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ABSTRACT 1 

Trespassing is the leading cause of rail-related deaths and has been on the rise for the past ten 2 

years.  Detection of unsafe trespassing of railroad tracks is critical towards understanding and 3 

preventing fatalities. Witnessing these events has become possible with the widespread 4 

deployment of large volumes of surveillance video data in the railroad industry.  This potential 5 

source of information requires immense labor to monitor in real-time.  To address this challenge 6 

this paper describes an Artificial Intelligence (AI) framework for the automatic detection of 7 

trespassing events in real-time.  This framework was implemented on three railroad video live 8 

streams, a grade crossing and two right-of-ways, in the United States.  The AI algorithm 9 

automatically detects trespassing events, differentiates between the type of violator (car, 10 

motorcycle, truck, pedestrian etc.) and sends an alert text message to a designated destination with 11 

important information including a video clip of the trespassing event.  In this study, the AI has 12 

analyzed hours of live footage with no false positives or missed detections yet.  This paper and its 13 

subsequent studies aim to provide the railroad industry with state-of-the-art AI tools to harness the 14 

untapped potential of an existing closed-circuit television (CCTV) infrastructure through the real-15 

time analysis of their data feeds. The data generated from these studies will potentially help 16 

researchers understand human factors in railroad safety research and give them a real-time edge 17 

on tackling the critical challenges of trespassing in the railroad industry. 18 
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1 INTRODUCTION AND RESEARCH OBJECTIVE 1 

“Trespassing on railroad property is the leading cause of all rail-related deaths.” (1) This 2 

statement made by Ronald L. Batory, the Administrator of the Federal Railroad Administration 3 

(FRA), at the 2018 American Public Transportation Association Rail Conference encapsulates the 4 

biggest problem in railroad safety today.  In the period of 2009 to 2016, 95 percent of railroad 5 

deaths are due to trespassing and grade crossing collisions. The trespassing casualties from 2013 6 

to 2016 is 16 percent higher than 2009 to 2012 (2-4).  This issue is recognized as a major concern 7 

of safety within the U.S., which is supported by the U.S. House Committee on Appropriations 8 

Fiscal Year 2018 Transportation Budget Report which instructs the FRA to “to identify and study 9 

the causal factors that lead to trespassing incidents on railroad property and develop a national 10 

strategy to prevent trespasser accidents.” (5) 11 

Most rail trespassing behavior does not result in injuries or fatalities.  These trespass events 12 

are not typically recorded in FRA safety databases because no immediate harm occurs.  Not all 13 

trespassing events cause damage, but they indicate certain behaviors that may lead to severe 14 

consequences if they occur repeatedly.  Learning from these trespass events is critical towards 15 

developing effective education, enforcement and engineering strategies for the prevention of 16 

trespassing on railroad tracks.   (6) 17 

The increase in availability of video data within the rail industry makes acquiring data on 18 

trespassing more viable.  Closed Circuit Television (CCTV) cameras can be found throughout 19 

railroads, observing yards, bridges, grade crossings and stations. Deployment of CCTV camera 20 

systems continue to grow in the United States following the 2015 Fixing Americas Surface 21 

Transportation (FAST) Act that mandated the installation of cameras throughout passenger 22 

railroads for the promotion of safety objectives. (7) For example, Caltrain in Palo Alto, California 23 

has installed CCTV cameras at safety critical grade crossings to actively monitor and prevent 24 

illegal incursions through an integrated alert system.  (8) This trend has also expanded globally, 25 

for example, India has an initiative to install cameras on over 11,000 trains and 8,500 stations 26 

throughout the country starting in 2018. (9)  These sources provide valuable video big data sources 27 

for railroads but analyzing the data accurately in real-time is challenging.   28 

At present, most camera systems are reviewed manually by railroad staff, but limited 29 

resources and operator fatigue (10,11) can lead to potentially missing trespassing events.  To 30 

address this challenge, this paper describes an AI algorithm to “watch” “recognize” and 31 

“understand” trespassing events in real time using an existing video infrastructure.  In addition, 32 

this algorithm is coupled to a live alert system, which sends trespassing alerts to designated 33 

destination.  Once this technology is practice-ready, it can be adapted to new trespassing-critical 34 

locations to support railroad safety decisions. 35 

 36 

2 OBJECTIVES OF RESEARCH 37 

The goal of this paper is to describe an AI framework which can analyze live video feeds 38 

in real time to gather useful information for railroad safety purposes.  Specifically, this study aims 39 

to yield the following deliverables;  40 

1) Develop a methodology for AI-aided trespassing detection and alert  41 

2) Develop a practice-ready tool implementing the algorithm  42 

3) Collect and analyze trespassing data to understand trespassing characteristics  43 

Figure 1 shows a conceptual view of the system, where an AI algorithm can send live alerts 44 

to designated personnel by analyzing and identifying trespassing events in live CCTV feeds.  45 
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Additionally, trespassing events are also recorded in a trespass event database containing video 1 

and associated metadata (time of day, type of trespassing, type of trespasser, etc.). 2 

 3 
FIGURE 1 Conceptual Trespasser Detection & Alert System using Artificial 4 

Intelligence  5 

 6 

3 LITERATURE REVIEW 7 

A literature review was conducted to understand the state of the art and practice in two 8 

major categories including 1) how big video data is used within the railroad industry for trespassing 9 

detection; and 2) how AI is used for trespassing detection in other relevant domains. 10 

 11 

3.1 Video Data and Trespassing in the Railroad 12 

Trespassing on railroad property is primarily detected through manual observation of video 13 

surveillance systems.  An example of this was research conducted by DaSilva et al where a video 14 

surveillance system was used to detect trespassers on railroad property in Pittsford NY. (12) In 15 

this study, a large amount of labor was required to review the footage and obtain true quantities 16 

for the number of trespasses.  Minimal work has been done which utilize AI for trespassing and 17 

no studies have performed these analyses in real time, providing alerts for proactive trespass 18 

prevention, which is a principle knowledge gap motivating this study. 19 

Trespassing and illegal incursions at grade crossings make up much of the fatalities in the 20 

railroad industry. (2,3) Limited research has focused on the detection of the illegal incursions of 21 

grade crossings with AI solutions.  Research by Pu et al in 2014 used a series of computer vision 22 

algorithms to detect incursions with a facsimile of a grade crossing. (13)  Further research by 23 

Zhang et al and Zaman et al (14,15) used a similar suite of AI algorithms to detect trespass events 24 

at grade crossings.  These studies were limited to the available archival footage and did not analyze 25 

real-time video feeds. The live detection of more trespassing events at both grade crossings and 26 

right-of-ways can support railroads in two ways.  The first is the potential for faster responses 27 

dangerous situations on their property.  Secondly, the aggregated database of these events can give 28 

insight into the behavioral characteristics of trespassers.  This information has the potential to 29 

better understand trespassing and develop the most effective risk-mitigation strategies.  30 
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 1 

3.2 Artificial Intelligence for Trespass Detection 2 

Artificial Intelligence has the potential to greatly reduce the required manpower to detect 3 

trespassers.  Evidence of this exists within the utilization of AI algorithms in parallel industries 4 

such as highway and aviation.  An emerging type of AI algorithm called Mask R-CNN has been 5 

successfully used in analyzing big video data in similar circumstances to the railroads trespassing 6 

problem. 7 

Mask R-CNN is built on the established architecture of deep convolutional neural networks 8 

(DCNN).  DCNNs are a style of neural network that classifies images through a specific 9 

arrangement of three kinds of network layers; convolutional, rectified unit layers and pooling 10 

layers.  The convolutional layers, for which this algorithm is named, attempt to find a pre-11 

programmed feature (called a filter) within an image.  This can be a geometric shape, series of 12 

colors or any other element which is unique to what you want to classify.  Multiple filters are tried 13 

across the entire image and are aggregated into a single image in the pooling layer.  Rectified unit 14 

layers (ReLU) remove anything that doesn’t match resulting in an image only showing what may 15 

match.  If these steps are repeated in the algorithm, convolving, pooling and convolving again, the 16 

algorithm becomes deep, resulting in a deep convolutional neural network. (16) 17 

Since Krizhevsky et al’s (17) 2012 research publication using DCNNs for image 18 

classification, which was used to win the ImageNet Large Scale Visual Recognition Challenge 19 

(LSVRC-2012) contest (correctly classifying 1.2 million images), the use of DCNNs in image 20 

classification has rapidly increased in popularity.  Subsequent research, based on Krizhevsky’ s 21 

work e.g. (Regional CNN (18), Fast R-CNN (19) and Faster R-CNN (20)), built upon the existing 22 

structure of DCNNs to include features such as bounding boxes.  This differed from traditional 23 

DCNNs by being able to identify the location of an object in an image, rather than its mere presence. 24 

In 2017, a state-of-the-art descendent of this previous research called Mask R-CNN was 25 

published within Facebook’s AI Research (FAIR) division. (21)  A primary benefit of Mask R-26 

CNN is the increased precision in object recognition by being able to tell if individual pixels are 27 

part of an object.  Also, Mask R-CNNs are compatible with existing, large-scale training datasets 28 

such as the Common Objects in Context (COCO) dataset.  This dataset consists of over 328,000 29 

labeled images of everyday scenes built for use in object recognition research and gives computer 30 

vision algorithms valuable training data to recognize commonly seen objects like people, cars and 31 

trains.  (22)  These features of Mask R-CNN allow for rapid deployment of AI to object recognition 32 

tasks.  33 

In computer vision Mask R-CNN has several distinct advantages over other algorithms.  It 34 

has been extensively tested in many domains while maintaining a high level of accuracy.  This 35 

extensive testing has led to the creation of a plethora of transferrable training data, easing the 36 

application of Mask R-CNN to new scenarios (22).  Mask R-CNN is also invariant to changing 37 

environmental conditions in ways that traditional computer vision techniques e.g. (background 38 

subtraction (13-15), blob analysis (23)) are not.  Finally, Mask R-CNN can continually improve 39 

its accuracy through back-propagated validation, using every successful classification as positive 40 

reinforcement for future classifications. 41 

The development of faster and more accurate neural network architectures has led to an 42 

increase in practical applications. The detection and tracking of pedestrians using these methods 43 

have been extensively studied.  (24) These research initiatives have used convolutional neural 44 

networks to track people for a variety of purposes which closely mirror the needs of trespassing 45 
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e.g. autonomous driving (25-27) traffic safety (28-29), and surveillance (30-35).  The variance in 1 

the literature consists in the adjustment of variables of a convolutional neural network (number of 2 

layers, orientation of layers, application of study etc.) for maximal accuracy and quickest 3 

processing speed.  Trespassing detection partially consists of tracking pedestrians on railroad 4 

property, therefore the methodologies outlined in the literature have many parallels to our research.    5 

Many industries, including railroads, have used convolutional neural networks in other 6 

capacities.  These applications range from airplane recognition in imagery (36) to the tracking of 7 

ships in ports (37) to roadway crack detection (38).  Within the railroad industry, research by 8 

Gibert et al used convolutional neural networks to identify missing track components in inspection 9 

photos. (39)   10 

Another commonly used computer vision technique is region of interest (ROI) which was 11 

used in a study to count pedestrians and cyclists crossing the frame of view of a CCTV camera.  A 12 

user of the system can define a polygon of pixels within the frame, which AI algorithms can use 13 

for reference.  Positive crossings were only recorded if identified pedestrians and cyclists if the 14 

passed through the ROI. (40) 15 

 16 

3.3 Knowledge Gaps and Intended Contributions  17 

Currently, AI-driven video analytics are new to the railroad industry and the monitoring of 18 

railroad live feeds occurs largely on a manual basis.  Our research aims to narrow this gap by 19 

providing an AI-aided trespass detection framework to collect trespassing data that informs 20 

engineering, education and enforcement strategies for trespass prevention. 21 

 22 

4 AI-AIDED TRESPASS DETECTION FRAMEWORK 23 

Detection of trespassing events in video feeds have many challenges.  There are a wide 24 

variety of configurations, environmental variables and technical features of live data streams 25 

watching railroads.  An AI built for trespass detection must have several fundamental performance 26 

qualities.  It must accurately identify pedestrians and vehicles within the frame, unhindered by 27 

video artifacts, shadows and other distortions.  Secondly, the AI must maintain accuracy in diverse 28 

environmental conditions (e.g. rain, snow, day, night and fog).  Finally, when analyzing a live 29 

video stream, the AI must be able to process the frames with enough speed to maintain a fast 30 

response time to possible trespassing events. 31 



  7 

 

 

 

 1 
FIGURE 2 General AI Framework for Railroad Trespass Detection 2 

 3 

To address these challenges a generalized AI framework for trespass detection which 4 

utilize the combined techniques of region of interest (40) and Mask R-CNN (21) is proposed 5 

(Figure 2).    After defining the ROI, the Mask R-CNN analyzes frames of the live video feed.  If 6 

an unauthorized person or vehicle enters the ROI an alert would be sounded, and relevant trespass 7 

data would be recorded to a database for later review and analysis. 8 

A key part of Mask R-CNN performance is the training dataset which allows it to recognize 9 

objects.  The COCO dataset, consisting of many labeled images of everyday scenes built for use 10 

in object recognition research, was utilized for this purpose.  It was selected because of its depth 11 

(330,000 Images), diversity (80 object categories) and timeliness through its continual growth and 12 

refinement. (22) Additionally, the COCO dataset includes pre-generated boundaries around 13 

recognized images allowing for better object recognition. By providing the Mask R-CNN with this 14 

dataset it can recognize people, cars, trains and other objects within the ROI.   15 

If an illegal object is detected within the ROI a subroutine of the AI will execute two 16 

simultaneous commands.  Firstly, an alert SMS text or email is relayed to a pre-determined user.  17 

This can be a railroad safety official who can decide of possible reparatory actions.  Secondly, a 18 

clip of the trespass incident is recorded and metadata e.g. (object detected, time, location, video 19 

file name etc.) is stored in a trespass event database. This metadata is automatically generated by 20 

the AI demonstrating that context of the image can be extracted and interpreted.  Trespass data can 21 

provide valuable information about hazardous environments and behaviors that lead to trespassing 22 

events which can inform education, enforcement and engineering strategies for trespass 23 
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prevention. Additionally, the aggregation of these trespass events have the potential to enhance 1 

railroad risk analyses in the future. 2 

The AI framework should be trained to verify its accuracy by having the algorithm analyze 3 

a video dataset with established results.  Comparing the results of the dataset to the known number 4 

of trespasses verifies the AI algorithm’s performance.  Additional datasets, including varying 5 

environmental conditions, should be tested with the algorithm to verify its performance under 6 

diverse circumstances. 7 

This framework is intended to be implemented on live streams of railroad property, which 8 

lead to the consideration of several concerns which will be addressed in our ongoing work;  9 

• Ethics – Ensuring the privacy of individuals captured in the analysis; 10 

o Plan: Implement colored masks over detected people and vehicles with Mask R-11 

CNN. 12 

• Economics – Balancing cost & benefits of the technology; 13 

o Plan: Perform costs analysis to ensure the most effective technological solutions 14 

have been utilized. 15 

• Accuracy – Continually improving accuracy with growing database; 16 

o Plan: Analyze false alarms and missed detections & incorporate solutions into the 17 

AI. 18 

• Demand – Adding data types and metrics as per stakeholder request; 19 

o Plan: Add relevant contextual metadata as requested. 20 

• Support – Responding to system failures and correcting errors; 21 

o Plan: Continual communication is maintained with industry partners to meet 22 

operational needs. 23 

• Adaptability – Ensuring the ability to perform under unforeseen or untested scenarios; 24 

o Plan: Expand testing and training data to new scenarios and to ensure consistency 25 

in any environment. 26 

• Availability – Maintaining access for stakeholders; 27 

o Plan: Develop easy-to-use dashboard to view trespass data and analyze new data 28 

streams. 29 

 30 

5 TRESPASS DETECTION APPLICATIONS 31 

Most rail casualties are due to trespassing in the form of grade crossing collisions and 32 

incursions on railroad right-of-ways (2,3). Almost all prior studies in the field of trespassing and 33 

grade crossing safety have focused on the accident data (41,42) without considering trespass events 34 

that do not result in accidents.  These trespass events share similar behavior characteristics to 35 

accidents, with the exception that they do not result in immediate harm.  Repeated trespass events 36 

have the potential to lead to severe consequences and learning from these incidents can inform 37 

proactive risk management strategies in the future.  38 

This framework was tested on two different safety-critical scenarios; grade crossings and 39 

right-of-ways.  Grade crossings are highway-rail intersections with active signalization where 40 

pedestrians and vehicles are alerted to an approaching train.  Trespasses at grade crossings are 41 

defined as pedestrians and vehicles that enter the crossing after the signal lights are activated.  Only 42 

pedestrians and vehicles who enter the ROI after the signal lights are active trigger trespassing 43 

alerts, therefore, the algorithm can differentiate between legal and illegal passes.  Passive grade 44 
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crossings, which lack active signalization like lights, arms and gates, were not addressed in this 1 

study due to lack of available video coverage of these locations.   2 

  Right-of-way locations are defined as railroad property with no intersection or crossing 3 

and all incursions are deemed illegal, except for authorized railroad personnel. This categorization 4 

represents the two fundamentally different types of locations where trespassing occurs and was 5 

analyzed by the same generalized trespass detection framework.    6 

In our preliminary investigation of potential data sources to test this framework it was 7 

discovered that there exists a dearth of publicly available camera streams of railroads.  These 8 

streams were originally intended for railroad enthusiasts to view for entertainment, but provide a 9 

high quality (high resolution, high frame rate, reliable up time, etc.,) data source for railroad safety 10 

research.  To select an appropriate stream several variables were searched for; 11 

o Clear view of signal lights for grade crossings 12 

o Urban population to increase the chance of trespassing events (43) 13 

 With these factors, three streams were identified for analysis.  Figure 3 shows a typical 14 

view of the locations.  15 

 16 

  17 
   (a)      (b)  18 

 19 
(c) 20 

FIGURE 3 (a) Selected Grade Crossing Stream (b) Selected First Right-of-way Stream (c) 21 

Selected Second Right-of-way Stream 22 

 23 

The selection of one grade crossing in Ashland, Virginia and two right-of-ways in 24 

Thomasville, North Carolina was based on several reasons; 1) availability of video streams with a 25 

clear view of signal lights 2) demonstration of the flexibility to different trespassing environments.  26 

In the future, we plan to expand our search for live video feeds to examine a greater number of 27 

grade crossings and right-of-ways alike. 28 

 29 

5.1 AI Algorithm Flow Chart 30 
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The AI will parse the video live stream, prompt the user to identify the ROIs within the 1 

frame, detect whether people or vehicles are in the ROI and send alerts if a trespass has occurred.  2 

The detailed steps are presented below.  The algorithm can analyze both grade crossings and right-3 

of-ways based on the activation of a single subroutine which demonstrates the framework’s 4 

adaptability to different trespassing use cases throughout the railroad industry with no adjustments.  5 

This special subroutine detects the activation of flashing lights that indicate an approaching train. 6 

 7 

 8 
FIGURE 4 Detailed Trespassing Framework for Railroad Trespassing (Including Both 9 

Grade Crossing and Right-of-way) 10 

Step 1 Parsing the Live Stream 11 

The first step of the AI is to establish a connection to the live stream of the selected location.  12 

After raw video data is provided, for example via internet live stream, the program will proceed to 13 

step 2.  14 

 15 

Step 2 Draw Region of Interests 16 

The second step of the program is to identify the region(s) of interest. A user will be 17 

prompted with a static image of the video feed and the user can sequentially select the outer limits 18 

of the trespass area.  The borders of the ROI will be represented by a green line and can be closed 19 
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by selecting the first point.  Multiple ROI’s can be identified in the same frame and a differentiation 1 

between “right-of-way” and “grade crossing” can be made.  The difference between these two is 2 

that any object (person, motorcycle, bicycle, car or truck) except authorized railroad personnel 3 

detected within the “right-of-way” ROI will be deemed illegal and trigger an alert.  Conversely the 4 

“grade crossing” area will only trigger an alert if the algorithm detects that the signal lights are 5 

active.   6 

  7 
    (a)      (b)   8 

 9 
(c) 10 

FIGURE 5 (a) ROI of Grade Crossing Stream (b) ROI of First Right-of-way Stream (c) 11 

ROI of Second Right-of-way Stream 12 

 13 

Step 3 Trespass Detection 14 

The third step in the algorithm utilized the Mask R-CNN framework (21).  Each frame 15 

analyzed was checked for objects within the selected ROI.  If a grade crossing ROI was identified 16 

a subroutine will actively check for the initiation of a crossing signal light.  When that light 17 

activates, anyone who enters the ROI is deemed trespassing.  Both freight and passenger trains are 18 

also identified by the algorithm but deem them as legal occupiers of the ROI and therefore do not 19 

trigger alerts.  A limitation of the algorithm is its current inability to differentiate between 20 

authorized railroad personnel and trespassers.  In future research, we aim to resolve this by 21 

providing the Mask R-CNN with training data to filter out authorized railroad personnel and 22 

workers based on the unique characteristics of their attire.  In the current framework, these events 23 

are manually filtered out. 24 

 25 

Step 4 Alert and Database Population 26 

The final step of the AI is twofold; send an alert text message or email to a designated user 27 

and record the trespassing event video and metadata to a database.  The alert text messages or 28 
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email can be directed to railroad safety officials for immediate action.  The database contains 1 

information on time, object detection, identified zone (grade crossing vs. right-of-way) and name 2 

of the associated video file. 3 

 4 

5.2 Al Development and Testing Process  5 

To ensure that this AI achieved the highest accuracy and minimized the number of missed 6 

detections and false alarms a three-part training and testing plan was put into place (Figure 6).  The 7 

first step of this plan was the initial development of the AI using several hours of training data.  8 

This training data was acquired by recording the live stream of the selected grade crossing location 9 

for a duration of 9 hours, capturing diverse environmental and traffic conditions.  Our research 10 

team established a known quantity of trespasses through manually inspecting the training data.  11 

The program then analyzed this footage and modifications were made to the program until 100% 12 

accuracy was achieved. 13 

 14 
FIGURE 6 Algorithm Development and Testing Flowchart 15 

 16 

The second step of this development process was the execution of a longer training period 17 

of the same grade crossing used to initially develop the program.  This training phase differed from 18 

the initial because the number of trespasses was not known beforehand but was acquired through 19 

meticulous manual reviewing of archival footage of the live stream.  False positives and missed 20 

detections during this 120-hour analysis were identified, the AI was modified, and the archive was 21 

re-analyzed by the AI to ensure any problems had been resolved.  False positives are the incorrect 22 

alert to a trespassing event when none occurred and false negatives are missed trespasses which 23 

were not identified by the tool.  Both errors were identified through meticulous manual reviewing 24 

of the raw video data.  Changes to the AI were made and the video data was reprocessed ensuring 25 

that the errors were not repeated.  The solutions to these issues ensured that that this error would 26 

not occur again in future scenarios with similar circumstances.  The procedure followed by our 27 

team that identified false positives and missed detections is discussed in section 7. Tool Validation. 28 

The third and final step of this analysis was to test the AI on two new locations.  Two right-29 

of-ways were selected for this portion of the analysis and reviewed a cumulative 100 hours of live 30 

video.  These locations were selected due to the availability of high-quality video streams that met 31 

the previously established criteria.  This final step of implementing the program on two completely 32 

new locations shows that the algorithm developed in this study is generalized and can accurately 33 

identify trespassing on video feeds throughout the railroad industry without significant 34 

modification.  35 

 36 

5.3 Grade Crossing Results (Training) 37 
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During the 120 hours of live footage of the grade crossing between 7/19/2018 and 1 

7/25/2018, 140 positively identified trespassing events reported via the alert system.  The analysis 2 

period included a multitude of varying environmental conditions including heavy rainfall, fog and 3 

many day/night cycles.  The AI was automatically able to differentiate between the type of 4 

trespasser and Figure 7 shows a breakdown of the results acquired during the analysis period.  Six 5 

categories (Car, Truck, Bus, Person, Bicycle, Motorcycle) of trespassers were searched for by the 6 

AI algorithm.  The ability of Mask R-CNN and supplied training data of the COCO dataset allowed 7 

for the identification of over 80 object categories (21, 22). Those selected for detection in the AI 8 

algorithm were Car, Truck, Bus, Person, Bicycle and Motorcycle.  This differentiation adds a 9 

dimension to the trespassing dataset and can inform sophisticated trespassing prevention solutions 10 

through detailed demographic analysis. 11 

 12 

 13 
FIGURE 7 Distribution of Grade-Crossing Trespasser by Type  14 

 15 

The most common type of violation witnessed in this study at the grade crossing was the 16 

passage of vehicles while the signalized intersection lights were activated.  116 events of this kind 17 

were detected making up 83% of all detected trespassing events at this location. Figure 8 shows 18 

several typical detected examples of this.  The color overlay of the vehicle was generated 19 

automatically by the AI and indicates a recognized object. The masking also preserves the privacy.  20 

 21 

   22 
(a)       (b) 23 

Pedestrian
17%

Car
79%

Truck
3%

Bus
1%

Bicycle
0%

Motorcycle
0%
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 1 
(c) 2 

FIGURE 8 (a) Vehicle Driving Around Deployed Gates from Far Roadway (b) Vehicle 3 

Driving Around Deployed Gates from Near Roadway (c) School Bus Crossing as Gates Are 4 

Closing 5 

 6 

The second most common trespassing events witnessed in this study were the illegal 7 

incursion of pedestrians while the active signalized gates were down.  24 events of this kind were 8 

detected making up 17% of all totally detected trespassing events at this location. Figure 9 shows 9 

several typical detected examples of this.  The color overlay of the individual represents a 10 

recognized object by the AI.   11 

  12 
(a)       (b) 13 

  14 
(c)        (d) 15 
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FIGURE 9 (a) Pedestrian Walking Behind Gates (b) Pedestrian Crossing Behind Train (c) 1 

Multiple Pedestrians Crossing Behind Train (d) Pedestrian Waiting on Railroad Tracks 2 

 3 

Both event types represent two typical non-conforming behaviors at grade crossings.  For 4 

the drivers and pedestrians which traverse the crossing while the gates are lowering have the 5 

confidence that they have enough time to pass the intersection before the train arrives.  Individuals 6 

who crossed the intersection while the gates were raising assume that the crossing is now safe, 7 

disregarding the possibility that a second train may be approaching and will reactivate the gates.  8 

Both these trespass events have potentially catastrophic consequences which are represented by 9 

the multitude of casualties and fatalities at grade crossings (2,3) 10 

These events were recorded to a local trespass database and if expanded, commonalities 11 

between trespass behavior can be understood.  If data gathered by this AI indicates trends, such as 12 

increased trespasser activity during regular time periods during the day, the presence of law 13 

enforcement may deter a large portion of illegal behavior. (44)  In another example, if at the 14 

selected grade crossing it is discovered that most trespasses occur from a roadway direction, the 15 

installation of additional active signalization and barriers to that direction may mitigate excessive 16 

crossing. (44)  In the future, expansion of this research to more locations and the aggregation of a 17 

large trespass event database could highlight trends and inform solutions to the trespassing 18 

problem. 19 

An additional feature of the Mask R-CNN (21) is its ability to automatically anonymize 20 

trespasser.  Within the United States privacy in big data is of paramount concern. (45,46) This is 21 

verified by surveys conducted where 88% of Americans stated that they “do not wish to have 22 

someone watch or listen to them without their permission” and 63% of respondents “feel it is 23 

important to be able to go around in public without always being identified”.  (47) The overlay of 24 

colored masks on detected trespassers prevents the identification of the induvial. Similarly, masks 25 

over vehicles obscure the license plate sufficiently to prevent identification, therefore maintaining 26 

the privacy of the driver. 27 

 28 

5.3 Right-of-way Results (Testing Phase) 29 

In the final portion of the study two completely new locations were tested by the AI to 30 

demonstrate the flexibility of this algorithm to different trespassing scenarios.  On the first right-31 

of-way location the AI analyzed 69 hours of live footage between 7/21/2018 and 7/27/2018.  32 

During this time period, 10 trespassing events were recognized by the AI under several distinct 33 

environmental conditions, including rain, fog (Figure 10a), nighttime (Figure 10b).  During these 34 

times, the AI was able to correctly identify trespassers despite the sub-optimal detection 35 

conditions. 36 
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(c)       (d) 4 

FIGURE 10 (a) Trespasser Detected Crossing in Foggy Weather (b) Group of Trespassers 5 

Detected at Nighttime (c) Trespasser Detected Before Crossing (d) Trespasser Traveling 6 

Within Railroad Property 7 

 8 

To date, the AI is 100% accurate (no false positives, no false negatives) at this location. 9 

Most of the trespasses detected at this location show individuals walking along the railroad tracks, 10 

instead of the sidewalk on the roadway to the north of the camera’s view.  It is unclear why these 11 

individuals made the choice to trespass on railroad tracks, but the aggregation of these events can 12 

inform proactive strategies towards preventing accidents.  A feature of the AI is the live alert 13 

system that sends text messages or emails to a user defined destination.  In a trespassing scenario, 14 

it is conceivable for the AI to inform railroad staff that a trespasser is present along their property.  15 

At this point law enforcement could be contacted and a trespasser could be removed before 16 

potentially catastrophic consequences occur. (44) 17 

At the second right-of-way location, the AI analyzed 48 hours of live footage between 18 

7/29/18 and 7/30/18, successfully detecting 109 trespassing events.  This live stream overlooks a 19 

stretch of track leading to a grade crossing that can be seen at the far upper-right of the screen.  20 

The detection of grade crossing specific trespasses was impossible at this location due to an 21 

obstructed view of the active signalization and extreme distance of crossing in the frame.  Despite 22 

these limitations a right-of-way region of interest was identified, and trespassing events were 23 

detected.  Some of these events can be seen in Figure 11.    24 

 25 
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(a)      (b) 2 

    3 
(c)      (d) 4 

FIGURE 11 (a) Trespasser Crossing Tracks from Parking Lot to Downtown Area (b) 5 

Trespassers Crossing in Evening Conditions (c) Adult and Child Trespassers Crossing 6 

Railroad Tracks (d) Two Trespassers Loitering on Tracks Near the Parking Lot Area 7 

 8 

Some cases captured by the AI appear to show trespassers using the railroad property as a 9 

shortcut to travel between a parking lot to a downtown area.  If, after aggregating this information 10 

into a larger trespass event database, this trend proves to be a common occurrence it is possible to 11 

develop solutions to this trespassing problem.  For example, the installation of fencing along the 12 

railroad right of way or the construction of a dedicated walkway at the far grade crossing may 13 

deter trespassing on the railroad tracks here.  Learning from trespass events have the potential to 14 

inform education, enforcement, and engineering solutions to the most severe safety problem faced 15 

by the railroad industry today.   16 

 17 

6 LIVE VIDEO DATA ANALYSIS TOOL 18 

The AI algorithm previously described will be integrated into a web-based video analytics tool 19 

that Rutgers University has developed.  This tool streamlines the automatic analysis of live video 20 

data from various sources.  The program can analyze live feeds through following steps; 21 

• Step 1: Log in to the web-based application tool  22 

• Step 2: Insert the URL for the railroad live stream 23 

• Step 3: Select the region of interests (grade crossing and right-of-way) 24 

• Step 4: (Grade Crossing Only) Click within the presented image of the stream selecting a 25 

visible crossing signal light 26 
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• Step 5: Enter either a phone number or email address destination for live alerts 1 

• Step 6: Click submit and processing will begin 2 

• Step 7: Trespassing events notifications with cropped trespassing clips will be sent to the 3 

chosen destination and aggregated on a server for later analysis 4 

 5 

7 TOOL PERFORMANCE  6 

To ensure that the AI algorithm achieved maximum accuracy a several step validation plan 7 

was enacted. Four results of the analysis were possible; an illegal trespass occurs, and a detection 8 

is recorded (true positives), no illegal trespass occurs but a detection is recorded (false positive), a 9 

trespass occurs, and no detection is recorded (false negative), no trespass occurs, and no detection 10 

is recorded (true negative).  In the training section, the AI analyzed 129 hours of live video data 11 

and reported a conglomeration of correct and incorrect trespassing identification as compared to 12 

ground truth data acquired by student’s manual review of archival footage.  These mistakes were 13 

corrected by improving the algorithm, and a recording of the live feed was re-processed with the 14 

updated algorithm to ensure that the false positives and false negatives would not occur again 15 

resulting in the algorithm achieving 100% accuracy at this point. 16 

In the testing phase two right-of-way were analyzed with no intermittent program 17 

modifications. Over 100 live hours of combined right-of-way footage was manually reviewed and 18 

compared to the results generated by the algorithm.  To date, the program was 100% accurate (no 19 

false negative or false positive).  We are continuing to expand the amount of live video data 20 

analyzed to ensure the performance is consistent in all encounterable scenarios.   21 

 22 

8 CONTRIBUTIONS TO RESEARCH AND PRACTICE 23 

8.1 Contributions to Academic Research 24 

This framework is the first use of Mask R-CNN algorithm for trespassing detection in the 25 

railroad industry.  This AI provides a structure for automatically gathering information from 26 

railroad live feeds.  Previously, collecting data on railroad trespasses required extensive manual 27 

labor.  With the advent of this AI technology accumulating large data sets of trespassing events 28 

for human factors research in trespassing is achievable.  29 

 30 

8.2 Contributions to Practice 31 

The practical contribution of this framework is the tool created to implement its 32 

functionality. Without requiring practitioners to program their own algorithms, our tool can 33 

analyze railroad feeds in real time to supplement human based surveillance. Manually reviewing 34 

the extensive CCTV network is laborious and can be made easier with the implementation of the 35 

framework described in this research.  The framework can automatically gather previously 36 

inaccessible data on trespassing to inform long term strategic education, enforcement and 37 

engineering solutions.  If this practice ready tool is implemented the live alert function allows for 38 

immediate railroad response to potentially dangerous situations.  Evaluation of this tool’s 39 

effectiveness should be mapped through close examination of trespassing rates before and after 40 

implementation.  41 

 42 

9 CONCLUSION 43 

This paper proposes the use of an Artificial Intelligence algorithm for the automatic 44 

detection of trespassing events. The collected trespass data can help better understand trespassing 45 

behaviors and characteristics in support of developing informed risk mitigation strategies related 46 
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to engineering, education or enforcement. Our algorithm was implemented on three live streams 1 

within the United States, including one grade crossing and two right-of-ways. During the study, 2 

our AI correctly detected all trespassing events at the selected locations and achieved an accuracy 3 

of 100% during the analyzed period. The live alerts generated in this research could be potentially 4 

used for a series of trespassing research activities in the future. This research indicates a promising 5 

application of AI to real-time video analytics for trespassing and potentially other challenges 6 

within the railroad industry. 7 

 8 

10 FUTURE WORK 9 

To further validate this framework, we will be increasing the amount of data reviewed.  10 

This will allow the AI algorithm to experience more environmental conditions and possibly more 11 

trespassing events.  A limitation of the current AI is the inability to differentiate between 12 

authorized personnel and trespassers.  In future research we intend to apply transfer learning 13 

techniques to update the AI’s library to recognize authorized personnel through the identification 14 

of their personal protective equipment and other unique features.  These techniques will also for 15 

future research into the recognition of debris and nonmoving objects on railroad tracks that may 16 

cause hazards for locomotives.   17 

Once the AI has achieved an acceptable level of accuracy and can reliably recognize and 18 

alert to all relevant trespassing events this application will be piloted with a railroad industry 19 

partner.  In this partnership additional connections for the live alerts, such as audio warnings at the 20 

grade crossing or ROW locations, would be tested.  Another future application may be using the 21 

developed AI algorithm to detect trespassing from front-facing cameras on the locomotives. 22 

Additionally, future research will focus on utilizing the tool for countermeasure performance 23 

analysis.  This will be accomplished by evaluation of behavioral trespass data before and after the 24 

implementation of trespass prevention strategies.  Future research is also planned to use these tools 25 

to understand behavior of individuals in the pursuit of suicide prevention on railroad property.  26 
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