with M�ori and Tsukaguchi’s survey result. As benchmark
datasets, those scenarios are different from the studied
scenario, so they only share the same values for some sec-
tions. In any case, this result validates that our model
performs well at calculating crowd density and walking
speed.

Applications and Discussion

Crowd Analysis

Videos from other scenarios in rail transit stations are
analyzed with the proposed model framework. From
those videos, we obtain the fundamental diagrams for a
crowd walking on stairs and a crowd transferring
through a passage, as shown in Figure 11. For the stair

Figure 8. Camera calibration: (a) checkerboard with floor tiles, (b) undistorted image frame.

Table 1. Camera Intrinsic Matrix and Distortion Coefficients

Camera intrinsic matrix Fisheye lens distortion coefficients

147.00 0.00 197.20 20.13399 0.00933
0.00 106.50 128.06 20.02622 20.00638
0.00 0.00 1.00 0.0000 0.0000

Figure 9. Validation results for people counting by the proposed model framework.
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scenario, we only analyze the people walking on the
stairs, and most of them are walking upstairs. For the
transferring passage scenario, people walk through a
passage without a slope and in a free-flow status.

From the fundamental diagrams, we can identify sev-
eral differences between the scenarios. For the crowd
walking on stairs, walking speed is significantly lower
than in the platform scenario and the passage scenario.
When the crowd density is up to 0.8 people/m2, walking

speed significantly increases with crowd density, which is
different from other scenarios. This is because walking
up stairs takes more energy than walking on flat ground
or downstairs, and people will move more slowly when
there is nobody following them, whereas they will speed
up when others do follow them. When the crowd density
is larger than 0.8 people/m2, the relationship between
walking speed and crowd density is similar to that from
the platform scenario. For the passage scenario, because
of the free-flow status, walking speed remains steady
with only slight drops. Since the transferring population
is small and they are moving to catch the next train, their
walking speed is the fastest of these three scenarios.

Social Distancing Monitoring

In addition to its academic applications, the proposed
model framework can also be used for practical imple-
mentation. The COVID-19 pandemic affected people’s
travel behaviors and public transit operations, leading
many cities to develop solutions for maintaining social
distancing in public spaces for a phased reopening, espe-
cially for passengers in transit stations. Considering the
dynamic position tracking technique in this study, the
proposed model framework can be utilized to monitor
social distancing in public spaces (e.g., transit stations).

Figure 10. Fundamental diagram of platform walking scenario.

Figure 11. Screenshot and fundamental diagrams of crowd walking on stair and transferring passage.
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We set an individual safety area for each tracked person
based on their tracked positions and set the half-length of
social distance (for example, 6 ft in the USA) as the radius
of the safety area. The safety area is displayed using differ-
ent colors along with the distance to the tracking position
to communicate emergency levels, as shown in Figure 12.

Conclusion

This study formulates a generalized CV-based crowd ana-
lytics model framework. In the framework, an IO match-
ing counting method, an individual-based crowd density
calculation method based on a Voronoi diagram, and a
trajectory-based walking speed calculation method are
deployed to calculate crowd dynamic metrics. Video data
from a major rail transit station are used to verify the
models, and the validation results show a flow volume
counting accuracy as high as 95% and reasonable
density–speed fundamental diagrams which are consistent
with empirical studies. Furthermore, the proposed frame-
work is used in multiple kinds of scenarios for further
analysis, and the results show that there are some signifi-
cant differences in crowd walking behavior between those
scenarios. We also propose some practical functions for
the model, such as social distancing monitoring.

This study mainly focuses on model formulation,
without considering computational efficiency. Improving
efficiency will be important for further development of a
practical crowd analysis tool in the future. Additionally,
future studies might feasibly improve the model’s count-
ing accuracy by introducing modifications to the people
tracking model to solve the challenge of ‘‘lost’’ people.
Finally, more functions, such as trajectory analysis, will
also be developed in the future.
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