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Abstract: Freight train accidents can damage infrastructure and rolling stock, disrupt operations, and possibly cause casualties and
harm the environment. Understanding accident risks associated with major accident causes is an important step toward developing and
prioritizing effective accident prevention strategies. This paper developed a negative binomial regression model to estimate freight-train
derailment frequency on Class I railroad mainlines, accounting for derailment accident cause, traffic exposure, railroad, and season.
The primary focus is to quantitatively measure the seasonal effect on freight-train derailment frequencies given traffic exposure. For model
illustration, the analysis focused on three common derailment causes on freight railroads: broken rails, broken wheels, and track buckling,
using the empirical Federal Railroad Administration (FRA)-reportable freight railroad derailment data on mainlines gathered between 2000
and 2016. The modeling results show that it tends to have high derailment rates in winter due to broken rails and broken wheels (double that of
summer), whereas summer has the highest likelihood of buckling-caused derailment of all of the seasons (e.g., 6 times that of spring and 10
times that of fall). These analytical results can contribute to the risk-based optimization of rail and wheel inspection frequency. The statistical
modeling methodology developed in this paper can be adapted to other types of train accidents or accident causes, ultimately supporting the
optimal allocation of train safety improvement resources. DOI: 10.1061/JTEPBS.0000583. © 2021 American Society of Civil Engineers.
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Introduction and Research Objective

The 140,000–track-mile freight railroads in the United States pro-
vide productive and cost-efficient freight services, supporting
$219 billion in economic output and generating around $26 billion
in tax revenue in 2017 (AAR 2020). Safety is of paramount impor-
tance. Derailment is a common type of freight-train accident on US
railroads (Barkan et al. 2003; Liu 2017). Derailment analysis and
prevention have long been a high priority for the railroad industry
and the Federal Railroad Administration (FRA) of the United
States. There are various factors affecting derailment risks, one
of which is the seasonal effect.

The primary research objective of this paper is to quantitatively
understand the seasonal effect on freight-train derailment frequen-
cies for major causes, particularly broken rails, broken wheels, and
buckled tracks. The analysis includes four major freight train rail-
roads in the United States: Burlington Northern and Santa Fe
Railway (BNSF), CSX Transportation (CSX), Norfolk Southern
Railway (NS), and Union Pacific Railroad (UP). Several research
questions will be addressed in this study:

How do derailment frequencies, given traffic exposure, vary by
season for each derailment accident cause?

Does the seasonal effect on derailment frequencies, given traffic
exposure, also vary by railroad?

What is the proper statistical analysis technique to fit empirical
derailment data, considering multiple influencing factors?

To address these questions, a statistical technique called negative
binomial regression was used to fit the empirical derailment data, ac-
counting for railroad, season, derailment accident causes, and traffic
volume. This study developed a novel application of the negative bi-
nomial regression model to identify and quantify the seasonal effect
on Class I railroads, accounting for derailment cause, traffic exposure,
and railroad. Seasonal temperature changes may modify the dynamic
behavior of the railroad components and have a significant effect on
the infrastructure response (Salcher et al. 2016). Previous studies
(Gonzales et al. 2013; Salcher et al. 2016) have revealed a high impact
of the surrounding air temperature on the structural stiffness based on
long-term measurements. In other words, the decreasing or increasing
temperature leads to an increase or decrease of stiffness. However,
these prior research activities focused on the micro-level mechanism
analysis of the seasonal effect on rail safety based on physical models
or mathematical models. This paper provides a macro-level evalu-
ation of seasonality in freight-train derailments. Moreover, the general
approaches and methodologies in this paper can be adapted to other
types of accidents or accident causes. The statistical analysis pro-
cedure can be used as a long-term reference for railway researchers
to understand the relationship between derailment risks and influenc-
ing factors on various spatial and temporal scales. The remainder of
this paper is organized as follows. It begins with a review of relevant
research and continues by identifying knowledge gaps that warrant
this study. Next, the statistical modeling technique and the data used
to fit the model are introduced. Finally, insights from the statistical
data analysis are drawn, and possible future research directions are
suggested.
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Literature Review

Accident Causes

FRA train accident causes are systematically organized and catego-
rized by the FRA into five major cause groups: track, equipment,
human factor, signal, and miscellaneous causes (FRA 2011). Each
accident cause describes a specific circumstance or contributing
factor that may lead to a train accident. Previous studies found that
track failures (e.g., broken rails, track geometry defects, buckling)
are among the most common and severe derailment causes on US
railroads (Barkan et al. 2003; Liu et al. 2012; Liu 2017; Ghofrani
et al. 2021), probably due to cyclic high-load impact from heavy-
haul rail operations (Liu and Dick 2016). To conduct further in-
vestigation of track failures, Ghofrani et al. (2021) developed a
quantitative analysis of impact factors behind the occurrence of
service failures based on data collection from a Class I US railroad
from 2011 to 2016. Furthermore, extensively used equipment may
lead to mechanical problems, such as broken wheels due to thermal
stress, high-impact loads, and interactive forces on tracks. Simi-
larly, the causes of collisions and highway-rail grade crossing were
also studied in previous research. Human errors were identified as
the main causes of train collisions (Evans 2011; Liu 2017; Turla
et al. 2019).

Derailment Rate Influencing Factors

Derailment is a common type of accident on freight railroads.
Derailment risk factors have been studied based on historical data.
The prior literature has analyzed derailment frequency and rate by
train speed (Yang et al. 1973; Zhang and Liu 2020), FRA track
class (Anderson and Barkan 2004; Liu et al. 2017), train length
(Anderson and Barkan 2004; Schafer and Barkan 2008), and sea-
sonal effect (Liu et al. 2013a). Among these factors, seasonal effect,
which is related to the objective of this paper, is reviewed in more
detail. A prior study (Liu et al. 2013a) speculated that there may be
seasonal effects on broken-rail–caused derailments. Tensile thermal
stresses in colder climates may accelerate the occurrence of rail
breaks from small rail defects. On the other hand, the probability
of identifying rail breaks using a track circuit increases in the winter
due to thermal contraction. Seasonal variation was also recognized
based on the data from wheel impact load detectors (Liu et al.
2013a; Van Dyk et al. 2013). In the statistical causal analysis of
freight-train derailments, Liu (2017) concluded that fall and winter
appear to have a higher likelihood of a broken-rail–caused derail-
ment than spring and summer, given the same railroad and traffic
level. Instead, track-geometry-defect–caused derailments (exclud-
ing buckling-caused derailments) occur more frequently in spring
and summer than in fall and winter, all else being equal. Moreover,
Dobney et al. (2010) stated that a number of infrastructure failures
were caused by high summer temperatures, in which hot tem-
peratures cause the metal of the rail to expand, resulting in a de-
formation of the track due to high compressive forces. Although
continuous welded rail is prestressed to withstand a reasonable
temperature range based on local climate, if the temperature is
extremely high and the track is incorrectly stressed, or just in poor
condition, then buckles are more likely to occur (Dobney et al.
2010). Sanchis et al. (2020) developed a Monte Carlo simulation
to analyze the vulnerability of the Spanish high-speed rail network
with increasing temperatures for both annual and seasonal aver-
ages. In addition to highlighting the vulnerability of the Spanish rail
network with the anticipated buckling occurrences, this study also
disclosed the relevant variations in different climates and time hori-
zon scenarios in Spain.

Derailment Data Analysis Approaches

The empirical approach and statistical model are the two com-
monly used approaches to analyzing derailment data. The high-
level rail operational safety analyses in some published papers and
FRA-published accident reports were generally based on empirical
approaches. Based on historical train accident data, it was found
that derailments accounted for 72% of all types of accidents on
mainlines (Liu 2017), and more than 70% of derailments were
caused by infrastructure or rolling stock failures (Liu et al. 2012).
In the European Union, derailment is illustrated to be the most
commonly occurring type of train accident (Dindar et al. 2018).
Nevertheless, the empirical approach has limitations in dealing
with the randomness of accident occurrence (Liu 2015). Alterna-
tively, the statistical model is widely used to quantify the statistical
association between accident risk and affecting factors. The neg-
ative binomial regression model has been developed in the litera-
ture to estimate accident frequencies and rates in railways (Evans
2011; Liu et al. 2013b; Liu 2015) and highways (Miaou 1994;
Chang 2005). The negative binomial regression is a special type of
generalized linear model for modeling Poisson-distribution data.
This regression model was shown to provide a good fit with the
empirical accident data.

Knowledge Gaps

To the authors’ knowledge, limited prior research has explicitly ex-
amined the seasonal effect on derailment frequencies of freight rail-
roads in the United States. The literature suggests that derailment
frequencies due to certain accident causes might have seasonal var-
iations. Nevertheless, there is a lack of statistical methodology to
quantitatively analyze cause-specific derailment frequencies given
traffic exposure with a particular interest in the seasonal effect.
A clear understanding of seasonal variation in freight-train derail-
ment can support the optimal allocation of safety improvement re-
sources. In addition, most prior research has focused on nationwide
aggregated safety statistics without considering railroad-specific
derailment frequencies given traffic exposure. To narrow these
knowledge gaps, this paper aims to develop novel statistical models
to understand the seasonal effect on derailment frequencies in con-
junction with accident causes and railroads.

Data Sources

Train Derailment Data

Derailment data in this study come from the FRA Rail Equipment
Accident (REA) database (6,180.54). Railroads are required to sub-
mit accident reports of all accidents that exceed a monetary thresh-
old for damage and loss in an accident. The reporting threshold for
the REA is periodically adjusted for inflation and increased from
$6,600 in 2000 to $10,500 in 2016 (FRA 2015). The data include
freight-train derailments on the mainlines of Class I railroads from
2000 to 2016.

Traffic Exposure Data

Railroad traffic exposure is used to calculate the derailment rate,
which is defined as the number of derailments normalized by traf-
fic volume (Evans 2011; Liu 2017; Zhang and Liu 2020). Train-
miles and car-miles are two common traffic metrics, each of which
corresponds to certain types of accident causes. The prior study
finds that some accident causes are more related to train-miles,
including most human error, whereas most equipment causes and
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infrastructure failure causes are more related to car-miles (Schafer
and Barkan 2008). There are two publicly accessible traffic volume
data sources: the FRA Operational Database (6,180.55) and the
Class I Railroad Annual Reports (Form R-1) from the Surface
Transportation Board (STB). The information from the FRA
Operational Database is the monthly train-mile data reported by the
railroads. Annual car-miles and train-miles of each Class 1 railroad
are available on the R-1 Form on the STB website (STB 2017).
Because the STB database does not provide monthly car-mile
data, we estimate monthly car-mile data using the distribution of
monthly train-mile data from the FRA Operational Database. For
example, if 10% of annual train-miles occur in January (from FRA
Operational Database), it is assumed that 10% of annual car-miles
also occur in January. This assumption might be valid if there is no
significant variation in train length in the different months within
1 year. The same assumption was made in a prior study (Liu 2017).
Railroads can update the analysis based on their actual car-mile
data for each month when they use the model developed in this
paper.

Explanatory Variables

Season

To identify the seasonal effect on freight-train derailment frequen-
cies given traffic exposure, derailment count and traffic volume
are divided into four seasons. In this study, the season “spring”
includes March through May, “summer” includes June through
August, “fall” includes September through November, and “win-
ter” includes December through February. If a different temporal
delineation is used, the model can be modified accordingly.

Railroad

Nationwide statistics on railroad safety were studied exclusively
in the literature. However, few studies have considered railroad-
specific derailment frequencies given traffic exposure by risk fac-
tors. Among around 600 freight railroads operating in the United
States, the four largest freight railroads, UP, BNSF, NS, and CSX,
account for around 86% of the revenue and 63% of the track
mileage in 2016 (AAR 2020). To preserve railroad-specific infor-
mation, we used E1 and E2 to denote the two eastern railroads
(CSX and NS) and W1 and W2 to denote the two western railroads
(BNSF and UP).

Accident Cause

A variation on the FRA cause group was developed by Arthur D.
Little (ADL) in the early 1990s, based on railroad engineering and
mechanical experts (ADL 1996). ADL’s groupings are similar to
the FRA’s subgroups but allow greater resolution for certain causes.
For example, broken rails, joint bars, and rail anchors that are com-
bined in the same FRA subgroup are distinguished from broken
rails or welds and joint bar defects in the ADL grouping. In some
cases, ADL also combined similar cause subgroups into one group.
With these features, derailment causal groups developed by ADL
are used in the study of train safety and risk analysis (Schafer and
Barkan 2008; Liu et al. 2012; Lin et al. 2014; Liu 2017). In this
cause-specific study, the analysis focused on three major derailment
causes (Table 1): broken rails (08T), broken wheels (12E), and
buckled track (05T), all of which are among the most common de-
railment causes on US freight railroads (Liu 2017).

Empirical Derailment Frequency and Derailment Rate

Based on the empirical observations from all cause-combined de-
railments and traffic volumes, there are insignificant differences
among the four seasons in derailment frequencies given traffic
exposure that is measured by either train-miles or car-miles (see
Appendix). In terms of cause-specific derailments, only derailment
rate defined as the number of derailments per car-miles was ana-
lyzed because the three studied ADL cause groups, as equipment
causes or infrastructure failure causes, are more related to car-miles.
Fig. 1 shows the empirical distribution of freight-train derailment
frequencies given traffic exposure by railroad (two eastern Class I
railroads combined and two western Class I railroads combined for
illustrative convenience) in three major cause groups. There were
no buckled-track–caused derailments in winter during the study
period. For each derailment cause, the empirical data show some
level of seasonal variation in terms of derailment frequencies. Also,
for the same cause, the western railroads and eastern railroads may
have different derailment rates. In the next section, all these empir-
ical observations will be statistically investigated using negative
binomial regression modeling.

Derailment Frequency Modeling

Methodology

This paper aimed to estimate the occurrence of Class I mainline
railroad freight-train derailments in the United States. Poisson re-
gression is often used for modeling accident count data, but it theo-
retically requires the variance of the dependent variable to be equal
to its mean (Greene 1994). As a generalization of Poisson regres-
sion, negative binomial regression has an extra parameter to model
the overdispersion (variance is greater than the mean). In the past,
negative binomial regression has been widely used to model acci-
dent frequency data (Evans 2011; Wei and Lovegrove 2013; Liu
2017). Therefore, it was used as an initial method. The results

Table 1. Derailment cause grouping

ADL cause
group

FRA cause
code Description

Broken rails or
welds (08T)

T202 Broken rail-base
T203 Broken rail-weld (plant)
T204 Broken rail-weld (field)
T207 Broken rail-detail fracture from

shelling or head check
T208 Broken rail-engine burn fracture
T210 Broken rail-head and web

separation (outside joint bar limits)
T212 Broken rail-horizon split head
T218 Broken rail-piped rail
T219 Rail defect with joint bar repair
T220 Broken rail-transverse or

compound fissure
T221 Broken rail-vertical split head

Broken wheels
(12E)

E60C Broken flange
E61C Broken rim
E62C Broken plate
E63C Broken hub
E6AC Thermal crack, flange, or tread

Buckled track
(05T)

T109 Track alignment irregular (buckled
or sunkink)

© ASCE 04021073-3 J. Transp. Eng., Part A: Systems
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showed that the estimated freight-train derailment frequency using
negative binomial regression well fit the empirical data based on
Pearson’s goodness-of-fit test. Negative binomial regression is also
simple and easy to implement. Because of these reasons, the results
of this paper are based on the negative binomial regression model.
In future work, alternative methods might be considered depending
on data availability.

Chang (2005) concluded that previous research employed neg-
ative binomial regression models and other statistical models in
analyzing derailment frequencies with two motivations. First, the
occurrence of transportation accidents can be regarded as a random
event. Second, negative binomial regression is able to identify a
broad range of risk factors that significantly contribute to accidents.
The negative binomial regression model associates the number of
accidents with influencing factors and traffic exposure. The param-
eter coefficients are fitted to maximize the likelihood function
(Agresti and Kateri 2011). Specifically, negative binomial regres-
sion assumes that the observed data is modeled as a Poisson var-
iable with a mean of λi, and the model error follows a gamma
distribution. Thus, the negative binomial regression model is also
called the Poisson–gamma model, in which the dependent variable
follows a mixture of two distributions (Liu et al. 2013b; Zhang and
Liu 2020). The basic framework is as follows:

gðyi; λiÞ ¼
e−λi×λi

yi!
ð1Þ

kðλijψ;μiÞ ¼
ðψ=μiÞψ
ΓðψÞ λψ−1i e−

λi
μi
ψ ð2Þ

μi ¼ exp

�
b0 þ

Xk
m¼1

bmiXmi

�
Mi ð3Þ

where yi = observed number of derailments for group i; λi = mean
of the Poisson distribution for group i; gðyi;λiÞ = probability den-
sity function of Poisson ðλiÞ or yijλi ∼ PoissonðλiÞ; kðλijψ;μiÞ =
probability density function of Gamma

�
ψ; ψμi

�
, or λijψ ∼

Gamma
�
ψ; ψμi

�
; μi = estimated number of derailments for group i;

ψ = inverse dispersion parameter; bmi ¼ mth parameter coefficient
for group i; Xmi ¼ mth explanatory variable for group i; and Mi =
traffic exposure for group i.

In this paper, the negative binomial regression model was de-
veloped to model freight train derailment frequencies. Other regres-
sion models would be used if the negative binomial regression did
not fit the empirical data well. The freight-train derailments across
the total traffic volume for a specific cause are assumed to follow a
negative binomial distribution. The functions of railroad index, sea-
son index, and traffic volume in the negative binomial regression
model are as follows:

μi ¼ expðαi0 þ αi1Railroadþ αi2Seasonþ αi3Railroad × SeasonÞ
× Traffic ð4Þ

where μi = derailment frequency for a specific cause i; αi0, αi1, αi2,
αi3 = parameter coefficients for a specific derailment cause i;
Railroad = railroad indicator, E1, E2, W1, W2; Season = season
indicator, representing spring, summer, fall, winter; and Traffic =
traffic volume (billion car-miles).

Eq. (4) considers the main effects for season and railroad,
as well as the interaction effect between these two categorical
variables. In two categorical variables, railroad and season, W2 and
winter are set as the reference category, respectively. Thus, αi1 rep-
resents the difference between the reference railroad (W2) and
other railroads, and αi2 indicates the difference between winter and

Fig. 1. Empirical mainline derailment frequency given traffic exposure by cause and railroad, 2000 to 2016: (a) broken rails; (b) broken wheels; and
(c) buckled track.
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other seasons. The two-factor interaction term Railroad × Season
tests whether the association between derailment frequency given
traffic exposure and season also depends on the railroad. Put
another way, if the parameter coefficient αi3 is not equal to 0, the
seasonal effect on derailment frequency given traffic exposure also
varies differently by railroad. Also, to validate the practicability
of negative binomial regression, the mean and variance of the ob-
served derailment frequency are also calculated. The ratios of
variance to mean in broken rails (9.8), broken wheels (8.6), and
buckled track (32.1) are all greater than 8, which indicate the over-
dispersion features in interested derailment groups.

Results of the statistical significance test are listed in Table 2.
The significance of a variable relies on the corresponding P-value.
If the P-value is less than 0.05, it indicates that the variable is
statistically significant and thus should be included in the model.
Otherwise, if the P-value is larger than 0.05, it indicates that a
variable is statistically insignificant and thus should be excluded.
Table 2 shows that, among three major derailment causes, the
interaction terms between railroad and season parameter are stat-
istically insignificant (P-value ¼ 0.294, 0.100, and 0.381, respec-
tively, all above 0.05). This means that for each cause, the
seasonal effect on derailment frequency given traffic exposure is
consistent along the four Class I railroads. In other words, if
winter has a higher rate than summer for a certain cause in one
railroad, the same phenomenon can be found in other railroads as
well. Because there is no interaction between the railroad and
season variables, the Railroad × Season interaction variable will
be removed from the final model. In the empirical data, there
were zero track-buckling–caused derailments in winter. Therefore,
only spring, summer, and fall are considered in the model for
this cause.

Model Calibration

Based on the aforementioned discussion in the model framework,
as well as derailment data and traffic exposure, the parameter co-
efficients in negative binomial regression models can be estimated
by maximizing the likelihood function (Liu 2017).

Regression analysis results of the final model for each derail-
ment cause are shown in Table 3. In this table, the last column is
the P-value of a parameter coefficient that represents the statistical
significance in relation to the reference level. For example, for
broken-rail–caused derailments, the P-values for the parameter co-
efficient of all three railroads are less than 0.05, indicating that there
is a statistical difference between W2 and any of the other railroads
in terms of derailment frequency, all other factors (e.g., season,
traffic volume) being the same. Similarly, there is no statistical

difference between fall and winter for broken-rail-caused derail-
ments because the P-value for fall is 0.854. As a study focusing on
the dependent variable (e.g., estimated derailment frequency), the
models of three causal groups of this study keep both significant
variables and insignificant variables. Meanwhile, the insignificant
difference of two independent variables should also be disclosed
with minimum coefficients. The equations of estimated derailment
frequency by cause involving both significant variables and insig-
nificant variables are as follows:
• Broken rails (08T)

μ1 ¼ expð0.074þ 1.175XE1 þ 0.724XE2 þ 0.408XW1

− 0.700XSpring − 0.823XSummer − 0.0166XFallÞ × Traffic

ð5Þ

• Broken wheels (12E)

μ2 ¼ expð0.022 − 0.815XE1 þ 0.042XE2 − 0.215XW1

− 0.319XSpring − 0.994XSummer − 0.681XFallÞ × Traffic

ð6Þ

Table 2. Variable selection in the model

Variables
Degree of
freedom Chi-square Pr > Chi

Broken rails (08T)
Railroad 3 132.49 <0.001
Season 3 98.61 <0.001
Railroad × season 9 10.74 0.294

Broken wheels (12E)
Railroad 3 19.78 0.002
Season 3 41.21 <0.001
Railroad × season 9 14.67 0.100

Buckled track (05T)
Railroad 3 40.15 <0.001
Season 2 144.84 <0.001
Railroad × season 6 6.39 0.381

Table 3. Parameter coefficient estimates

Parameter Estimate
Standard
error

95%
confidence
interval

P-valueUpper Lower

Broken rails (08T)
Intercept 0.074 0.099 −0.124 0.264 0.453

Railroad
E1 1.175 0.107 0.967 1.386 <0.001
E2 0.724 0.123 0.482 0.965 <0.001
W1 0.408 0.106 0.203 0.617 <0.001
W2 (reference) 0 0 0 0 —

Season
Spring −0.700 0.110 −0.919 −0.487 <0.001
Summer −0.823 0.113 −1.049 −0.603 <0.001
Fall −0.017 0.090 −0.193 0.160 0.854
Winter (reference) 0 0 0 0 —

Broken wheels (12E)
Intercept 0.022 0.117 −0.215 0.245 0.854

Railroad
E1 −0.815 0.216 −1.260 −0.409 <0.001
E2 0.042 0.166 −0.291 0.361 0.801
W1 −0.215 0.132 −0.475 0.043 0.103
W2 (reference) 0 0 0 0 —

Season
Spring −0.319 0.142 −0.599 −0.042 0.025
Summer −0.997 0.176 −1.352 −0.660 <0.001
Fall −0.681 0.159 −0.997 −0.374 <0.001
Winter (reference) 0 0 0 0 —

Buckled track (05T)
Intercept 0.441 0.110 0.217 0.651 <0.001

Railroad
E1 −0.365 0.200 −0.770 0.015 0.067
E2 −1.923 0.421 −2.864 −1.185 <0.001
W1 −0.606 0.166 −0.935 −0.285 <0.001
W2 (reference) 0 0 0 0 —

Season
Spring −1.423 0.188 −1.807 −1.066 <0.001
Summer (reference) 0 0 0 0 —
Fall −2.336 0.280 −2.930 −1.825 <0.001
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• Buckled track (05T)

μ3 ¼

8><
>:

exp

�
0.441 − 0.365XE1 − 1.923XE2 − 0.606XW1

−1.423XSpring þ 0 · XSummer − 2.336XFall

�
× Traffic other seasons

0 winter

ð7Þ

where μi = estimated derailment frequency for a specific cause i; XE1 ¼
�
1; if the railroad is E1

0; otherwise
, similar notations for XE2, XW1;

XSpring ¼
�
1; if the season is spring

0; otherwise
, similar notations for XSummer, XFall; and Traffic = traffic volume (billion car-miles).

With Eqs. (5)–(7), for each derailment cause, derailment fre-
quency in a specific season and railroad can be estimated with the
consideration of traffic volume. The ratio of derailment frequency
to traffic exposure represents the derailment rate. For example, for
railroad W1, there were a total of 52 billion car-miles in spring be-
tween 2000 and 2016. The estimated number of derailments due to
broken rails is calculated using Eq. (6)

μ2 ¼ expð0.074þ0.408ðXW1 ¼ 1Þ−0.700ðXSpring ¼ 1ÞÞ×52¼ 42

The actual number of broken-rail–caused derailments occurring
in this season during the study period was 43, which is very close to
the model estimation.

Model Validation

Table 4 lists empirical versus predicted derailment frequency by
season for three derailment causes. Overall, the prediction accuracy
is reasonably adequate using the negative binomial regression mod-
els. Furthermore, we develop a Pearson’s test (Agresti and Kateri
2011) to evaluate the degree of model fit to empirical data, using the
information from Table 4.

Pearson’s goodness-of-fit test, which asymptotically approaches
a χ2 distribution, is defined by

χ2 ¼
XN
i

½nðiÞ − m̂ðiÞ�2
m̂ðiÞ ð8Þ

where N = number of categories; ni = number of observed de-
railments in the ith category; and m̂i = estimated number of
derailments in the ith category.

Pearson’s test shows that the P-values are all greater than 0.05
for each cause (P-value ¼ 0.76 for broken rails; P-value ¼ 0.60
for broken wheels; P-value ¼ 0.66 for buckled track). Overall, the
developed negative binomial regression model adequately fits the
empirical data for each derailment cause.

Discussion

Conditional Odds Ratio for Interpreting Seasonal Effect

The conditional odds ratio (COR) is a useful output of the negative
binomial regression model. For example, in derailments caused by

Table 4. Model estimation versus observation on mainlines, 2000 to 2016

Broken rails Broken wheels Buckled track

Railroad Season Observed Predicted Observed Predicted Observed Predicted

E1
Spring 38 38 9 7 9 6
Summer 32 36 5 4 22 25
Fall 75 74 3 4 3 2

Winter 82 78 9 9 0 0
E2

Spring 22 21 22 15 3 1
Summer 16 18 4 7 3 4
Fall 38 40 8 10 0 0

Winter 46 41 18 19 0 0
W1

Spring 43 42 26 31 8 10
Summer 46 38 22 16 47 44
Fall 79 82 26 22 4 4

Winter 73 79 35 40 0 0
W2

Spring 23 25 31 34 15 17
Summer 21 22 14 17 74 71
Fall 60 49 24 24 7 7

Winter 39 47 52 45 0 0
Total 733 730 308 304 195 191
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broken rails, the COR for spring versus winter is 0.50, which means
that, given the same railroad and traffic volume, the derailment fre-
quency in spring is 50% of that in winter, with a 95% confidence
interval between 0.39 and 0.61. Similar comparative results can be
evaluated showing that summer involves an even lower derailment
frequency, which is only 44% of that in winter. If the confidence
interval of COR contains 1, there is no statistical difference be-
tween the reference and compared levels. For example, in Table 5,
μfall=μwinter is equal to 0.98, with a 95% confidence interval of COR
between 0.81 and 1.17. Because the confidence interval contains 1,
it indicates that there is no statistical difference between fall and
winter in terms of broken-rail–caused derailment frequency given
traffic exposure for each railroad.

Using the COR statistics, the following observations are made:
• For broken-rail–caused derailments, taking winter as a reference

level, derailment frequencies given traffic exposure both in
spring and summer are approximately 50% less likely than in
winter (Table 5). Fall and winter have an insignificant difference
in derailment rates given the same railroad and traffic volume.
Regarding railroad differences, the two eastern railroads have
relatively larger derailment frequencies given traffic exposure
than the two western railroads due to broken rails. For example,
derailment frequencies given traffic exposure on E1, E2 are
three and two times of that on W1, respectively.

• For broken-wheel–caused derailments, taking winter as a refer-
ence level and given the same railroad and traffic volume, the
other three seasons have relatively smaller derailment frequen-
cies given traffic exposure. More specifically, derailment fre-
quencies given traffic exposure in spring and fall are 73% and
51% of that in winter, and summer has an even lower derailment
frequency given traffic exposure, just 37% of that in winter
(Table 6). Regarding the railroad, two eastern railroads (E1 and
E2) appear to have equal or lower frequencies of derailments
given traffic exposure than western railroads (W1 and W2) due
to broken wheels.

• For buckled-track–caused derailments, the derailment frequency
given traffic exposure in summer is considerably large, 4 times

of that spring and 10 times of that fall (Table 7). There was no
buckled-track–caused derailment occurring in winter during the
study period.

Possible Explanations of Seasonal Effect on Studied
Causes

Seasonal temperature changes may affect the dynamic behavior of
the railroad components and have a significant effect on the infra-
structure response (Salcher et al. 2016). Previous studies (Gonzales
et al. 2013; Salcher et al. 2016) have shown a high impact of the
surrounding air temperature on the structural stiffness based on
long-term measurements. In their study, decreasing or increasing
temperature leads to an increase or decrease of stiffness. The prior
literature (Liu et al. 2013b; Zerbst et al. 2009) found that ambient
temperature is related to the growth of broken rails. The thermal
contraction forces in rails under lower temperatures will likely pull
apart internal rail defects, causing more broken rails. A similar
comparison of derailment rate by season in broken wheels demon-
strates that summer has the lowest derailment rate, and winter has
the highest broken-wheel–related derailment rate.

These statistical analysis results seem to be consistent with pre-
vious engineering and laboratory analyses, which showed that a
decreased temperature can promote the appearance of fractures in
rail stock or wheel material (Fuoco et al. 2004). In addition to the
wheels’ properties and performance, the interaction between track-
related and rolling-stock–related defects was also identified (Liu
et al. 2013a). For track buckling, no buckled-track–caused derail-
ments occurred in winter in our studied data, which are Class I
freight-train derailments on mainlines from 2000 to 2016, and
summer has a significantly higher derailment rate than in other
seasons. This finding can be explained via well-established buck-
ling theories in the literature (Dobney et al. 2009, 2010; Kish and
Samavedam 2013).

These explanations might also support the difference of freight-
train derailments in eastern railroads and western railroads. The
Western United States is mostly occupied by deserts and plateaus
and is recorded as having higher temperatures than the Eastern
United States in the warmer season (National Weather Service
2021). For example, the average temperatures recorded in Las
Vegas and Dallas are even above 36°C in the summer season. In
the colder season, the Eastern United States has lower temperatures
than the Western United States in general. For example, the average
temperatures of the center-east areas (e.g., Boston, Chicago) in
January and February are below 0, which is lower than the average
temperatures in most areas of the Western United States (e.g., west
coast, desert, and plateaus). Overall, the temperature difference in
the areas operated by the four freight railroads may have an impact
on the variations of freight-train derailment frequency and rate.
However, in previous studies and this research, there is a lack of
further analysis or supportive findings regarding other seasonality-
related variables, such as precipitation, humanity, and sunshine

Table 5. COR of broken-rail–caused derailment by season and railroad

Conditional
odds ratio

08T

Broken rails

μE1=μW2 3.24 (2.63, 3.99)
μE2=μW2 2.06 (1.61, 2.62)
μW1=μW2 1.50 (1.22, 1.85)
μspring=μwinter 0.50 (0.39, 0.61)
μsummer=μwinter 0.44 (0.35, 0.54)
μfall=μwinter 0.98 (0.82, 1.17)

Note: The values in parentheses are the 95% confidence interval of COR.

Table 6. COR of broken-wheel–caused derailment by season and railroad

Conditional
odds ratio

12E

Broken wheels

μE1=μW2 0.44 (0.28, 0.66)
μE2=μW2 1.04 (0.74, 1.43)
μW1=μW2 0.81 (0.62, 1.04)
μspring=μwinter 0.73 (0.54, 0.95)
μsummer=μwinter 0.37 (0.25, 0.51)
μfall=μwinter 0.51 (0.36, 0.68)

Note: The values in parentheses are the 95% confidence interval of COR.

Table 7. COR of buckled-track–caused derailment by season and railroad

Conditional
odds ratio

05T

Buckled track

μE1=μW2 0.69 (0.46, 1.01)
μE2=μW2 0.15 (0.05, 0.30)
μW1=μW2 0.55 (0.39, 0.75)
μspring=μsummer 0.24 (0.16, 0.34)
μfall=μsummer 0.10 (0.05, 0.16)

Note: The values in parentheses are the 95% confidence interval of COR.
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hours. These issues could be considered in future work depending
on data availability.

Seasonality-Driven Freight-Train Derailment Risk
Mitigation

Broken rails have been the leading cause of freight train derail-
ments, leading to around $500 million of damage costs in infra-
structure and rolling stock since 2000 (FRA 2020). The mitigation
of broken-rail–caused derailments is an increasingly critical field.
Both visual inspection and track circuit can contribute to detecting
broken rails at earlier stages and reducing the further adverse
impact of the occurring broken rails. Therefore, although a broken
rail has a greater likelihood to occur in the colder seasons due to
tensile thermal stresses, this also improves the detectability of bro-
ken rails in winter months over summer months because the rail
breaks and is pulled apart so it can be detected by track circuits
(Dick 2001). Overall, the impact of lower temperature in colder
seasons is not simply linear in broken rail–caused derailment oc-
currences, and currently existing detection technologies can also
have unanticipated influences. The analytical results that derail-
ment frequencies, given traffic exposure, in warmer seasons are
approximately 50% less likely than those in winter seasons can be
beneficial to optimize rail defect inspection frequency, accounting
for the seasonal effects and occurrence of broken-rail–caused
derailments.

The results of this analysis are useful for practitioners to
quantitatively understand the difference of seasonal variation
in derailment frequencies given traffic exposure. The identified
seasonal impact is consistent with previous engineering studies
in general, whereas the quantitative analytical results in this
paper support an industry-level understanding of the seasonal im-
pact on freight-train derailments, as well as the magnitude of the
difference.

Furthermore, the methodology in this paper can be tailored to
specific railroads (or regions) and provide a customized decision
support to manage inspection and maintenance strategies given
specific railroad or region, season, and traffic volume. The practi-
tioners can use the method presented in this paper to analyze their
own derailment data, accounting for a specific railroad, season, and
traffic volume. Ultimately, we aim to provide the industry with a
portfolio of data analysis techniques and tools for easily analyzing
past derailment data, discovering useful information, and assisting
with data-driven safety decisions.

Conclusions

This paper develops a novel application of the negative binomial
regression model to identify and quantify the seasonal effect on
US Class I freight railroad derailments, accounting for derail-
ment cause, traffic exposure, and railroad. Three major derailment
causes—broken rails, broken wheels, and buckled track—were
analyzed statistically based on past derailments and traffic data.
The results show the varying seasonal effects on derailment fre-
quencies given traffic exposure by cause and railroad. Given traffic
exposure and railroad, fall and winter double the broken-rail–
caused derailment frequency given traffic exposure in comparison
with spring and summer. Broken-wheel–caused derailments appear
to occur less frequently in spring (27% less likely), summer (63%
less likely), and fall (49% less likely) than in winter. There was no
buckling in winter during the study period, whereas buckled-track–
caused derailment frequency given traffic exposure in summer is
6 times of that in spring and 10 times of that in fall. These quanti-
tative results can be beneficial to optimize inspection frequency of

railroad infrastructure and rolling stock on a railroadwide basis.
The statistical regression models developed in this paper can be
adapted to other causes and other railroads.

The statistical analysis procedure can be used as a long-term
reference for railway researchers to understand the relationship
between derailment risks and influencing factors on various spa-
tial and temporal scales. The results of this analysis are useful
for practitioners to quantitatively understand the difference of
seasonal variation in derailment frequencies given traffic expo-
sure. The identified seasonal impact is consistent with previous
engineering studies. At present, this research is developing a
computer-aided decision support tool that can automate the stat-
istical modeling process shown previously. Practitioners can use
the tool to analyze derailment frequencies given traffic exposure
for any specific railroad, season, and traffic volume. Moreover,
although inspections and diagnostic measurements commonly
employed in railroads are able to generate informative repair and
corrective maintenance actions, each suffers from the limitations
of workload and time schedule for restoration. Thus, in addition to
providing the industry with a portfolio of data analysis techniques
and tools for easily analyzing past derailment data, discovering
useful information, and assisting with data-driven safety decisions,
this paper ultimately supports an optimal allocation of train safety
improvement resources.

Future Work

This study focuses on identifying the statistical distribution of
railroad-specific derailment frequency by season, traffic volume,
and other influencing factors. Due to data limitations, this paper
was not able to perform a comprehensive analysis to explain the
seasonal effect (particularly causal effect). As key explanatory var-
iables in the seasonal effect, temperature and seasonal weather
would be considered in future studies. Moreover, this paper fails
to track the changes in derailment frequency given traffic exposure
due to maintenance practices (such as wheel impact detectors, ultra-
sonic rail inspections, and vehicle track interaction systems) during
the period analyzed in this study. One subsequent research direction
is to extend this statistical methodology into collision and grade-
crossing incidents, which are two common types of train accidents
in the United States. In these two accident types, human errors are
major causes. Apart from accident frequency, assessments of the
severity of accidents such as the number of cars derailed, damage
costs, and other measures of severity can be analyzed using similar
statistical models.

Appendix. Empirical Mainline Derailment Rate by
Derailment Cause and Railroad, 2000 to 2016

Railroad Season
Number of
derailments

Derailment
rate per
billion

train-miles

Derailment
rate per
billion

car-miles

E1 Spring 245 588 10.21
Summer 234 586 10.17
Fall 224 587 10.67

Winter 277 760 12.59

E2 Spring 181 467 9.05
Summer 159 432 8.37
Fall 130 353 7.22

Winter 193 554 10.16
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Appendix. (Continued.)

Railroad Season
Number of
derailments

Derailment
rate per
billion

train-miles

Derailment
rate per
billion

car-miles

W1 Spring 452 652 8.69
Summer 460 663 8.85
Fall 417 601 8.51

Winter 424 649 8.15

W2 Spring 417 564 9.07
Summer 445 602 9.67
Fall 374 495 8.50

Winter 383 542 8.15

Data Availability Statement
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request.

Acknowledgments

A large portion of the research was completed when the lead author
was a graduate research assistant at Rutgers University. We thank
Rutgers University for the support of this work.

References

AAR (Association of American Railroads). 2020. Overview of America’s
freight railroads. Washington, DC: AAR.

ADL (Arthur D. Little). 1996. Risk assessment for the transportation of
hazardous materials by rail, supplementary report: Railroad accident
rate and risk reduction option effectiveness analysis and data. 2nd ed.
Cambridge, MA: ADL.

Agresti, A., and M. Kateri. 2011. “Categorical data analysis.” In
International encyclopedia of statistical science, 206–208. Berlin:
Springer.

Anderson, R. T., and C. P. L. Barkan. 2004. “Railroad accident rates for use
in transportation risk analysis.” Transp. Res. Rec. 1863 (1): 88–98.
https://doi.org/10.3141/1863-12.

Barkan, C. P. L., C. T. Dick, and R. Anderson. 2003. “Railroad derailment
factors affecting hazardous materials transportation risk.” Transp. Res.
Rec. 1825 (1): 64–74. https://doi.org/10.3141/1825-09.

Chang, L. Y. 2005. “Analysis of freeway accident frequencies: Negative
binomial regression versus artificial neural network.” Saf. Sci. 43 (8):
541–557. https://doi.org/10.1016/j.ssci.2005.04.004.

Dick, C. T. 2001. Factors affecting the frequency and location of broken
railway rails and broken rail derailments. Champaign, IL: Univ. of
Illinois at Urbana.

Dindar, S., S. Kaewunruen, and M. An. 2018. “Identification of appropriate
risk analysis techniques for railway turnout systems.” J. Risk Res.
21 (8): 974–995. https://doi.org/10.1080/13669877.2016.1264452.

Dobney, K., C. J. Baker, L. Chapman, and A. D. Quinn. 2010. “The future
cost to the United Kingdom’s railway network of heat-related delays
and buckles caused by the predicted increase in high summer temper-
atures owing to climate change.” Proc. Inst. Mech. Eng., Part F: J.
Rail Rapid Transit 224 (1): 25–34. https://doi.org/10.1243/09544097
JRRT292.

Dobney, K., C. J. Baker, A. D. Quinn, and L. Chapman. 2009. “Quantifying
the effects of high summer temperatures due to climate change on buck-
ling and rail related delays in south-east United Kingdom.” Meteorol.
Appl. 16 (2): 245–251. https://doi.org/10.1002/met.114.

Evans, A. W. 2011. “Fatal train accidents on Europe’s railways: 1980–
2009.” Accid. Anal. Prev. 43 (1): 391–401. https://doi.org/10.1016/j
.aap.2010.09.009.

FRA (Federal Railroad Administration). 2011. FRA guide for preparing
accident/incident reports. Washington, DC: USDOT.

FRA (Federal Railroad Administration). 2015. Railroad equipment
accident/incident reporting threshold. Washington, DC: USDOT.

FRA (Federal Railroad Administration). 2020. “FRA rail equipment acci-
dent (6180.54) database.” Accessed June 1, 2020. https://safetydata.fra
.dot.gov/OfficeofSafety/publicsite/on_the_fly_download.aspx.

Fuoco, R., M. M. Ferreira, and C. R. F. Azevedo. 2004. “Failure analysis of
a cast steel railway wheel.” Eng. Fail. Anal. 11 (6): 817–828. https://doi
.org/10.1016/j.engfailanal.2004.03.004.

Ghofrani, F., H. Sun, and Q. He. 2021. “Analyzing risk of service failures in
heavy haul rail lines: A hybrid approach for imbalanced data.” In Risk
analysis. Hoboken, NJ: Wiley. https://doi.org/10.1111/risa.13694.

Gonzales, I., M. Ülker-Kaustell, and R. Karoumi. 2013. “Seasonal effects
on the stiffness properties of A ballasted railway bridge.” Eng. Struct.
57 (Dec): 63–72. https://doi.org/10.1016/j.engstruct.2013.09.010.

Greene, W. H. 1994. Accounting for excess zeros and sample selection
in Poisson and negative binomial regression models. New York:
New York Univ.

Kish, A., and G. Samavedam. 2013. Track buckling prevention: Theory,
safety concepts, and applications. Washington, DC: USDOT.

Lin, C., M. R. Saat, and C. P. L. Barkan. 2014. “Causal analysis of
passenger train accident of share-use rail corridors.” In Proc., 93rd
Transportation Research Board. Washington, DC: Transportation
Research Record.

Liu, X. 2015. “Statistical temporal analysis of freight-train derailment
rates in the United States: 2000 to 2012.” Transp. Res. Rec. 2476 (1):
119–125. https://doi.org/10.3141/2476-16.

Liu, X. 2017. “Statistical causal analysis of freight-train derailments in the
United States.” J. Transp. Eng., Part A: Syst. 143 (2): 04016007. https://
doi.org/10.1061/JTEPBS.0000014.

Liu, X., and C. T. Dick. 2016. “Risk-based optimization of rail defect
inspection frequency for petroleum crude oil transportation.” Transp.
Res. Rec. 2454 (1): 27–35. https://doi.org/10.3141/2545-04.

Liu, X., C. T. Dick, A. Lovett, M. R. Saat, and C. P. L. Barkan. 2013a.
“Seasonal effect on the optimization of rail defect inspection fre-
quency.” In Proc., ASME 2013 Rail Transportation Division Fall
Technical Conf. New York: ASME. https://doi.org/10.1115/RTDF2013
-4711.

Liu, X., M. R. Saat, and C. L. P. Barkan. 2017. “Freight-train derailment
rates for railroad safety and risk analysis.” Accid. Anal. Prev. 98 (Jan):
1–9. https://doi.org/10.1016/j.aap.2016.09.012.

Liu, X., M. R. Saat, and C. P. L. Barkan. 2012. “Analysis of causes of major
train derailment and their effect on accident rates.” Transp. Res. Rec.
2289 (1): 154–163. https://doi.org/10.3141/2289-20.

Liu, X., M. R. Saat, X. Qin, and C. P. L. Barkan. 2013b. “Analysis of U.S.
freight-train derailment severity using zero-truncated negative binomial
regression and quantile regression.” Accid. Anal. Prev. 59: 87–93.
https://doi.org/10.1016/j.aap.2013.04.039.

Miaou, S. P. 1994. “The relationship between truck accidents and geometric
design of road sections: Poisson versus negative binomial regressions.”
Accid. Anal. Prev. 26 (4): 471–482. https://doi.org/10.1016/0001-4575
(94)90038-8.

National Weather Service. 2021. “Past weather.” Accessed April 1, 2021.
https://www.weather.gov/climateservices/.

Salcher, P., H. Pradlwarter, and C. Adam. 2016. “Reliability assessment of
railway bridges subjected to high-speed trains considering the effects
of seasonal temperature changes.” Eng. Struct. 126 (Nov): 712–724.
https://doi.org/10.1016/j.engstruct.2016.08.017.

Sanchis, I. V., R. I. Franco, P. M. Fernández, P. S. Zuriaga, and J. B. F.
Torres. 2020. “Risk of increasing temperature due to climate change
on high-speed rail network in Spain.” Transp. Res. Part D: Transp. En-
viron. 82 (May): 102312. https://doi.org/10.1016/j.trd.2020.102312.

Schafer, D. H., II, and C. P. L. Barkan. 2008. “Relationship between train
length and accident causes and rates.” Transp. Res. Rec. 2043 (1):
73–82. https://doi.org/10.3141/2043-09.

STB (Surface Transportation Board). 2017. Class I railroad R-1 report.
Washington, DC: STB.

Turla, T., X. Liu, and Z. Zhang. 2019. “Analysis of freight train
collision risk in the United States.” In Proc. Inst. Mech. Eng.,

© ASCE 04021073-9 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2021, 147(10): 04021073 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Sh
an

gh
ai

 J
ia

o 
T

on
g 

U
ni

ve
rs

ity
 o

n 
08

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.3141/1863-12
https://doi.org/10.3141/1825-09
https://doi.org/10.1016/j.ssci.2005.04.004
https://doi.org/10.1080/13669877.2016.1264452
https://doi.org/10.1243/09544097JRRT292
https://doi.org/10.1243/09544097JRRT292
https://doi.org/10.1002/met.114
https://doi.org/10.1016/j.aap.2010.09.009
https://doi.org/10.1016/j.aap.2010.09.009
https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/on_the_fly_download.aspx
https://safetydata.fra.dot.gov/OfficeofSafety/publicsite/on_the_fly_download.aspx
https://doi.org/10.1016/j.engfailanal.2004.03.004
https://doi.org/10.1016/j.engfailanal.2004.03.004
https://doi.org/10.1111/risa.13694
https://doi.org/10.1016/j.engstruct.2013.09.010
https://doi.org/10.3141/2476-16
https://doi.org/10.1061/JTEPBS.0000014
https://doi.org/10.1061/JTEPBS.0000014
https://doi.org/10.3141/2545-04
https://doi.org/10.1115/RTDF2013-4711
https://doi.org/10.1115/RTDF2013-4711
https://doi.org/10.1016/j.aap.2016.09.012
https://doi.org/10.3141/2289-20
https://doi.org/10.1016/j.aap.2013.04.039
https://doi.org/10.1016/0001-4575(94)90038-8
https://doi.org/10.1016/0001-4575(94)90038-8
https://www.weather.gov/climateservices/
https://doi.org/10.1016/j.engstruct.2016.08.017
https://doi.org/10.1016/j.trd.2020.102312
https://doi.org/10.3141/2043-09


Part F: J. Rail Rapid Transit 233 (8): 817–830. https://doi.org/10.1177
/0954409718811742.

Van Dyk, B. J., M. S. Dersch, J. R. Edwards, C. Ruppert, Jr., and C. P. L.
Barkan. 2013. “Quantifying shared corridor wheel loading variation
using wheel impact load detectors.” In Proc., 2013 Joint Rail Conf.
New York: ASME. https://doi.org/10.1115/JRC2013-2404.

Wei, F., and G. Lovegrove. 2013. “An empirical tool to evaluate the safety
of cyclists: Community based, macro-level collision prediction models
using negative binomial regression.” Accid. Anal. Prev. 61 (Dec): 129–
137. https://doi.org/10.1016/j.aap.2012.05.018.

Yang, T. H., W. P. Manos, and B. Johnstone. 1973. “Dynamic analysis
of train derailments.” In Rail transportation proceedings. New York:
ASME.

Zerbst, U., R. Lundén, K. O. Edel, and R. A. Smith. 2009. “Introduction
to the damage tolerance behaviour of railway rails—A review.”
Eng. Fract. Mech. 76 (17): 2563–2601. https://doi.org/10.1016/j
.engfracmech.2009.09.003.

Zhang, Z., and X. Liu. 2020. “Safety risk analysis of restricted-speed train
accidents in the United States.” J. Risk Res. 23 (9): 1158–1176. https://
doi.org/10.1080/13669877.2019.1617336.

© ASCE 04021073-10 J. Transp. Eng., Part A: Systems

 J. Transp. Eng., Part A: Systems, 2021, 147(10): 04021073 

D
ow

nl
oa

de
d 

fr
om

 a
sc

el
ib

ra
ry

.o
rg

 b
y 

Sh
an

gh
ai

 J
ia

o 
T

on
g 

U
ni

ve
rs

ity
 o

n 
08

/1
9/

21
. C

op
yr

ig
ht

 A
SC

E
. F

or
 p

er
so

na
l u

se
 o

nl
y;

 a
ll 

ri
gh

ts
 r

es
er

ve
d.

https://doi.org/10.1177/0954409718811742
https://doi.org/10.1177/0954409718811742
https://doi.org/10.1115/JRC2013-2404
https://doi.org/10.1016/j.aap.2012.05.018
https://doi.org/10.1016/j.engfracmech.2009.09.003
https://doi.org/10.1016/j.engfracmech.2009.09.003
https://doi.org/10.1080/13669877.2019.1617336
https://doi.org/10.1080/13669877.2019.1617336

