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Analysis of human-factor-caused freight train accidents
in the United States

Zhipeng Zhang, Tejashree Turla, and Xiang Liu

Department of Civil and Environmental Engineering, Rutgers, The State University of New Jersey,
Piscataway, USA

ABSTRACT
Human factors are major causes of train accidents in the
United States. Understanding the safety risk of these accidents
can provide insights into safety evaluation and improvement.
This paper focuses on analyzing the train derailments and colli-
sions due to human factors using 2000–2016 accident data on
mainlines from the US Federal Railroad Administration. This
research methodology involves three main sections. First, we
analyze the statistical trend of annual accident rates by acci-
dent type and year. Based on the cause-specific distribution of
accident frequency, the major causes are determined for each
common accident type such as derailments and collisions.
Next, we calculate accident severity (e.g., derailed cars, casual-
ties) due to each specific human-factor accident cause. Finally,
we compute annual accident risk and cause-specific accident
risk using mean and alternative risk measures. The detailed
accident data analysis approach herein can also be adapted to
other types of train accidents, in support of decisions for rail
safety improvement. The analysis of human-factor-caused train
accidents can provide key information for the development
and evaluation of potential safety improvement strategies.

KEYWORDS
human-factor; train
accidents; safety; risk;
accident cause

1. Introduction

Railroads are a safe and reliable mode of transportation. Train accident rates
have declined considerably over the past decade. However, a train accident
may result in injuries or fatalities, infrastructure and rolling stock damages,
and environmental impacts. The US freight rail network consists of nearly
140,000 miles with 1.74 trillion ton-miles of traffic annually (FRA, 2015;
AAR, 2017a). This vast railroad network is crucial to the American economy,
and consequently its safety is of great importance. Based on previous train
accident analyses, derailments and collisions are common accident types
(Barkan, Dick, & Anderson, 2003; Li, Cai, Liu, & Wang, 2018; Liu, Barkan,
& Saat, 2011, Liu, Saat, & Barkan 2012, 2013, 2016a). Previous studies have
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analyzed the overall safety trends of derailments and collisions. In addition,
there is quite a bit of work on grade crossing safety (Chadwick, Saat, &
Barkan, 2012; Saccomanno, Park, & Fu, 2007). Furthermore, infrastructure
or equipment failures as derailment causes have been studied (Liu et al.,
2011, 2012) but there is no study specific to analyzing human-factor-caused
accidents and we aim to fill this knowledge gap.
Human factors are major causes of freight-train accidents (derailments and

collisions) on mainlines resulting in a total of 1,510 accidents with 551 casual-
ties and 9,214 derailed cars in the period of 2000–2016 (FRA, 2007; Dhillon,
2007; Madigan, Golightly, & Madders, 2016). It is important to study the
human-factor-caused accidents separately as they constitute for about 18% of
the total freight train derailments and collisions on US mainlines. Human fac-
tor accidents occur due to a number of factors that degrade the operators’ per-
formance. The study of factors influencing human performance can be found
in prior literature (Kyriakidis, Pak, & Majumdar, 2015; Zhang, Jiang, & Niu,
2014). Similar analyses have been performed in other industries like oil and gas
(Theophilus et al., 2017), maritime transportation (Chen et al., 2013; Yildirum,
Ugurlu, Basar, & Yuksekyildiz, 2017), aviation (Low & Yang, 2018), metro sys-
tem (Chen, Zhang, Khasawneh, & Geng, 2018), etc. The human factors involv-
ing physical and organizational characteristics of a train operator have been
studied to optimize and apply a human factor analysis and classification system
(HFACS) to the railroad industry (Reinach & Viale, 2006; Madigan et al.,
2016). The methodology of HFACS has also been used to study the potential
root causes of railroad accidents in Indonesia (Iridiastadi & Ikatrinasari, 2012).
However, there has been very little prior work that uses statistical ana-

lysis to understand cause-specific human-error-caused train safety risk in
the United States. The objective of this paper is to quantify the safety risk
of human-error-caused train accidents on freight railroads in the United
States. We focus on the historical safety data to quantitatively understand
the frequency, severity, major causes, and safety risk of human-error-caused
accidents on railway mainlines. This analytical approach could also be
adapted to other types of train accidents. Using statistical approaches to
determine accident rates will also enable the user to predict the potential
risk in the future, based on the historical data.

2. Data sources

The data used for the analysis comes from the US FRA Rail Equipment
Accident (REA) database, which is consistent with previous studies
(Anderson & Barkan, 2004; Bagheri, Saccomanno, Chenouri, & Fu, 2011;
Barkan et al., 2003; Liu, 2016a, 2016b; Liu, 2015). By regulation, each rail-
road operating in the United States must submit a detailed accident report
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to FRA if the damage cost of the accident to infrastructure and rolling
stock exceeds a specified monetary threshold (e.g., the 2017 threshold was
$10,700 (FRA, 2018). The FRA compiles these submitted accident reports
into the Rail Equipment Accident (REA) database, which contains detailed
information regarding the cause, severity, location, time, and other circum-
stances that are involved in the occurrence of each accident. However, FRA
non-reportable accidents with damages less than the monetary threshold
are excluded due to their unavailability.
There are four types of tracks included in the FRA REA database, which

are main track, siding track, yard track, and industry track, respectively.
These track types are used for different operational functions and conse-
quently have different associated accident types, causes, and consequences.
Train accidents are categorized into derailment, collision, highway-rail grade
crossing accident, and other less frequent types in the FRA REA database.
The type of accident recorded in the database is determined by the first
reportable event in the accident sequence. Derailment, by definition in FRA
guide (FRA, 2011), is the accident that occurs when on-track equipment
leaves the rail. A collision is defined as the impact between on-track equip-
ment consists while both are on rails and where one of the consists is oper-
ating under train movement rules. An accident at a highway-rail grade
crossing with impact between on-track railroad equipment and a highway
user is referred to as highway-rail grade crossing accident. Some instances
where a derailment is induced due to the occurrence of a collision, is still
considered as a collision based on the primary accident type. Similarly, if
one grade-crossing collision accident leads to a train derailment, the accident
is still identified as a grade crossing accident, instead of a derailment. In
other words, the type of accident is identified per the first event in the acci-
dent (FRA, 2011). This study involves only derailments and collisions since
the grade crossing accidents require separate analysis due to different acci-
dent characteristics. FRA train accident cause-codes are hierarchically organ-
ized and categorized into major cause groups—track, equipment, human
factors, signal, and miscellaneous causes. Within each of these major cause
groups, FRA has organized individual cause codes into subgroups of related
causes, which were refined by Arthur D. Little (ADL, 1996). The accident
data used in this study involves human-factor-caused freight derailments and
collisions occurred on mainlines. The different cause codes in this cause-
group are elaborated in Appendix 1.
In addition, the REA database also contains accident severity information

in terms of damage cost to infrastructure and rolling stock, injuries, fatal-
ities and hazardous material cars releasing contents (if any). Besides acci-
dent data, each railroad also reports their monthly train-mile data to the
FRA through the Operational Safety Database. This research uses these
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data sources to analyze accident frequency and severity, to compute the
risk, given traffic volumes.

3. Accident rate analysis

The train accident rate is defined as the number of train accidents normal-
ized by traffic exposure. This rate helps to understand the extent of accidents
occurring per certain traffic volume. Several previous studies adopted that
the number of accidents can be approximated by Poisson distribution. The
Poisson mean follows a gamma distribution to account for over-dispersion.
The Gamma mean is a combination of input variables. A Negative Binomial
(NB) regression model, which is also called Poisson-gamma regression, has
been developed in this paper to analyze human-factor-caused freight-train
accidents on mainlines. A similar NB model has been widely used in acci-
dent rate analysis for highway transportation rather than other models
(Lord, 2006; Miaou, 1994; Mitra & Washington, 2007; Oh, Washington, &
Nam, 2006) and its framework is given by equations 1–5. In this research,
two predictor variables are considered, which are the year index and traffic
volume for statistical analysis (Equation 4). The selection of these two varia-
bles is consistent with a prior study (Liu, 2016b). The year variable tests if
there is a temporal change in the frequency of train accidents with a given
traffic exposure. Similarly, the traffic exposure variable tests whether and
how the number of train accidents may vary with the traffic volume in a
given year. Traffic volume is measured in three metrics, namely gross ton-
miles, car-miles and train-miles. Schafer and Barkan (2007) pointed out that
most human errors are train-mile related causes for which the accident likeli-
hood is proportional to the number of train miles. Thus, this study uses
train-miles to normalize accident frequency. The three parameter coefficients,
a, b, and c, in the equation are estimated using the maximum likelihood
method in a Negative Binomial (NB) model. This model can be used to
develop cause-specific models for each of the major cause groups among
derailments and collisions.

Y � PoissonðkÞ (1)

k � Gamma f ,
f
m

� �
(2)

m ¼ exp
Xk
p¼0

bpXp

0
@

1
AM (3)

Where,
Y¼ observed number of accidents
m¼ estimated number of accidents
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bp¼ pth parameter coefficient
Xp¼ pth explanatory variable
M¼ traffic exposure (e.g., train-miles).
f¼ inverse dispersion parameter

li ¼ expðaþ b� Ti þ h�MiÞMi (4)

Where,
li¼ expected number of train accidents in ith year
Mi¼ traffic exposure in ith year (e.g., billion train-miles)
Ti¼ year index
a, b, h ¼ parameter coefficients
With respect to the accident rate definition, Equation 4 can be modified

as follows.

Zi ¼ li
Mi

¼ exp aþ b� Ti þ h�Mið Þ (5)

Where,
Zi¼ expected train accident rate per billion train miles in ith year
There are several types of freight train accidents due to human factors

that occurred on US mainlines in the study period, 2000–2016: namely,
derailments, collisions, grade crossing accidents, and other types such as
obstruction, explosive-detonation, fire/violent rupture, and other impacts.
This analysis focuses on two common human-factor-related accident types,
specifically, derailments and collisions excluding grade-crossing accidents,
which require a separate detailed analysis. Since passenger trains share
most mainline tracks with freight trains in the US railroad industry, there
exist both freight- and passenger-related human factor accidents. However,
we focused only on freight accidents since those involving passenger trains
are only about 4% of the total number of human-factor-caused derailments
and collisions (59 out of 1569). Figure 1 shows the accident rate of human-
factor-caused derailments and collisions in each year. This accident rate
(Equation 5) is obtained by normalizing the annual frequency of accidents
with the traffic exposure (e.g., train-miles). Given the traffic exposure for
each year, the derailment rate is approximately 2–3 times that of the colli-
sion rate.

4. Major accident causes

In order to focus on the methods to prevent a significant proportion of
accidents, it is necessary to understand the accident causes responsible for
maximum number of accidents. This study focuses on three major causes
among 12 subgroups with unique cause codes in the human factor cause
group. According to the cause-specific frequency of derailment and
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collisions combined, train handling (09H), violation of train speed (10H)
and use of switches (11H) are the major causes. For a more detailed study,
we consider separate cause-specific analyses for derailments and collisions.

4.1. Human factor derailment frequency

The distribution of the number of derailments for each of the cause codes
is shown in Figure 2. It indicates that improper train handling (09H), use
of switches (11H), and brake operation (01H) are the major human factor
causes, resulting in more than 200 derailments over the 17-year study
period. Train handling refers to the practices of manipulating the throttle
and applying dynamic or automatic brakes, while the other two major
causes are related to the improper operation of switches and brakes that
may result in a derailment.
Using Equation 4, an NB model has been developed separately for the

frequency of derailments caused due to human factors. Our model accounts
for both traffic volume variable and year variable. Table 1 shows that the
derailment rate, defined as the number of accidents normalized by traffic,
is independent of traffic exposure (p> 0.05). However, as Equation 5
shows, accident frequency is linearly correlated with traffic volume given
the same year. In addition, to test the correlation between train miles and
year, a Pearson correlation test (Benesty et al., 2009) was used to test the
correlation between train miles and year. Based upon the P-value (0.07,
greater than the significance level alpha ¼ 0.05), the test result indicates
that there is no statistically significant correlation between the train mile
and the year variable. However, the derailment frequency seems to have an
annual decline of 6.1% from the parameter estimate of the year variable b:

Figure 1. Human-factor-caused freight train accident rates by accident type and year,
U.S. mainlines.
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The model obtained from new parameters by excluding the traffic variable
can be written as Equation 7. In order to evaluate the goodness of fit of
these models, a statistical criterion called Deviance can be used. The
Deviance approximately follows a chi-squared distribution and v2 test
checks if the null hypothesis of independence is true. The acceptable sig-
nificance level is usually 5%. If the test statistic is improbably large, then
the null hypothesis can be rejected, making it a good-fit.

v2 ¼
Xn
i¼1

ðOi�EiÞ2
Ei

(6)

Where,
Oi ¼ observed number of accidents in ith year
Ei ¼ estimated number of accidents in ith year
n ¼ sample size (number of years in the study period)

li ¼ expð134:42� 0:064� TiÞMi (7)
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Figure 2. Cause-specific frequency of freight train derailments due to human factors,
U.S. mainlines.

Table 1. Negative binomial regression for human-factor-caused freight train derailments (all
causes combined).
Parameter Estimate Standard error 95% Confidence limits p-value

a 127.277 18.367 87.883 166.671 6.99e-06
b �0.061 0.009 �0.081 �0.042 8.45e-06
h (insignificant) 1.021 1.202 �1.556 3.598 0.41

NOTE: Deviance¼ 33.69; degrees of freedom¼ 15; p-value > 0.1.
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4.1.1. Cause-specific derailment frequency modeling
As we aim to understand the causal effect on the distribution of human-fac-
tor-caused train accidents, the earlier NB model for derailment frequency can
be modified and adapted to each of the major causes in order to estimate the
cause-specific derailment frequency (Table 2). The parameter for traffic expos-
ure (h) is insignificant for all major causes, which means that the cause-spe-
cific derailment rate does not vary much with the traffic (derailment
frequency increases linearly with traffic exposure), similar to the model with
all causes combined (Table 1). The derailment rates due to the train handling
(09H), use of switches (11H) and brake operations (01H) are found to
decrease at the rate of 7.6%, 6.6% and 3.5% respectively. Since the p-value is
greater than 0.05 for all three major causes in Table 3, the prediction reason-
ably reflects the empirical data according to the goodness of fit test. The
empirical- and model-based estimated values are presented in Table 3.

4.2. Human factor collision frequency

In this analysis, train collisions involve the collisions between freight trains
only and exclude the freight-to-passenger collisions or passenger-to-passen-
ger collisions. The frequency of collisions is observed to be lower than that
of derailments in the past 17 years. Among the 12 causes in the human fac-
tor cause group, it is observed that failure to obey or display signals (05H),
violation of train speed rules (10H) and mainline rules (08H) are the three
major causes responsible for more than 60 human factor freight train colli-
sions (Figure 3). Using the NB model discussed before, Table 4 gives the
results of parameter coefficients obtained by analyzing the human-factor-
caused collisions. Both the parameter estimates are significant, and the
p-value of the estimated year variable indicates that the collisions are con-
siderably decreasing at an annual rate of 4.6%.

4.2.1. Cause-specific collision frequency modeling
An approach similar to the above NB model for collision frequency is
applied to develop models for each of the major causes (Table 5). The par-
ameter for traffic exposure (h) is insignificant for all major causes, which
means that the cause-specific collision rate does not vary much with traffic.
The collision rates due to failure to obey/display signals (05H) and

Table 2. Negative binomial model for cause-specific derailment frequency.

Accident cause

Derailment frequency (li) by year
(Ti) and traffic exposure measured

by billion train-miles (Mi) Deviance test

Train handling (09H) li ¼ expð156:08� 0:076� TiÞMi p-value > 0.1
Use of Switches (11H) li ¼ expð134:84� 0:066� TiÞMi p-value > 0.1
Brake Operations (01H) li ¼ expð74:07� 0:035� TiÞMi p-value > 0.1
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Table 3. Observed and estimated frequency values for freight-train human-factor-caused
derailments.

Year
Train Handling (09H) Use of Switches (11H) Brake Operation (01H) All Causes

Observed Estimated Observed Estimated Observed Estimated Observed Estimated

2000 39 35 21 17 11 13 97 104
2001 23 32 14 16 12 12 87 95
2002 34 30 13 15 13 12 89 91
2003 37 29 16 14 10 12 92 87
2004 37 28 18 14 14 12 103 85
2005 29 26 13 14 13 11 93 81
2006 21 25 15 13 14 12 86 80
2007 20 22 11 12 9 10 72 70
2008 16 20 9 11 7 10 55 64
2009 12 15 8 8 9 8 51 50
2010 17 15 8 8 9 8 50 50
2011 16 15 9 8 11 8 45 48
2012 9 14 3 8 5 8 28 46
2013 15 13 9 7 7 8 49 44
2014 12 12 10 7 9 8 47 42
2015 18 11 5 6 6 7 41 38
2016 8 9 8 5 8 6 37 33
Total 363 353 190 184 167 164 1122 1109
P-value (chi-squared test) 0.3358 0.9234 0.9893 0.3571

Figure 3. Cause-specific frequency of freight train collisions due to human factors,
U.S. mainlines.

Table 4. Negative binomial regression for human-factor-caused freight train collisions (all
causes combined).
Parameter Estimate Standard error 95% Confidence limits p-value

a 94.680 28.610 33.318 156.042 0.0052
b �0.046 0.014 �0.077 �0.017 0.0049
h 5.012 1.872 0.998 9.027 0.0180

NOTE: Deviance¼ 37.16; degrees of freedom¼ 14; p-value > 0.1.
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violation mainline rules (08H) are estimated to decrease annually by 6.6%,
and 6.7% respectively. On the other hand, neither b nor h is significant for
the cause of train speed (10H); therefore, collision frequency for this cause
exhibits a linear trend with respect to traffic exposure. The empirical- and
model-based estimated values are presented in Table 6. Since the p-values
in Table 6 are greater than 0.05, the prediction reasonably reflects the
empirical data according to the goodness of fit test.

5. Severity analysis

In addition to analyzing the human factor accident frequency, train accident
severity has to be analyzed to determine the magnitude of an incident. It can
be measured using different metrics, such as the number of locomotives and
cars derailed, infrastructure damage, casualties, or environmental impact. Since
environmental impact is not reported to the FRA, we use derailed cars and
casualties, as is consistent with prior work and due to the huge variation in
the extent of casualties and derailed cars for derailments and collisions. The
number of derailed cars includes all types of railcars (loaded freight cars and

Table 5. Regression model for cause-specific collision frequency on mainlines.

Accident cause

Collision frequency (li) by year (Ti)
and traffic exposure measured by

billion train-miles (Mi) Deviance test

Failure to obey/display signals (05H) li ¼ expð135:82� 0:066� TiÞMi p-value > 0.1
Train speed (10H) li ¼ ð7:633ÞMi n/a
Mainline Rules (08H) li ¼ expð137:62� 0:067� TiÞMi p-value > 0.1

NOTE: No deviance test for train speed (10 H), as NB model was not used.

Table 6. Observed and estimated frequency values for human-factor-caused collisions.

Year

Failure to Obey/
Display Signals (05H) Train Speed (10H) Mainline Rules (08H) All Causes

Observed Estimated Observed Estimated Observed Estimated Observed Estimated

2000 7 11 6 4 7 6 26 30
2001 10 10 6 4 6 5 30 27
2002 9 9 1 4 4 5 23 27
2003 8 9 3 4 2 5 27 29
2004 12 9 7 4 6 5 35 32
2005 15 8 12 5 8 4 51 33
2006 7 8 7 5 3 4 24 38
2007 8 7 3 4 5 4 27 28
2008 7 6 7 4 3 3 23 23
2009 5 5 2 4 3 3 14 12
2010 2 5 3 4 5 3 13 14
2011 11 5 3 4 1 3 17 15
2012 4 5 3 4 3 2 22 16
2013 6 4 2 4 4 2 18 16
2014 3 4 6 4 3 2 20 17
2015 4 4 2 4 2 2 12 14
2016 3 3 0 4 1 2 6 9
Total 121 113 73 70 66 61 388 380
P-value (chi-squared test) 0.3812 n/a 0.8856 0.1448
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empty freight cars). but excludes locomotives. The category of casualties is the
combination of all types of injuries from small to serious and deaths (fatal-
ities). FRA defines an accountable casualty as a reportable death, injury, or ill-
ness arising from the operation of a railroad and may be classified as either
fatal or nonfatal (FRA, 2011). In this study, injuries indicate the nonfatal casu-
alties and fatalities mean the fatal casualties. Analyzing monetary damages is
also important (Marty & Okine, 2018) but is out of the scope of this paper.
This analysis can be adapted to other severity metrics as well. In order to
check the randomness of a data set, a method called Wald–Wolfowitz runs
test is used. Since the p-values for severity in casualties and derailed cars
obtained by runs test are greater than 0.05, we conclude that there is no sig-
nificant temporal trend of derailment and collision severity per accident in the
study period. Therefore, we can use the average (mean) number of casualties
and derailed cars to represent the overall accident severity. Though the
derailed cars and casualties are to be measured in whole numbers, we consid-
ered decimals to show the minor variations in each year. This study shows
that the average number of casualties per derailment in each year is fortu-
nately low (Table 7). Although the frequency of derailments is high, most
derailments result in zero casualties. In our dataset, a FRA-reportable collision
has a relatively lower rate of occurrence but has a higher average number of
casualties per accident. Accordingly, collisions exhibit a higher frequency of
casualties than derailments and the average number of derailed cars per acci-
dent is higher for derailments than collisions. This is because most derail-
ments have zero casualties and by definition, a derailment involves at least
one derailed car.

Table 7. Different measures of severity per accident for each type of accident, 2000–2016.

Year
Derailments Collisions

Derailed Cars
per Accident

Casualties
per Accident

Derailed Cars
per Accident

Casualties
per Accident

2000 7.73 0.05 2.04 1.68
2001 5.58 0.04 9.36 0.97
2002 6.02 0.02 6.43 0.99
2003 7.29 0.09 3.04 0.84
2004 8.31 0.12 6.97 3.45
2005 8.42 0.02 5.51 2.50
2006 7.63 0.03 2.00 0.69
2007 7.89 0.09 3.46 0.39
2008 4.00 0.03 5.06 0.90
2009 8.20 0.00 4.10 0.67
2010 5.92 0.04 3.84 1.40
2011 4.98 0.00 4.95 1.25
2012 2.50 0.00 5.07 0.83
2013 5.26 0.09 8.32 1.65
2014 7.02 0.07 4.64 0.96
2015 7.33 0.03 2.35 0.81
2016 6.13 0.06 5.28 0.63
Average 6.48 0.05 4.85 1.21
p-value (in runs test) 0.605 0.774 0.605 0.605
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5.1. Cause-specific derailment severity

The severity values of each cause in Table 8 also exhibit a random trend
because the p-value from runs test is greater than 0.05, thus average values
can be considered as overall severity. Though use of switches (11H) has
slightly higher frequency than brake operation (10H), it exhibits a relatively
lower potential to derail the train cars. The casualty potential is extremely
low even when all the causes are considered (Table 7).

5.2. Cause-specific collision severity

Table 9 gives the number of derailed cars and casualties per collision in
each year. All the major collision causes also have a random temporal
trend in derailed cars and casualties similar to derailment severity (p-
value from runs test > 0.05). Failure to obey/display signals has the high-
est severity potential which can lead to almost 3 derailed cars and a cas-
ualty per collision.

6. Human factor accident risk

6.1. FN curves by accident type

The detailed differences between each of the severity measures caused by
derailments and collisions can be illustrated through FN curves, which can
visually compare alternative risks (Evans, 2011; Evans & Verlander, 1997).
F (y-axis) represents the cumulative frequency of events that caused N or

Table 8. Different measures of severity per accident for major derailment causes.

Year
Train Handling (09H) Use of Switches (11H) Brake Operation (01H)

Derailed Cars
per Accident

Casualties
per Accident

Derailed Cars
per Accident

Casualties
per Accident

Derailed Cars
per Accident

Casualties
per Accident

2000 2.69 0.00 2.27 0.00 0.74 0.00
2001 1.58 0.00 0.41 0.00 1.28 0.00
2002 2.21 0.00 0.57 0.00 1.14 0.00
2003 3.03 0.02 0.54 0.01 1.14 0.02
2004 3.01 0.01 1.12 0.04 1.55 0.02
2005 3.17 0.00 0.48 0.00 1.50 0.00
2006 2.21 0.00 0.96 0.03 2.18 0.00
2007 2.54 0.00 0.61 0.00 0.81 0.00
2008 2.23 0.02 0.25 0.00 0.38 0.00
2009 2.24 0.00 0.86 0.00 1.68 0.00
2010 2.67 0.00 0.78 0.00 1.37 0.02
2011 1.65 0.00 0.68 0.00 2.11 0.00
2012 1.06 0.00 0.24 0.00 0.43 0.00
2013 2.22 0.00 0.84 0.00 1.02 0.00
2014 2.12 0.02 0.64 0.00 2.24 0.00
2015 2.91 0.00 0.26 0.00 2.23 0.00
2016 1.71 0.00 0.91 0.06 1.52 0.00
Average 2.31 0.00 0.73 0.01 1.37 0.00
p-value (in

runs test)
0.605 n/a 0.301 n/a 0.121 n/a

NOTE: No significant results from runs test for casualties due to a large proportion of 0’s.
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more (x-axis) casualties or derailed cars per accident. In this study, we
focus on analyzing the derailments and collisions with at least one cas-
ualty or derailed car, since the logarithm of zero is undefined. No derail-
ment caused more than 4 casualties per accident and over 97% of the
human factor train derailments resulted in zero casualties. Train crew
casualties are the majority of the casualties in freight-train collisions.
Meanwhile, 3 freight-train collisions occurred with over 10 casualties
due to the hazardous material releases as the accident narratives pro-
vided by the FRA REA database (FRA, 2018) show. The frequency of
derailments with derailed cars is higher than collisions and the max-
imum number of derailed cars per accident is as high as 129 for derail-
ments, compared to 66 for collisions. Therefore, unlike the risk in
casualties, derailment risk measured by derailed cars is higher than that
of collision risk.

6.2. Cause-specific risk profile

After studying the comparison between derailments and collisions with
respect to different severity metrics, we now aim to analyze these accident
types separately to evaluate their risk trends respective to major causes.
Figure 5a presents the annual number of derailments, with N or more casu-
alties per train derailment, by major causes, in 2000–2016. Despite different
frequencies, the number of possible casualties per derailment is equally severe

Table 9. Different measures of severity per accident for major collision causes.

Year

Failure to Obey/Display
Signals (05H) Train Speed (10H) Mainline Rules (08H)

Derailed Cars
per Accident

Casualties
per Accident

Derailed Cars
per Accident

Casualties
per Accident

Derailed Cars
per Accident

Casualties
per Accident

2000 0.56 0.30 0.59 1.15 0.62 0.23
2001 7.12 0.75 0.41 0.04 0.00 0.07
2002 3.97 0.44 0.07 0.04 1.51 0.29
2003 1.22 0.35 0.87 0.07 0.00 0.03
2004 3.05 3.05 1.26 0.03 1.54 0.31
2005 2.38 0.42 1.54 1.63 0.72 0.24
2006 1.08 0.32 0.45 0.13 0.03 0.13
2007 1.89 0.25 0.07 0.00 0.18 0.11
2008 3.30 0.30 0.90 0.26 0.13 0.30
2009 2.18 0.67 0.00 0.00 0.00 0.00
2010 0.98 0.21 0.35 0.00 2.44 0.98
2011 4.68 1.12 0.00 0.13 0.00 0.00
2012 1.22 0.06 2.95 0.38 0.19 0.26
2013 6.79 1.08 0.00 0.06 0.00 0.32
2014 0.96 0.30 2.41 0.30 0.00 0.06
2015 1.32 0.29 0.51 0.15 0.51 0.37
2016 1.90 0.63 0.00 0.00 3.38 0.00
Average 2.62 0.62 0.73 0.26 0.66 0.22
p-value (in

runs test)
0.301 0.605 0.605 0.605 0.301 0.301
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for all three major causes. Figure 5b shows the annual number of derail-
ments, with N or more derailed cars per train derailment, by each of the
major causes. It shows that though the train handling (09H) has the highest
number of derailments, use of switches (11H) and brake operations (01H)
caused relatively higher numbers of derailed cars per accident.
The number of casualties per accident is observed to be higher in colli-

sions than in derailments, whereas the severity in terms of derailed cars
seems to have similar potential for both the accident types. The FN curves
for each of the major collision causes in terms of casualties and derailed
cars are shown in Figures 6a, b, respectively. By observing casualty risk,
events related to mainline rules (08H) exhibit relatively lower severity than
the other two major causes. Among the three major causes, failure to obey
or display signals shows the highest risk potential in terms of casualties as
well as derailed cars due to the higher derailment frequency and severity.
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6.3. Annual train accident risk

Accident risk is defined as the expected number of casualties or derailed
cars during a year, measured by the mean value (Equation 8). According to
the Law of Total Expectation (LTE), if N is the total number of accidents
with accident consequences Xij with severity metric i in the jth accident,
then the risk can be estimated using the following equation, given that
both N (accident frequency) and Xij (accident severity) are random varia-
bles. The conditional expectation of the accident consequences given the
occurrence of an accident is obtained as Equation 9. It shows that the
annual risk can be expressed as a product of expected accident frequency
and severity.

Ri ¼ E
XN
j¼1

Xij

2
4

3
5 (8)

E
XN
j¼1

Xij

2
4

3
5 ¼ E E

XN
j¼1

XijjN
2
4

3
5

2
4

3
5 ¼ E½NE Xij½ �� ¼ E½N�E½X� (9)

Where,
i ¼ severity metric, 1 for casualties and 2 for derailed cars
Ri ¼ annual human factor accident risk for a specific severity metric i
Xij ¼ accident consequences of certain accident based on a specific sever-

ity metric
The expected accident frequency can be estimated using the negative

binomial regression model described earlier, and the accident severity can
be approximated by the sample mean. The 17-year average severity is used
since there is no significant temporal trend of collision severity in the study
period. Table 10 gives the estimated annual risk for each accident type,
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which is the product of their respective estimated frequency of all causes
combined (Tables 3 and 6) and overall 17-year average severity because
there is no temporal trend (Table 7). For example, the estimated frequency
of derailments in 2006 is 80 and the overall average severity is 6.34 derailed
cars and 0.04 casualties; thus, the estimated derailment risk in that year is
506 derailed cars (80� 6.34) and 3 casualties (80� 0.04). The derailment
risk in terms of derailed cars is very high when compared to collision risk.
This is because the total number of derailments (1122) is almost three
times higher than collisions (388). However, the number of casualties due
to derailments is extremely low. Therefore, the collision risk is higher than
the derailment risk with respect to casualties.

6.4. Annual risk in alternative risk measure

The limitation of using mean as the risk measure is that it fails to account for
the extreme characteristics of the accidents with low probabilities but high con-
sequences. To address this “heavy-tail” effect, prior literature has used risk
measures such as value at risk (VaR) or conditional value at risk (CVaR) as
alternative risk measures (Soleimani, Seyyed-Esfahani, & Kannan, 2014; Spada,
Paraschiv, & Burgherr, 2018; Zhang & Liu, 2019). This study considers CVaR
rather than VaR as an alternative to mean risk, in accordance with the prefer-
ence of many previous studies due to CVaR’s coherency (Sarkaylin et al., 2008;
Rockafellar & Uryasev, 2000). This is because VaR does not reveal anything
about the magnitude of losses exceeding the VaR limit which can be addressed
by CVaR. It is the weighted average of all outcomes exceeding the confidence

Table 10. Annual accident risk by accident type.

Year
Derailments Collisions

Total Number of
Derailed Cars

Total Number
of Casualties

Total Number of
Derailed Cars

Total Number
of Casualties

Empirical Estimated Empirical Estimated Empirical Estimated Empirical Estimated

2000 615 657 4 4 124 145 31 36
2001 552 603 4 4 143 128 35 32
2002 564 574 4 4 110 130 27 32
2003 584 552 4 4 129 137 32 34
2004 653 539 4 4 167 152 41 38
2005 590 517 4 4 244 159 60 39
2006 545 506 4 3 115 181 28 45
2007 457 445 3 3 129 134 32 33
2008 349 403 2 3 110 111 27 27
2009 323 318 2 2 67 57 17 14
2010 317 318 2 2 62 69 15 17
2011 285 307 2 2 81 72 20 18
2012 178 294 1 2 105 75 26 18
2013 311 280 2 2 86 75 21 19
2014 298 269 2 2 96 79 24 20
2015 260 242 2 2 57 65 14 16
2016 235 208 2 1 29 45 7 11
Average 419 414 3 3 109 107 27 26
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interval of a data set sorted from worst to best. Simply put, the CVaR of the
collision risk is the average of severity (number of casualties or derailed cars)
of all the collisions that are more than a 2 0, 1ð Þ (Equation 10). Usually, a con-
fidence interval of 95% is adopted (a ¼ 0:95Þ: Figure 7 makes a lucid repre-
sentation of these measures graphically. It shows that a is a chosen quantile, so
the frequency at a is the VaR and the average of events exceeding it is CVaR.

CVaRa Xð Þ ¼ 1
1� a

ð1

a

qu Xð Þdu (10)

Figure 8 presents the annual risk in mean and CVaR for both derail-
ments and collisions using different severity metrics. The temporal trend of
CVaR and mean risk in derailed cars is higher for derailments, but casualty
risk is higher for collisions. The average CVaR95% in the study period due
to derailments is almost 615 derailed cars or 10 casualties, while the

Figure 7. Graphical representation of alternative risk measures (Sarkaylin, Serraino, &
Uryasev, 2008).
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average CVaR95% due to collisions is 208 derailed cars or 98 casualties.
Since these CVaR values consider the risk associated with the worst 5% of
accidents, they are higher than the mean risk values. The derailment risk in
both metrics is clearly decreasing but the fluctuations in the collision risk
measures is due to a sudden peak of frequency observed in 2005 which
affected the estimated trend in the model.

7. Discussion on human factors and emerging mitigative measures

7.1. Train engineer education, training, and attentiveness

The analysis presented above helps to understand the primary causes and
corresponding annual risk for each type of human factor accident. Besides,
it is also important to understand and prevent causal factors. These major
cause-groups are directly or indirectly associated with behavioral, psycho-
logical or organizational characteristics. Most incidents are linked to at least
one organizational influence, which suggests that the improvement in
resource management, organizational climate and organizational processes
is important (Baysari, McIntosh, & Wilson, 2008). Train driving requires
extensive knowledge of operation rules and vehicle behavior with ability to
integrate different static and dynamic sources of information (Giesemann,
2012), failure of which result in accidents due to violation of operation or
mainline or speed rules. Furthermore, heavy workload, fatigue, monotony
and boredom are found to be the issues leading to human error accidents
of train handling group (Dorrian, Roach, Fletcher, & Dawson, 2006).
Fatigue is also responsible for lack of attentiveness which results in being
negligent to obey signals or any rules. Therefore, the accidents caused with
the major cause groups, may be reduced with periodic train operation edu-
cation, well-established working schedule, and effective engineer fatigue
monitoring program.
A variety of strategies and practices are being implemented in the rail-

roads. For example, Rowe (2013) presented the development of train driver
training simulator that has the ability to train multiple drivers simultan-
eously and to review performance in detail. In this effective simulator,
essential tasks (e.g., being able to look around while driving, taking power/
applying brakes) are included. Both normal and abnormal driving were
documented in a full task list and analyzed with the task assessment obser-
vations. To mitigate train engineer fatigue risk, a real-time online prototype
driver-fatigue monitor was proposed by Ji, Zhu, and Lan (2004). In this
non-intrusive monitoring, it uses prototype computer vision system for
real-time video images of the driver and monitors driver’s vigilance.
Similarly, cab alerters are designed and implemented to alert the train crew
by emitting a flashing light and an alarm (Oman & Liu, 2007). For the
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Positive Train Control (PTC) systems in the United States, the train could
be automatically slowed down or stopped if the warning alarm in the cab
is not acknowledged. The implementation of cab alerters or PTC system
can potentially reduce the accidents due to certain human factor causes
studied in this paper, such as failure of brake operation (01H), excessive
speed (10H), or failure to obey/display signals cause group (05H). This
potentially can reduce the accidents due to the driver falling asleep under
failure to obey/display signals cause group. A probabilistic framework is
built to model fatigue, which systematically combines different visual cues
and contextual information to produce a robust fatigue index. Another
solution to driver inattentiveness addressed in literature is intelligent trans-
portation systems (ITS) (Dong, Hu, Uchimura, & Murayama, 2011).
Similar to the existing technology of intelligent brake assist and collision
warnings in cars, its research in railroad industry is also evolving to detect
any unsafe conditions on the tracks or right of way.

7.2. Near miss analysis

FRA initiated a partnership with National Aeronautics and Space
Administration (NASA) and is working on a research project called
Confidential Close Call Reporting System (C3RS), to better understand the
events called “close calls”, which could have resulted in accidents but fortu-
nately did not yet. This program facilitates anonymous reporting of unsafe
railroad conditions. With this closed participation system, railroad employees
will be able to report human-factor-related safety issues voluntarily and confi-
dentially, which may have been ignored before. These reports involve incre-
mental unsafe conditions and descriptions of human errors in railroad
industry and then be analyzed by a Peer Review Team (PRT) comprising
labor, management, and FRA representatives. The PRT faced challenges such
as limited knowledge and lack of detailing in the reports (Multer, Ranney,
Hile, & Raslear, 2013). The team collaborated with third parties to overcome
the challenges and improve the quality of reports. Initial results shown that
C3RS was implemented successfully and achieved an initial improvement in
safety culture through reviewing and implementing corrective actions (FRA,
2014). After the completion in 2017, its implementation in the railroad indus-
try made it possible to disclose previously unknown safety risks and their
causes (Morell, Davey, Ranney, Zuschlag, & Cantu, 2018). In addition to the
identified frequent safety concerns and underlying contributing factors causing
multiple types of safety issues, corrective actions could also be tracked and
developed to ensure the implementation to be timely and effective. Figure 9
shows the reporting and corrective action process of C3RS. Furthermore,
C3RS program focuses on company-level reporting and analytical results
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which encourage the employees to reveal unsafe conditions confidentially. As
a result, the mechanisms for specific companies reported that most human
errors can be avoided. The system can provide understanding of the impacts
of aforementioned company-level factors in human error accidents, such as
periodic train operation education, working schedule, and engineer fatigue
monitoring program, and could also promote the enhancement of these fac-
tors. Similarly, Rail Safety and Standards Board (RSSB) also maintains the
“Close Calls” reported by railroad personnel in the accident database that is
used in the analytics with Safety Risk Model (Van Gulijk, Hughes, Figueres-
Esteban, Dacre, & Harrison, 2015). To achieve convenient user interfaces, the
workers in Great Britain (GB) railroads can use mobile applications to make a
close call report, which is freeform text report. Van Gulijk et al. (2015) dis-
closed that over a period of two years, approximately 150,000 entries were col-
lected and saved into the GB’s Close Call Database. The big data can be
extracted and contribute to added value for safety and risk domain.
Besides, the surveillance camera videos in railroad yards, grade crossings,

right of ways and cabs may provide information regarding near misses or
unsafe behaviors. Issues such as knowledge-based errors were more frequently
reported through this system (Wright & Schaaf, 2004). The causal factors of
close calls involve not obeying signals, mainline and train speed rules which
happen to be the major causes of train collisions and would result in severe
consequences if not missed. The data from such near-miss accidents can be key
in understanding deeper about the potential causes of an accident.

Figure 9. Reporting process of C3RS (Multer et al., 2013).
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Moreover, the consideration of automation in the railroad industry
reduces the human intervention and replaces the user tasks by technology
and efficiency (Wackrow & Slamen, 2013; Woodland, 2015). The aim is to
be effective in overcoming most of the aforementioned errors due to phys-
ical and mental inabilities. In the United States, Positive Train Control
(PTC) is being implemented on a national scale and would have a signifi-
cant impact on reducing human-factor-caused accidents.

7.3. Positive train control (PTC)

PTC is a communication-based/processor-based train control technology
that has the potential to improve safety because it provides a layer of add-
itional protection beyond that provided by the train crews and dispatchers
(FRA., 2007b). More specifically, it can automatically prevent accidents
attributable to human error by slowing or stopping trains and is designed
to prevent four major types of accidents, namely train-to-train collisions,
derailments caused by excessive speeds, unauthorized incursions into work
zones, and movements through misaligned switches. The PTC system inte-
grates the locomotive computer, wayside device, communication network,
and back office to process collected movement authority and speed restric-
tions and then comparing these against the train’s real conditions to ensure
safety compliance (AAR, 2017b). If any noncompliant train operation
occurred, the PTC system would automatically apply the brakes and bring
the train to a positive stop. Figure 10 presents the network arrangement of
various components integrated in PTC.

Figure 10. Architecture of PTC system (Bandara, Bondi, Goel, Pilapitiya, & Wijesekera, 2012).
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It is acknowledged by FRA that not all the human-factor-related accident
causes are PTC-preventable (FRA., 2007b). But based on the aforemen-
tioned PTC functions, it can still prevent a significant portion of human-
factor-caused accidents with high-frequency causes that were identified in
Figure 3. The PTC-preventable accidents include those caused by failure to
obey/display signals (05H), violation of train speed rules (10H), and fail-
ures of switch uses (07H). More specifically, to prevent accidents caused by
the failure to obey/display signals and switch uses, the wayside device on
the side of the track is capable of monitoring and reporting the switch pos-
ition and signal status to locomotive computers and the back office, which
is a centralized office for the communication and coordination of train
orders, speed restrictions, train information, and track authorities (Zhang,
Liu, & Holt, 2018). If a train fails to follow the signal indication, or the
device reads switch use failure, then the PTC system would apply the
brakes to slow and stop the train automatically. In terms of the violation of
train speed rules, locomotive computers would accept the speed restriction
information (e.g., maximum authorized speed, restricted speed indications)
provided by the back office and compare it against the train’s operating
condition to ensure safe operations. Once the train speed rules are violated,
a brake would be applied automatically to slow and stop the train to pre-
vent any potential hazards.
The implementations of PTC systems are mandatorily required to be

completed before December 31, 2018, which can be extended to December
31, 2020, with approval from the FRA (Congress, 2015). With the advance-
ment in train control systems, it is essential to update risk analysis with the
results of our current work. Since this paper is based on data prior to PTC
implementation, it can act as the basis of safety analysis and compare with
results from future technological developments, in particular for the annual
risk analysis studied in Section 6. Subsequently, when PTC is fully imple-
mented, an updated risk analysis should be developed in order to examine
the safety benefits of this advanced systems in the prevention of human-
factor-related accidents. For example, if the annual risk of accidents caused
by the failure to obey/display signals (05H) in a future period is reduced
from 46 (the average number in the study period) to 10 cars derailed, it
indicates that around 80% (¼1� 10/46) accidents within by this leading
human-error-related cause group are effectively prevented and PTC system
implementation would probably be one major strategy behind the signifi-
cant accident prevention. Furthermore, based on the comparative analysis
with the accident risk developed in this paper, the “residual risk” (such as
the residual 10 cars derailed annually in the aforementioned example)
related to human errors can be evaluated to provide practical insights for
future research in the age of PTC.
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As per current perspective, the “residual risk” involves but is not limited
to three potential sources, such as PTC component failure, human-factor-
caused accidents out of PTC territory, and cyber security. PTC failure modes
consist of wayside system failure, loss of power, communications failure, and
dispatcher error (Hartong, Goel, & Wijesekera, 2011) that may lead to the
occurrence of human-factor-related accidents even though they are PTC pre-
ventable. In terms of accidents out of PTC territory, as mentioned before,
not all the human-factor-related accident causes are PTC-preventable. For
example, train accidents caused with failure to comply with restricted speed
(H605 and H607 in FRA train accident cause-codes) cannot be prevented
with functional PTC system due to the territory exemption (FRA, 2011). For
PTC-related cyber security, the busy communications in PTC system may
increase the risk of cyber-attacks, which can be catastrophic on commuter
trains or freight trains with hazardous materials (Zhang et al., 2018).
Bloomfield et al. (2016) studied cyber security issues in Britain’s railway sys-
tem involving European Rail Traffic Management System (ERTMS) but quite
limited literature studied the cyber security directly related with PTC sys-
tems. Overall, these three probable sources of “residual risk” could be serious
future research directions in the effective and adequate mitigation of train
accidents caused by human errors.

7.4. Other alternative technologies

A train-handling technology called LEADER (Nickles, Hawthorne, & Haley,
2003) monitors the operating conditions of a train and analyzes the speed
and dynamic braking. It has been proved to improve the fuel efficiency and
is expected to be capable of improving the service of the locomotives by
reducing repair and maintenance cost. Besides, this technology may poten-
tially mitigate train-handling-related train accidents. In addition, distributed
power system is able to improve the operational reliability with optimized
redundancy and good traction performance (Hagiwara, Tanaka, & Ueno,
2001). The advantages of distributed power, such as efficient regenerative
brake utility and good traction/braking performance, may help to reduce
certain train accidents, such as the ones caused by train handling (09H)
and brake operation (01H). Besides, the Association of American Railroads
(AAR), (2019) pointed out that Advanced Technology Safety Initiative
(ATSI) improves rail safety through reducing track and component related
accidents. Stabler and Lauro (2005) pointed out that one of ATSI objectives
is to keep switching and out-of-service time to a minimum. To this end,
ATSI may also (indirectly) contribute to reducing train accidents caused by
improper use of switches (11H). However, to the authors’ knowledge, the
impact of ATSI on human factor accidents has not been well studied in the
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literature. Ultimately, in the future research, the impacts of these men-
tioned strategies would be quantitatively evaluated if the needed data
is available.

8. Conclusion

This paper develops a statistical risk analysis of human-factor-caused
freight train accidents in the United States based on FRA safety database
from 2000 to 2016. Overall, the derailment and collision rate per train-mile
has an average annual declining rate of approximately 6 and 5 percent
respectively. Over the study period, there was no significant temporal trend
of accident severity for either casualties or derailed cars. Each of the two
major accident types has three different primary causes, namely the train
handling (09H), use of switches (11H), and brake operation (01H) for
train derailments; failure to obey or display signals (05H), violation of
mainline rules (08H), and train speed rules (10H) for train collisions.
Train handling (09H) has the highest derailment frequency but has rela-
tively lower risk potential than the other two causes as it led to more zero-
casualty derailments. In cause-specific collision risk analysis, failure to
obey/display signals (05H) not only has the highest frequency among the
three major causes but also has the greatest potential to result in high
severity accidents. Nationwide, the average freight train derailment risk due
to all human factor causes is almost 414 derailed cars or 3 casualties per
year. Similarly, the average annual freight train collision risk is about 107
derailed cars or 27 casualties. In order to better understand the worst-case
accidents, the mean-value-based risk measure can be bolstered by alterna-
tive risk measures such as the Conditional Value at Risk (CVaR95%), which
represents the risk associated with the worst 5% of train accidents. For
derailments, the CVaR95% is 615 derailed cars or 10 casualties per year. By
contrast, for collisions, the CVaR95% in the study period is estimated to be
208 derailed cars or 98 casualties per year. While derailments tend to cause
more cars to be derailed, collisions claimed more casualties. The implemen-
tations of C3RS and the Positive Train Control (PTC) system, as well as
well-developed train crew education and training program, in the United
States will prevent a significant portion of human-factor-caused train acci-
dents. The risk analysis results in this paper would act as the basis of safety
analysis before the fully implementation of nation-wide PTC system and
contribute to the comparative risk study with future technological develop-
ments. The statistical analysis presented herein can also be updated to cal-
culate the “residual risk” after PTC implementation, which can provide
incremental insights of future research directions in the age of PTC.
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Appendix I. Major derailment and collision cause groups

Cause Group Description
FRA Cause
Codes Code Description

01H Brake
operations
(mainline)

H510 Automatic brake, insufficient (H001) – see note after
cause H599

H511 Automatic brake, excessive (H002)
H512 Automatic brake, failure to use split reduction (H003)
H513 Automatic brake, other improper use (H004)
H514 Failure to allow air brakes to fully release before

proceeding (H005)
H515 Failure to properly cut-out brake valves on

locomotives (H006)
H516 Failure to properly cut-in brake valves on

locomotives (H007)
H517 Dynamic brake, insufficient (H009)
H518 Dynamic brake, excessive (H010)
H519 Dynamic brake, too rapid adjustment (H011)
H520 Dynamic brake, excessive axles (H012)
H521 Dynamic brake, other improper use (H013)
H525 Independent (engine) brake, improper use (except

actuation) (H023)
H526 Failure to actuate off independent brake (H024)

05H Failure to obey/
display signals

H201 Blue Signal, absence of
H202 Blue Signal, imperfectly displayed
H205 Flagging, improper or failure to flag
H206 Flagging signal, failure to comply
H207 Hand signal, failure to comply
H208 Hand signal improper
H209 Hand signal, failure to give/receive
H217 Failure to observe hand signals given during a wayside

inspection of moving train
H218 Failure to comply with failed equipment detector

warning or with applicable train inspection rules.
H219 Fixed signal (other than automatic block or interlocking

signal), improperly displayed.
H220 Fixed signal (other than automatic block or interlocking

signal), failure to comply.
H221 Automatic block or interlocking signal displaying a stop

indication - failure to comply.
H222 Automatic block or interlocking signal displaying other

than a stop indication - failure to comply.
H299 Other signal causes (detailed description in narrative)

08H Mainline rules H401 Failure to stop train in clear
H402 Motor car or on-track equipment rules, failure

to comply
H403 Movement of engine(s) or car(s) without

authority (railroad employee)
H404 Train order, track warrant, track bulletin, or timetable

authority, failure to comply
H405 Train orders, track warrants, direct traffic control, track

bulletins, radio, error in preparation, transmission
or delivery

H406 Train orders, track warrants, direct traffic control, track
bulletins, written, error in preparation, transmission
or delivery

H499 Other main track authority causes (Provide detailed
description in narrative)

09H Train handling H501 Improper train make-up at initial terminal
H502 Improper placement of cars in train between terminals
H503 Buffing or slack action excessive, train handling
H504 Buffing or slack action excessive, train make-up
H505 Lateral drawbar force on curve excessive, train handling

(continued)
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Continued.

Cause Group Description
FRA Cause
Codes Code Description

H506 Lateral drawbar force on curve excessive, train make-up
H507 Lateral drawbar force on curve excessive, car geometry

(short car/long car combination)
H508 Improper train make-up
H509 Improper train inspection
H522 Throttle (power), improper use (H014)
H523 Throttle (power), too rapid adjustment (H015)
H524 Excessive horsepower (H016)
H599 Other causes relating to train handling or makeup

(detailed description in narrative)
10H Train speed H601 Coupling speed excessive

H602 Switching movement, excessive speed
H603 Train on main track inside yard limits, excessive speed
H604 Train outside yard limits, in block signal or interlocking

territory, excessive speed
H605 Failure to comply with restricted speed in connection

with the restrictive indication of a block or
interlocking signal.

H606 Train outside yard limits in non-block territory,
excessive speed

H607 Failure to comply with restricted speed or its equivalent
not in connection with a block or interlocking signal.

H699 Speed, other (detailed description in narrative)
11H Use of switches H701 Spring Switch not cleared before reversing

H702 Switch improperly lined
H703 Switch not latched or locked
H704 Switch previously run through
H705 Moveable point switch frog improperly lined
H706 Switch improperly lined, radio controlled
H707 Radio controlled switch not locked effectively
H799 Use of switches, other (detailed description in narrative)
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