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Abstract
Fatalities at grade crossings accounted for an average of 33% of all railroad industry fatalities occurring in the past 10 years.
As road traffic increases and high-speed rail deployments become more common in the United States, the number of fatal-
ities is expected to remain a concern. Railroads have tackled this challenge through a combination of engineering, education,
and enforcement campaigns. One of these efforts has been the increased deployment of security cameras throughout railroad
networks. These video sources allow for the collection of big data to better understand grade crossing violation behaviors.
However, monitoring these video feeds and extracting useful information requires prohibitive amounts of manual labor. This
research utilizes state-of-the-art vision-based artificial intelligence (AI) techniques to record, recognize, and understand rail-
road video data in real time. This system’s understanding of active grade crossing violations helps to develop precise long-
term grade crossing violation prevention strategies. This study explains how this AI-aided algorithm is used to monitor
1 year’s worth of violations at an active grade crossing in New Jersey and provides an overview of the observed trends.
These data can be used to develop better engineering enforcement and education strategies for the mitigation of active grade
crossing violations.
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Fatalities at grade crossings accounted for an average of
33% of all fatalities in the railroad industry in the past
10 years (1). The significance of this issue has been
emphasized by Federal Railroad Administration (FRA)
Administrator Amit Bose, who stated that ‘‘we must dis-
courage trespassing and encourage pedestrians and
motorists to always obey signs and signals along the rail-
road right of way and to always expect a train’’ (2). This
trend exists for railroads across the United States. New
Jersey Transit’s (NJT) Kevin Corbett stated, ‘‘There’s
been a recent increase in grade crossing incidents on our
rail and light rail systems that warrants a simple, but
stern, reminder – obey all safety and traffic signals’’ (3).

Railroads have worked to tackle this challenge
through a combination of engineering, education, and
enforcement campaigns. One result of these efforts has
been the increased deployment of security cameras

throughout railroad networks. For example, NJT was
awarded a $2,339,700 Transit Security Grant to purchase
‘‘500 single-and multi-sensor cameras as well as specia-
lized video-recording equipment’’ (3). These cameras are
a source of big data that can be used to better understand
grade crossing violation behaviors. However, monitoring
these video feeds and extracting useful information from
them requires prohibitive amounts of manual labor.

Concurrent with the challenge of limited resources to
study grade crossing violations in detail is the constant
and rapid development of video-based artificial
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intelligence (AI) algorithms (Mask Regional
Convolutional Neural Network (Mask R-CNN) (4),
You Only Look Once (YOLO) (5), etc.) which can read,
recognize, and understand what is happening in video
feeds. The combination of the intransigent grade cross-
ing violation challenge, the continued deployment of rail-
road video infrastructure, and the rapid development of
vision-based AI presents the research gap this paper aims
to fill. This research utilized state-of-the-art vision-based
AI to watch, recognize, and understand railroad big
video data in real time to understand grade crossing vio-
lations and to develop precise engineering, enforcement,
and education strategies.

The paper is organized as follows. The first section
describes the paper’s objectives. The literature review sec-
tion explores current trends in collecting and analyzing
grade crossing violation data. The framework section
describes the proposed AI-aided framework to analyze
video of grade crossing violations. The case study section
describes the data and trends of the analyzed grade cross-
ing, followed by the results section which shows the
detailed output. Finally, the last section offers the paper’s
conclusions.

Research Objectives

The data and analyses presented in this research cover
one grade crossing in New Jersey. The video feed from
this crossing was analyzed for 1 year by the developed AI
system, populating a database with violation data for fur-
ther analysis.

This research represents the first long-term study of
grade crossing safety violations of its kind and accom-
plishes the following goals:

� Develop an AI framework for grade crossing vio-
lation detection and data gathering.

� Evaluate the effectiveness of an AI at recognizing
and collecting data on grade crossing violations.

� Understand the seasonal and long-term trends of
grade crossing violations as the first long-term
continuous study of a crossing of its kind.

� Determine engineering, enforcement, and educa-
tion recommendations for the grade crossing
based on data analyses.

Literature Review

A literature review was conducted to understand current
practices for collecting and analyzing grade crossing vio-
lation data in the railroad industry. A grade crossing is
defined by the FRA as ‘‘a location where a public or pri-
vate road, street, sidewalk or pathway, intersects railroad
tracks at the same level’’ (6). In the context of this

research, grade crossing violations are defined as
unauthorized people or vehicles entering an active signa-
lized grade crossing after it has been activated.

Fatalities at grade crossings account for an average of
33% of all fatalities in the railroad industry occurring in
the past 10 years (1). In addition to the lives lost, there
are scheduling impacts, delays, and other unaccounted
costs, which further increase the significance of this
national issue. While the number of crashes and fatalities
at grade crossings is significant, it is the result of a series
of precursory risky behaviors. Research performed by
Zaman et al. (7, 8) and Zhang et al. (9, 10) from 2018 to
2022 has demonstrated that there are many more grade
crossing violation incidents which do not result in acci-
dents. However, each of these events has the potential to
result in a fatality. Analyzing these violation events con-
tributes to the development of mitigation strategies.

Grade crossing violation data are mostly collected
and analyzed manually. Hellman et al. reviewed video
data to evaluate the effectiveness of four-quadrant gates
and in-cab signaling to reduce grade crossing violations
and collisions in Groton, Connecticut (11). In 2019
Ngamdung et al. evaluated the long-term effects of grade
crossing violation photo enforcement, where video clips
of violations were manually reviewed by Orlando,
Florida city staffers to issue warnings (12). Baron et al.
utilized video data to evaluate the effectiveness of in-
pavement lights for grade crossing driver compliance
(13). Jacobini and DaSilva utilized a camera system to
evaluate the performance of gate skirts for preventing
pedestrians from walking under the pedestrian gates of
an active signalized crossing (14). These studies yielded
important suggestions for how to design, improve, and
evaluate grade crossing violation mitigation strategies.
However, each of these studies was limited in duration
due in part to the resources required to analyze more
data.

Using AI and computer vision has the potential to
overcome this resource limitation. This technology has
been used to detect trespassers and grade crossing viola-
tions in railroad scenarios. As early as 2004, a study by
Sheikh et al. at the University of Florida utilized com-
puter vision to detect trespassers using a combination of
techniques such as background subtraction, blob analy-
sis, and region of interest (15). The combination of these
techniques allows a computer to understand simple fea-
tures and behaviors of moving objects. These same tech-
niques were applied by Zhang et al. (8) and Zaman et al.
(9) to detect trespassers at grade crossings.

However, these basic computer vision techniques are
limited. They can only analyze simple features and are
vulnerable to changing environmental conditions (day
versus night, clear versus inclement weather, etc.). AI
algorithms have the potential to overcome these
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challenges, understand complex behaviors, and remain
invariable to changing environmental conditions.
Research by Zaman et al. in 2019 utilized Mask R-CNN
(an image recognition AI algorithm) to detect trespassers
at railroad grade crossings and rights-of-way (7).

The past decade has seen a rapid increase in the devel-
opment of AI-driven computer vision algorithms. The
development of deep convolutional neural networks
(DCNNs) for image classification by Krizhevsky et al.
(16) led to the development of a family of ever-improving
object detectors: Regional CNN (17), Fast R-CNN (18),
Faster R-CNN (19), and Mask R-CNN (4). This research
branched into the development of a more efficient detec-
tion algorithm called You Only Look Once (YOLO).
YOLO’s advantage is its superior performance in recog-
nizing and localizing objects with a single scan of the
image (5). Following its initial release, more efficient ver-
sions were developed: YOLO9000 (20), YOLOv3 (21),
YOLOv4 (22), and YOLOv5 (23).

To fully detect and understand grade crossing viola-
tions, objects must be recognized and tracked. Although
YOLOv5 can localize an object in a single video frame, it
does not have the inherent ability to track that same
object from frame to frame. In 2016 a tracking algorithm
was published by Bewley et al. called Simple Online
Realtime Tracking (SORT) (24). This algorithm allows
for the tracking of an object based on its location, bound-
ing box dimensions, and trajectory within a series of
images, or sequential video frames. Building on this foun-
dation, research by Wojke et al. added a deep association
matrix to SORT (DeepSORT), allowing for objects to be
tracked by deep neural features (25). Deep neural features
include an object’s shape, color, and other image recogni-
tion features. Note that there has been no formal publica-
tion of YOLOv5 because it is a version of YOLOv4
written in Python for greater efficiency and adaptability.

YOLOv5 and DeepSORT were adapted in this project
to recognize and understand grade crossing violations in
real-time video of active grade crossings. These algorithms
were selected for their superior accuracy and performance
compared with all other available algorithms at the time of
development. The methodologies, critiques, and results of
all AI models discussed in the literature review are shown
in Table 1. Terms used in the table are defined as follows.

� Frame per Second (FPS): the number of consecu-
tive full-screen images that are displayed each
second.

� Average Precision (AP): AP=
R tmax

tmin
P tð Þdt where

P tð Þ is the precision of detected objects whose con-
fidences are greater than t:

� Mean Average Precision (mAP): mAP

= 1
n

Pn
i= 1 APi, where APi is the average precision

of i-th class and n is the number of classes.

� Multiple Object Tracking Accuracy (MOTA): A
measure of the accuracy of both the recognition
and tracking of objects of interest.

Methodology

The grade crossing violation system functions according
to three discrete steps which are described in Figure 1.
The system is initiated by the user providing a link to
parse a live video stream. The system extracts the first
frame and presents it to the user, where they then draw
the region of interest (ROI) and identify the signal lights.

An ROI is a geometric shape within the video frame
which indicates the area where violations may occur.
The ROI can be adjusted to include additional points
and to match the user’s needs and required geometry.
An example of the user interface for the ROI and signal
light selection can be seen in Figure 2. In Figure 2, the
red box shows the limits of the ROI and the purple dots
represent the region corresponding to the signal lights.
Once completed, the algorithm will begin recognizing
and tracking objects. The system has four modules: traf-
fic, signal, grade crossing violation, and train.

Traffic Module

The traffic module recognizes objects using an adapted
and custom-trained YOLOv5 algorithm. The objects are
tracked using the DeepSORT algorithm (24). If an object
crosses the ROI, it is logged as a traffic event. The classi-
fication (car, person, truck, bus, etc.), weather, and time
of occurrence are recorded in the database. Weather data
are acquired by a third-party application program inter-
face (API). The API allows for the automatic acquisition
of weather data on demand. This information is collected
to provide context for the risk of violation events. With
this information, differences between the violator types
and behaviors can be discerned.

Signal Module

The signal module recognizes the state of the grade
crossing and determines whether it is active or inactive.
This is accomplished through a computer vision algo-
rithm that determines the relative brightness of the signal
lamp and compares it with the brightness of previous
frames. When this module indicates that the crossing is
active, the grade crossing violation module becomes
active. The signal activation algorithm only activates
after 3 s of flashing are observed. This prevents false
positives caused by illumination by headlights or other
environmental factors. This delay also allows for drivers
and pedestrians already within the crossing or just
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perceiving the signals to clear the area before being
counted as violators.

Grade Crossing Violation Module

Objects are recognized by the custom-trained YOLOv5
and are tracked using SORT. If the signals are active,
violations are logged by the system. When the violator
leaves the ROI, a clip of the video is saved to the data-
base for later review and analysis. Once a violation is
recognized, the following information is collected: type
(person, car, truck, bicycle, motorcycle), weather, start
time, and duration.

Train Module

Finally, trains are recognized and detected by the system
using a custom-trained YOLOv5 object class. These data

are collected to help validate the system, and to under-
stand how close a violator was to a train.

Case Study

The crossing in this study is in New Jersey and abuts a
train station which is shared by multiple transit lines run-
ning on two tracks. Three parking lots servicing the sta-
tion surround the crossing. Two of the parking lots are
located to the west and one is located east of the crossing.
The area is in a downtown commercial district with shop-
ping centers, schools, and restaurants nearby. According
to the latest U.S. Census estimates, the current popula-
tion of the town where this crossing resides is approxi-
mately 15,000. According to an FRA report (14), three
fatal pedestrian grade crossing accidents have occurred
at the selected study site, in 2006, 2010, and 2016, respec-
tively. Additionally, two vehicles that had stopped on the
crossing were struck by transit trains in 2010 and 2012,
respectively, with no noted injuries or fatalities. Table 2
shows a summary of grade crossing incidents at the stud-
ied crossing.

Grade Crossing Violation Data Collection

During this research, an internet protocol (IP) camera
was installed on a utility pole located about 30 ft north-
west of the grade crossing, facing southwest toward the
grade crossing. In this case study, 272days (6,582 h) of
live video data were analyzed from January 1, 2021, to
January 31, 2022. This video stream was continuously
monitored by the AI for 24 h each day of the study
period. However, the video stream was sporadically una-
vailable as a result of periodic maintenance and intermit-
tent connection issues at the site. The video format is
MP4 with a resolution of 704 3 576 pixels and a vari-
able 5 to 15 frames per second. This AI analysis repre-
sents the longest continuous analysis of a grade crossing
based on the reviewed literature.

The system correctly identified 20,054 violation events
during the study period. A violation event represents an
occurrence that may consist of multiple violators within
a single record or video clip. In the stored event dataset,
information such as event type (e.g., car, pedestrian,
truck, bus, bicycle), start and end date and time, event
duration, trajectory, video link, weather, and tempera-
ture were stored. The weather information was obtained
from OpenWeather API (26).

All records were manually reviewed and validated by
the research team to ensure all violation events were cor-
rectly identified. There are two types of errors: false posi-
tives and false negatives. False positives are when the
system reports a violation when none has occurred, and
false negatives are when the system misses a violation.

Figure 1. Grade crossing violation detection system framework.

Figure 2. Region of interest and signal light selection example.
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When these errors were detected in the development
period, the algorithm was modified and retested to ensure
system accuracy.

The system identified 29,252 total events, of which
20,054 (;69%) were true and 9,198 (;31%) were false
positives. False positive rates were used to evaluate the sys-
tem performance. A false positive rate is the ratio of false
positives to total detections. False positive rates began as
high as 30% in this research and declined to as low as 8%
as the software was patched and the AI was retrained.
There were four main causes of false positives discovered
in the violation dataset: false activation detections, dupli-
cate detections, legal occupiers, and misclassifications.

Approximately 80% of the false positives were caused
by false activation detections. False activations were
caused by several contributing factors including incle-
ment weather, headlight glare, and environmental condi-
tions. This challenge was ameliorated through the
adoption of more sophisticated activation detection algo-
rithms. Initial algorithms simply checked the illumination
levels of the signal light but recorded false activations
when vehicle headlights shone on the signal lights. The
current algorithm has incorporated these conditions and
checks for patterns in changing luminosity using a short-
term Fourier Transform in addition to threshold para-
meters, resulting in greatly improved performance.

Approximately 10% of false positives were caused
by duplicate detections. These were caused by a loss of
tracking of the object because of low frame rates and
occlusion. This was ameliorated through the adoption
and tuning of the DeepSORT module. Approximately
5% of false positives were caused by legal occupiers.
These included police officers and railroad workers
present on the site during several grade crossing signal
maintenance events during the study period. These
would occur intermittently. However, 90% of legal
occupier false positives occurred on July 18th, 2022,
during a single protracted maintenance event when
police officers conducted traffic through the malfunc-
tioning crossing. Approximately 5% of false positives
were caused by misclassifications, when the AI identi-
fied non-violating objects or video artifacts as viola-
tors. This issue was ameliorated by retraining the AI

using annotated images from the dataset to increase
detection confidence scores.

To detect missed detections, the team performed a
series of 24-hour manual reviews of the system after
deployment. During this analysis, the team members
would manually review the raw video footage and iden-
tify all traffic, trespass, train, and signal events. The AI
system would then analyze the same footage and report
the results. The two datasets were compared to deter-
mine the system’s relative accuracy.

False negative rates were used to evaluate the dataset.
False negative rates can be calculated by dividing the
number of missed detections by the total number of
actual violation events. This analysis was performed
three times during the study period: on February 10,
2021, June 14, 2021, and August 12, 2021. In each of
these instances, no violations were missed by the system,
resulting in a false negative rate of 0%. While optimizing
an AI system parameter, higher false positive or false
negative rates can be favored as the system is improved.
In this study, the parameter adjustments favored a lower
false negative rate because false positives could be more
easily identified and removed from the dataset.

Results

In total, 20,054 grade crossing violation events were ana-
lyzed and visualized from several perspectives, showing
weekly and hourly temporal heatmaps, violation rates by
class, monthly and seasonal violation trends, a near-miss
analysis, and violation trajectory analysis.

There were approximately eighteen pedestrian violations
and sixty vehicle violations per day, which differs from past
studies (10) conducted at this grade crossing. Past research
by Zhang et al. showed a total of 158 pedestrian violations
and seventy-four vehicle violations per day in 2018 and
2019. This study covered a year of grade crossing violations
across four seasons, yielding a more comprehensive tem-
poral and categorical analysis. Past research may have
encountered weeks where violation rates were higher or
lower than the true average. Additionally, past data were
collected before COVID-19, which may have additional
effects on pedestrian and vehicle traffic volumes.

Table 2. Summary of Crossing Incidents

Date of incident Time Type Weather

6/9/2016 6:45 a.m. Pedestrian fatal Clear
9/15/2012 12:00 p.m. Stalled empty vehicle

struck, no injuries
Clear

8/4/2010 7:43 a.m. Pedestrian fatal Cloudy
5/21/2010 11:52 a.m. Cement truck struck,

no injuries
Clear

2/1/2006 6:48 p.m. Pedestrian fatal Clear
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Grade Crossing Violation Temporal Heatmap

Heatmaps of violation events for cars, pedestrians,

trucks, bicycles, buses, and total violations across 1-h

intervals for each day of the week are depicted in Figure

3. Approximately 11.2% of all violation events occurred

between 7:00 and 8:00 p.m., which is the 1-h window

with the highest percentage of violations. Car violations
accounted for 69% and pedestrian violations for 23% of
all violations. These findings are partially consistent with
previous preliminary research conducted at this grade
crossing (10), with the exception that past research
showed higher counts of violations on weekends com-
pared with weekdays.

Figure 3. Grade crossing violation heatmaps by time and day: (a) cars, (b) pedestrians, (c) trucks, (d) bicycles, (e) buses, and (f) total
violations (January 1, 2021, to January 31, 2022).
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Figure 3 shows two temporal hot spots on weekdays
from 5:00 to 8:00 p.m. and 6:00 to 8:00 a.m. These are
consistent with typical commuter peak hours. Two main
parking lots are located on the west side of the tracks,
and New York-bound trains run on the west track of
this two-track line. During the morning commute, most
people board the train from the same side and do not
need to traverse the crossing. However, returning com-
muters may need to traverse the crossing during the eve-
ning commute to reach the parking lots. This behavior
may explain the relative severity of the afternoon viola-
tions compared with the morning peak hour. This obser-
vation holds true for both car and pedestrian violations.
Peak hour car violations comprise 17% (morning) and
40% (evening) of all car violations. Peak hour pedestrian
violations comprise 13% (morning) and 42% (evening)
of all pedestrian violations.

This pattern is not shared by trucks, bicycles, or buses,
which further reinforces the commuter violation hypoth-
esis. For trucks, one assumption is that many truck driv-
ers drive earlier in the day to avoid peak traffic on the
road. Figure 3c shows a temporal hotspot during the
6:00–8:00 a.m. interval.

During the study period, 6,962 violations occurred
during the commute hours from 5:00 to 8:00 p.m. This
represents approximately 35% of all violations occurring
during only 17% of the hours of the week. Identifying the
evening commute temporal hotspot can aid in the effi-
cient deployment of transit police to ameliorate violations
during this time slot. Vehicle violations could be further
reduced with the implementation of a photo enforcement
system and targeted high-visibility traffic signs (27).

Grade Crossing Violation Rates by Class

Table 3 shows the factor analysis of five different types
of grade crossing violators. During the study period, the
total car, pedestrian, truck, bicycle, and bus traffic data
were collected, and the average daily traffic was calcu-
lated by class.

In Table 3, daily car traffic is significantly larger than
traffic from pedestrians, trucks, bicycles, and buses. This

table shows the exposure rate of violators by classifica-
tion as the rate of traffic per thousand. Pedestrians have
the highest violation rate among all classes, which indi-
cates that this class is the least compliant and may be tar-
geted for mitigation strategies. Buses are the most
compliant class and have the lowest violation rate of all
classes. This may be because of the specific training that
bus drivers receive to stop and proceed at all grade
crossings.

Grade Crossing Violation Rates by Class Normalized by
Traffic

Figure 4 shows weekly and hourly temporal heatmaps of
the grade crossing violation rate per thousand for cars,
pedestrians, trucks, bicycles, buses, and total violations
across 1-h intervals for each day of the week. The grade
crossing violation rate per thousand is obtained by divid-
ing the number of grade crossing violations in each time-
slot by the number of corresponding traffic and
multiplying by 1,000. This rate per thousand is selected
to emphasize and clarify the values in context.

Figure 3 shows that more grade crossing violations
occurred during evening peak hours. However, when
normalized against traffic, grade crossing users are
shown to be less compliant during the morning peak
hours from 6:00 to 8:00 a.m. Figure 4 indicates that even
though more trespassing occurs during the afternoon
commute, all classes are less compliant in the morning
hours. This insight may help to focus enforcement solu-
tions on effectively mitigating trespassing during the least
compliant hours. Additionally, a difference in grade
crossing violation rate per thousand can be seen between
weekdays and weekends. This finding could lead to more
effective time-targeted law enforcement efforts.

Grade Crossing Violation Rates by Class Normalized by
Signal Activations

Figure 5 shows a temporal heatmap of the total number
of signals for each hour of the day and day of the week
for the study period. There were a total of 20,020 signal

Table 3. Factor Analysis of Grade Crossing Violations by Class (January 1, 2021, to January 31, 2022)

Class Total traffic
Total grade

crossing violations
Object class-based
average daily traffic

Average grade crossing
violations per day

Grade crossing violation
rate per thousand

Car 3,160,317 13,430 12,103 52.87 4.25
Pedestrian 550,506 4,611 2,099 18.15 8.38
Truck 487,678 1,742 1,868 6.89 3.57
Bicycle 56,583 267 217 1.05 4.72
Bus 3,108 4 12 0.02 1.29
Total 4,258,192 20,054 16,299 78.98 4.71
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activations during the study period and 4,957 (25%) of
them occurred on weekdays between 5:00 and 8:00 p.m.

Figure 6 shows weekly and hourly temporal heatmaps of
the grade crossing violation rate per signal activation for
cars, pedestrians, trucks, bicycles, buses, and total violations
across 1-h intervals for each day of the week. The grade

crossing violation rate per signal activation is obtained by
dividing the number of grade crossing violations by the
number of signal activations in each 1-h interval.

Total violations per signal activation share a similar
temporal intensity pattern as total violations but differ
when compared with trespassing rates per thousand

Figure 4. Grade crossing violation rate per thousand heatmaps by time and day: (a) cars, (b) pedestrians, (c) trucks, (d) bicycles, (e)
buses, and (f) total violations (January 1, 2021, to January 31, 2022).

Figure 5. Total grade crossing activations (January 1, 2021, to January 31, 2022).
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pedestrian and vehicle traffic passes. The graphic shows
higher violation rates per signal during the morning
weekday peak hours of 6:00–8:00 a.m. and evening peak
hours of 5:00–8:00 p.m. These hours also have a high
number of signal activations, which increases the oppor-
tunities for grade crossing violations to occur.

Car violations per signal activation show a change in
temporal intensity compared with the total car violation

rates and car violation rate per thousand heatmaps. Car
violation rates per signal activation are highest on
Mondays at 7:00 a.m. and all days of the week between
5:00 and 8:00 p.m. Despite fewer grade crossing activa-
tions occurring on weekends, the violation rate per signal
activation is high every day of the week. The highest car
violation rate per signal activation is on Monday morn-
ings at 7:00 a.m. Pedestrian violations per signal

Figure 6. Grade crossing violations per signal light heatmaps by time and day: (a) cars, (b) pedestrians, (c) trucks, (d) bicycles, (e) buses,
and (f) total violations (January 1, 2021, to January 31, 2022).
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activation show a change in temporal intensity compared
with total pedestrian violations and pedestrian violation
rates per thousand. The highest pedestrian violation rates
per signal activation are on Wednesdays at 6:00 p.m. and
Sundays at 11:00a.m. The presence of emergent 1-h hot-
spots provides an opportunity for targeted enforcement
to address the hours with worst compliance.

Truck violations per signal activation show a similar
trend in temporal intensity compared with total truck
violations and truck violation rates per thousand. In each
of the heatmaps, the hours of 6:00–8:00 a.m. have the
highest counts, rates per thousand, and rates per signal
activation, indicating a converging trend of noncompli-
ance during these hours. An education or enforcement
campaign targeted at trucks during these hours could be
maximally effective.

Bicycle violations per signal activation have a similar
temporal intensity compared with total bicycle violations
but differ from bicycle violation rates per thousand. The
recommendations based on the total bicycle violations
would remain the same based on this analysis. Similarly,
bus violation rates per signal activation show similar
temporal intensities when compared with total bus viola-
tions and bus violation rates per thousand. However, the
number of bus violations in the sample is small, so more
data are required to ascertain trends and develop
recommendations.

Grade Crossing Violations by Month of Year

Detailed information for grade crossing violations by
month is shown in Table 4. This table includes the total
violations by each class for each month. Additionally,
the proportion of all observed violations and traffic is

shown by month. Figure 7 further illustrates the breakdown
of the grade crossing violations by month for the various
types of violators. Data were limited between October 2021
and December 2021 because of intermittent stream unavail-
ability and video corruption, which prevented full manual
validation. Data affected by this issue are denoted with an
asterisk. Additionally, data from January 2022 were partial
and only include ten full days of analysis.

From January 2021 through May 2021 and in
September 2021 the proportion of violations was less
than the proportion of total traffic. This indicates better
compliance at the crossing during these months as com-
pared with August 2021 and from October 2021 through
January 2022.

Car violations occurred most frequently in June 2021
(15% of all car violations). The peak months for pedes-
trian, truck, bicycle, and bus violations were June, July,
and August of 2021. This shows a seasonal trend. A pos-
itive reduction in grade crossing violations could be
expected through target-specific education and by
increasing law enforcement during peak months (28, 29).
Operation Lifesaver blitzes could be planned during
these months to efficiently target months with the worst
trespassing rates.

Grade Crossing Violations by Season

In Figure 7, the peak months of grade crossing violations
indicate the potential relationship between seasons and
violations. The spring months are April, May, and June.
The summer months are July, August, and September.
The fall months are October, November, and December.
The winter months are January, February, and March.
Figure 8a shows the grade crossing violation rate per

Table 4. Grade Crossing Violations by Month (January 1, 2021, to January 31, 2022)

Month Car Pedestrian Truck Bicycle Bus Total Ratio of total violations Ratio of total traffic

Jan 2021 1,416 282 98 14 0 1,810 6.61% 7.61%
Feb 2021 906 176 106 6 0 1,194 4.36% 4.75%
Mar 2021 1,375 313 123 14 1 1,826 6.67% 9.21%
Apr 2021 1,339 351 203 19 0 1,912 6.99% 9.49%
May 2021 1,084 291 149 28 2 1,554 5.68% 9.89%
Jun 2021 2,019 671 352 65 0 3,107 11.35% 9.97%
Jul 2021 1,786 817 306 42 0 2,951 10.78% 9.73%
Aug 2021 1,519 870 198 47 1 2,635 9.63% 8.59%
Sept 2021 1,363 696 154 31 0 2,244 8.20% 8.59%
Oct 2021 1,856* 572* 196* 19* 3* 2,646* 9.67% 8.83%
Nov 2021 1,765* 424* 148* 7* 3* 2,347* 8.58% 5.99%
Dec 2021 1,761* 409* 133* 11* 3* 2,317* 8.47% 5.52%
Jan 2022 623 144 53 1 0 821 3.00% 1.80%
Total 18,812* 6,016* 2,219* 304* 13* 27,364* 100% 100%

Note: Data were limited between October 2021 and December 2021 because of intermittent stream unavailability and video corruption, which prevented

full manual validation. Data affected by this issue are denoted with an asterisk. Additionally, data from January 2022 were partial and only include ten full

days of analysis.
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thousand by season and Figure 8b shows the violation
rate per thousand by class and season. These values were
obtained by dividing the number of violations by the vol-
ume of traffic during the corresponding season and mul-
tiplying by 1,000. This normalization helps address the
data inconsistencies from October to December 2021.

The highest violation rate occurred during the sum-
mer, followed by winter, fall, and spring, accordingly.
Most of the violations occurred in summer (43.3% of the
total violations), which is consistent with the findings of
previous research (10) conducted at this grade crossing.
In Figure 8b, the class-specific grade crossing violation
rate per thousand for each season is shown. These values
were obtained by dividing the number of grade crossing
violations in each season by the amount of correspond-
ing traffic and multiplying by 1,000.

The data show that pedestrian violation rates are
higher in summer and fall than in winter and spring. Car
violation rates have a smaller fluctuation by season with
nearly identical rates during summer and winter, and
with slightly lower rates in fall and spring. Truck viola-
tions have the highest values in summer and are lower in
winter, spring, and fall. Bicycle violations have similar
rates in summer and winter, and lower rates in spring
and fall. The few bus violations that were observed

occurred in spring and summer. For most classes, sum-
mer had higher violation rates. Specially timed and
target-specific education and law enforcement blitzes
could focus on the summer season to achieve improve-
ment in grade crossing safety.

Grade Crossing Violation Near-Miss Analysis

In this research a near-miss grade crossing violation is
defined as a violation that occurs after the signals have
activated but before the train has arrived, indicating a
potential collision with the train. Some 4,295 trespassing
events occurred before the train arrived, comprising 21%
of the total dataset. The near-miss time was obtained by
subtracting the nearest time of train arrival from the time
of grade crossing violations before the train arrived.

During the study period 20,020 signal activations were
observed. Of those activations, there were 10,740 where
no train was detected, 9,180 where one train was
detected, and 100 signals where two trains were detected,
as shown in Figure 9. The large number of events with
no trains detected can be explained by the crossing’s
proximity to a transit station. In these scenarios a train
will approach the station, triggering the signals. The train
stops at the station before proceeding through the cross-
ing, causing the signals to deactivate. When the train

Figure 7. Grade crossing violations by month: (a) by class and (b) total violations (January 1, 2021, to January 31, 2022).
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begins to depart the station, the signals will reactivate
and the train will be detected traversing the crossing.

The near-miss analyses of the violation events for cars,
pedestrians, trucks, bicycles, buses, and total violations
are shown in Figure 10. In this figure, each dot represents
the total number of violations that occurred at specific
near-miss times. In practice, near misses are identified
subjectively as observed by locomotive engineers and
safety officials, and may have durations as short as 5–
10 s. In Figure 10, 45 s between the train and violation
was chosen as the cutoff to illustrate the different pat-
terns between classes.

The near-miss distribution for all types of grade cross-
ing violations indicates an average near-miss time of
30.8 s. Some 81% of grade crossing violations occurred
within 20–40 s of near-miss time. About 1% of grade

crossing violations occurred within less than 10 s of
near-miss time, which represents an extremely dangerous
scenario.

In the distribution for car violations, two peaks were
observed, centered around 20 s and 35 s. The crossing is
adjacent to a nearby station, and the crossing activates
when a train approaches the station. If the train stops at
the station, the crossing will deactivate without the train
having passed. After passengers have boarded and
alighted from the train, the train will proceed and the
crossing will activate again. Violations by individuals
during the first activation are likely to have occurred
approximately 35 s before the train arrives, whereas vio-
lations during the second of these activations are cen-
tered around the 20 s peak.

For the grade crossing car and truck near-miss distri-
bution, most violations occurred within 20–40 s, and the
average near-miss time is about 30 s, whereas the average
near-miss times for pedestrians and bicycles are 33 s and
36.2 s, respectively. The speed difference between motor
vehicles and pedestrians/bicycles may cause this average
difference of near-miss times, but this conclusion requires
more evidence.

Grade crossing violation examples that occurred
within less than 10 s of a train’s arrival can be seen in
Figure 11. In Figure 11a, the car entered the grade cross-
ing when the gate was lowering and the train entered the
ROI from the station within 10 seconds. In Figure 11b,
the pedestrian entered the grade crossing when the gate
was fully horizontal and the train entered the ROI within
10 s. Both situations are extremely dangerous for the vio-
lators and should be given the utmost attention when
developing mitigation strategies.

Figure 8. (a) Grade crossing violation rate per thousand by season and (b) grade crossing violation rate per thousand by class and
season (January 1, 2021, to January 31, 2022).

Figure 9. Train counts during signals from January 1, 2021, to
January 31, 2022.
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Figure 10. Near-miss distribution of grade crossing violations: (a) cars, (b) pedestrian, (c) truck, (d) bicycle, (e) bus, and (f) all violations
(January 1, 2021, to January 31, 2022).

Figure 11. (a) Grade crossing car violation and (b) grade crossing pedestrian violation that occurred within 10 s of a train’s arrival.
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Grade Crossing Violation Trajectory Analysis

This research captured trajectory information of grade
crossing violations using the DeepSORT module. The
DeepSORT module records the path of each grade cross-
ing violation. In Figure 12, a total of 20,054 trajectories
are visualized into four zones. This trajectory informa-
tion reveals the flow of violators and leads to suggested
potential actions to decrease violations. Furthermore,
heatmaps were generated for all violations in the cam-
era’s field of view (Figure 13) and from a transformed
aerial view (Figure 14).

The intensity of the heatmaps was generated using the
first coordinates, or starting point, of each detected
object. This was done to understand the origin of the
grade crossing violation. In relation to the normal-view
violation heatmap, two hotspots are identified in zone 1
and 3, which provide more evidence to inform potential
grade crossing violation mitigation decisions.

Car and truck violations originated in zone 1 and
ended in zone 4 more often than they originated in

zone 3 and ended in zone 2. One resulting hypothesis is
that the traffic flow could be heavier on the zone-1-to-4
side, resulting in more frequent violations. Trajectory
information was not recorded for traffic data, so we
were unable to validate this hypothesis in this study.
Another hypothesis is that signage is insufficient or
unclear in zone 1, increasing the potential for viola-
tions. More evidence is needed to validate either
hypothesis.

The pedestrian violation trajectory heatmap indicates
that pedestrians and bicycles are more likely to violate in
zone 2. Such behaviors by pedestrians and bicycles add
more evidence to the assumption made in the ‘‘grade
crossing violation distribution by time and day’’ section
that pedestrians need to cross the grade crossing on arri-
val at the station (zone 2) to reach the parking lots on
the other side (zone 3 and 4) during the evening com-
mute. As the number of bus violations is significantly
lower than the other four types of violations, more data
are needed to investigate bus violation behaviors.

Figure 12. Trajectory of grade crossing violation. Figure 13. Heatmap of normal-view grade crossing violation.

Figure 14. Heatmap of aerial-view grade crossing violation: (a) cars, (b) pedestrians, (c) trucks, and (d) bicycles.
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Table 5 shows the origin and destination analysis of
four zones of grade crossing violation for 10,334 (52%) of
the violations. A limited set of trajectories was selected
because of incomplete trajectory arrays for some of the vio-
lations. This may have been caused by occlusions or loss of
tracking by the system. Occlusions would cause more
errors in the Zone 2 to Zone 3 pair because the traffic lane
is further from the camera and more likely to be obscured
by traffic in the near lane. When combining all violations,
there are three directions (Zone 1 to Zone 4, Zone 2 to
Zone 3, and Zone 3 to Zone 2) worthy of particular atten-
tion. These three directions account for 85% of the total
number of violations (8,792 out of 10,334 violations).

Data-Driven Violation Mitigation
Recommendations

In this case study, grade crossing violation distributions
and relative behaviors were analyzed and provide evi-
dence for potential actions to decrease grade crossing
violations. This research shows the potential feasibility
of deploying this system at other locations to gather vio-
lation data and inform mitigation activities. As the
deployment of this technology increases, a corresponding
decrease in the amount of effort needed to achieve accep-
table performance is expected. This decrease will lead to
faster adoption of this technology throughout the rail-
road industry. The customization of the algorithm for
this effort requires sample data gathering, manual anno-
tation, AI analysis, and refinement. The largest and most
laborious task in this process is manual annotation,
which is required to ascertain the AI’s performance by
comparing it with ground truth.

As the AI encounters each new location, the research
team improves the AI in two major ways: (1) new signal
activation algorithms are created, and (2) new images are
annotated to retrain the AI. With each new grade cross-
ing there is the possibility of encountering a new signal
type based on the field of view. Determination of the sig-
nal status is required to identify violations. In this

research only flashing signals were encountered and
therefore only a single activation algorithm was required.
Traffic signals, signal bars, crossing gate arms, and other
types of flashing lights could be encountered at new loca-
tions. Therefore, the development of two new algorithms
and testing to ensure accuracy under varying conditions
will be required.

This process outlines one required customization
effort which will reduce over time as more activation
algorithms are developed. Eventually, an algorithm for
most signal types will be developed and a methodology
for minimizing the customization time will be put into
practice.

Secondly, with a new field of view, lighting conditions,
and angle, the ability of the system to accurately detect
people, vehicles, and other objects may decrease. For
example, in a new field of view, people may look slightly
different than those in the images used to train the AI.
Specifically, if images of people from a horizontal field of
view were used to train the AI and the system was installed
with a top-down view it would have difficulty identifying
pedestrians. If this difference is large enough, new images
will need to be annotated and incorporated into the AI’s
training to accurately detect classes of interest.

Generally, about seventy-nine grade crossing viola-
tions occur each day in this location. The findings of this
research are coherent with previous research (10) and
could provide more guidance for law enforcement, edu-
cation, and engineering. Based on the analysis of this case
study, three grade crossing violation reduction strategies
are proposed. The effectiveness of all recommended stra-
tegies could be evaluated by collecting violation data with
the algorithm developed in this study.

Introducing More Police Officers at the Peak Grade
Crossing Violation Hours

According to the grade crossing violations distribution,
about 35% of violations occur from 5:00 to 8:00 p.m. on
weekdays, which corresponds to the commuter schedule.
Most grade crossing violations occur from 7:00 to
8:00 p.m. on Friday. However, when normalized by traf-
fic, all classes are least compliant during morning week-
day peak hours. The FRA (28) identifies law
enforcement strategies for reducing grade crossing viola-
tions, which include increasing enforcement patrols at
targeted violation hotspots. Thus, police patrols could be
introduced during these temporal hotspots to prevent
grade crossing violations and to guide traffic.

Additionally, most grade crossing violations occur in
the summer, and more police officers could be deployed
during the summer season to decrease potentially unsafe
grade crossing events. Overall, this strategy could prevent
approximately 7,000 (35%) unsafe grade crossing events

Table 5. Grade Crossing Violations by Zone Origin and
Destination

Origin zone

Destination zone

Zone 1 Zone 2 Zone 3 Zone 4

Zone 1 NA 184 178 3,380
Zone 2 74 NA 1,456 338
Zone 3 39 3,956 NA 194
Zone 4 414 32 89 NA

Note: NA or Not Applicable represents origin destination pairs where the

origin is the same as the destination. These pairs were not included in this

analysis.
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per year. Further studies should be conducted to under-
stand the effectiveness of enforcing compliance during
hours with peak violations, or during hours with the least
compliance normalized by traffic volumes.

Targeted Education Blitzes During the Summer

To reduce potential grade crossing violations, safety edu-
cation should focus on communities surrounding railroads
and grade crossings. Moreover, the highest rate of grade
crossing violations by cars was in June and the highest rate
of violations by pedestrians was in July. Therefore, more
education about the legal and safety consequences of grade
crossing violations could be provided during the summer
to reduce the likelihood of violations. Four bus violations
were detected at this grade crossing. Even though this was
the smallest of the detected classes, they represent a high-
risk scenario should an incident occur. Bus driver educa-
tion should be reinforced to further reduce violations.
Education materials like posters and warning signs could
also be provided near the grade crossing to promote public
education and reduce grade crossing violations. Generally,
deployment of this strategy would mean that about 8,700
(43%) grade crossing violators per year could be influ-
enced, decreasing potential violations.

Engineering with Barriers and Photo Enforcement
System of the Grade Crossing

Researchers from the U.S. Department of Transportation
(30) conducted an analysis of the impact of gate skirts on
pedestrian behavior at highway-rail grade crossings and
found that when the gate skirts are descending and hori-
zontal, they reduce the number of violations. In that case
study, vehicles, pedestrians, and bicycles accounted for
76%, 23%, and 1% of the total violations, respectively.
Photo enforcement systems at a grade crossing have been
shown to reduce violation rates by 17% in past research
by Ngamdung et al. (12) and Ngamdung and DaSilva
(27). Similar grade crossing violation reduction could be
expected at this location if such engineering actions were
adopted. In summary, additional gate skirts, road bar-
riers, and a photo enforcement system could mitigate
unsafe grade crossing violations by vehicles, pedestrians,
and bicycles.

Conclusion

The goal of this paper was to develop and utilize an AI sys-
tem to automate grade crossing violation data collection.
This study analyzed approximately 1 year of live video foo-
tage, 24h per day, at a grade crossing in New Jersey. The
system detected 20,054 grade crossing violation events at
the selected grade crossing. The system can also detect and

classify by type, weather information, and train events for
further data analysis. The system suffered from some false
positives during the study period, which were discovered,
ameliorated, and omitted from the results. The grade cross-
ing violation data were analyzed and visualized by hour of
day, day of week, and temporal heatmaps, and break-
downs by classification were shown. Recommendations
were proposed based on information provided by the AI
system. Further research could increase the amount and
variety of data analyzed by the AI system, providing a bet-
ter understanding of grade crossing violation behavior and
more informed mitigation strategies.
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