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Abstract: The congestion of urban transportation is
becoming an increasingly critical problem for many
metropolises. The Urban Rail Transit (URT) system
has attracted substantial attention due to its safety, high
speed, high capacity, and sustainability. With a focus
on a holistic modeling framework for train schedul-
ing problems, this article proposes a novel optimization
methodology that integrates both train timetabling and
rolling stock scheduling based on time-dependent pas-
senger flow demands. We particularly consider the trade-
off between waiting times for passengers and the train
frequency of the URT system. By using train paths and
rolling stock indicators as decision variables, this prob-
lem is formulated as a bi-level programming model. A
simulated-annealing (SA)-based heuristic algorithm is
employed to solve the proposed model and generate ap-
proximate optimal solutions. In the case study of Line
10 of Beijing Subway, GAMS (The General Algebraic
Modeling System) with the IBM ILOG CPLEX Opti-
mization Studio (CPLEX) solver can barely obtain a
solution in more than 2 hours, whereas the SA-based
heuristic can obtain the solution within 16 minutes and
44 seconds with the objective value improved by more
∗To whom correspondence should be addressed. E-mail: yxyue@bjtu.
edu.cn.

than 14%. The calculation results and comparisons indi-
cate that the SA-based heuristic can efficiently produce
approximate optimal scheduling strategies; these find-
ings demonstrate the practical value of our proposed ap-
proaches.

1 INTRODUCTION

With the emergence of a more social economy, many
rail transit networks have been put into operation or
construction in many metropolises. Urban Rail Transit
(URT) systems play an important role in urban public
transportation, as millions of passengers use them for
their daily commute. The frequency of train operations
is becoming very high, especially in large cities such
as Beijing, Tokyo, New York, and Paris, where the
minimum headway between trains is close to 2 minutes
for certain busy lines. Therefore, the planning process
for urban rail transit systems is becoming more and
more significant for reducing the operation costs of rail
operators and for guaranteeing passenger satisfaction.

The planning process for public transportation usu-
ally consists of several consecutive phases. The process
begins with network design, typically followed by line
planning, timetabling, and vehicle and crew scheduling.

C⃝ 2017 Computer-Aided Civil and Infrastructure Engineering.
DOI: 10.1111/mice.12300
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Fig. 1. Railway planning process.

Yang et al. (2016) present a detailed analytical process
of railway planning in Figure 1. The process is divided
into several step-by-step subproblems. In this process,
once a prespecified train timetable plan is changed
according to realistic requirements, a new rolling stock
schedule for the railway needs to be regenerated to
satisfy the varied train timetable constraints. This
process necessarily increases the complexity of railway
operations. Obtaining a high-quality railway operation
plan requires several iterations. Although many models
and algorithms are available to address each step, the
entire multi-step process remains highly challenging
and computationally cumbersome. Therefore, for-
mulating and solving a large-scale integrated railway
planning problem has been a long-term pursuit for
academics and practitioners. To produce a compre-
hensive operational plan for the URT system, we are
particularly interested in designing an optimization
methodology that integrates both train timetabling
and rolling stock scheduling based on time-dependent
passenger flow demands. This topic has not attracted
sufficient attention in the literature.

1.1 Literature review

Network design is the first stage of the railway planning
process. Some scholars (Fan and Machemehl, 2006;
Kermanshani et al., 2010) use simulated annealing algo-
rithms to solve the transit route network design prob-
lem. The next railway operation planning process is line
planning. Goossens et al. (2004, 2006) consider a model
formulation of the line planning problem in which the
total operating costs are to be minimized, and the model
is solved with a branch-and-cut approach. Lin and Ku

(2014) propose an integer program for the stopping
pattern optimization problem and develop two genetic
algorithms to solve the problem. Canca et al. (2017) de-
velop an adaptive large neighborhood search algorithm
for the integrated railway rapid transit network design
and the line planning problem. These studies address
the strategic problems of railway planning, whereas ours
focuses on the tactical level. They lay the foundation
for our study of timetables and rolling stock scheduling.

The development of optimization models for con-
structing timetables and synchronized schedules is
another research direction within the field. Caprara
et al. (2002) propose a graph theoretical formulation
for the timetable problem and build an integer linear
programming model that is relaxed in a Lagrangian
way. Zhou and Zhong (2005, 2007) formulate train
scheduling models that consider segment and station
headway capacities as limited resources and develop
algorithms to minimize both the expected passenger
waiting times and the total train travel times. Carey and
Crawford (2007) design a series of heuristics for iden-
tifying and resolving train conflicts to satisfy various
operational constraints and objectives. Goverde (2007)
describes a railway timetable stability measure using
max-plus system theory and analyze the processes of
train delay propagation. Wong et al. (2008) concentrate
on the synchronization between the different lines
of a URT network to minimize passengers’ transfer
times. Albrecht (2009) presents a two-level approach
(computation of transport offer, timetable design) and
the results obtained from fully automatic offer planning
and timetabling for a suburban railway. Barrena et al.
(2014) propose two mathematical programming formu-
lations that generalize the nonperiodic train timetabling
problem on a single line under a dynamic demand
pattern and introduce a fast adaptive large neighbor-
hood search metaheuristic to solve the problem. These
papers focus on train timetabling without considering
line planning and rolling stock scheduling.

Many other scholars (Corman et al., 2010; Min
et al., 2011; Kecman and Goverde, 2012; Castillo et al.,
2015, 2016) focus on train rescheduling and timetable
optimization. Dollevoet et al. (2012, 2014b,b) have per-
formed extensive research on the delay management
problem. They model it with rerouting and develop sev-
eral heuristics to tackle large-scale real-world instances.
In addition, they propose an iterative optimization
approach that iteratively solves a macroscopic delay
management model and a microscopic train scheduling
model. Corman et al. (2012) consider a bi-objective
problem of minimizing train delays and missed con-
nections to provide a set of feasible nondominated
schedules to support this decision process. Another
paper by Corman et al. (2014) studies the disturbance
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robustness of a timetable to assess the quality of a train
schedule. Our paper focuses on timetable planning
without accounting for train delay. Delay management
will be the next focus of our research.

Numerous studies investigate rolling stock schedul-
ing. Nielsen et al. (2012) address the real-time disrup-
tion management of railway rolling stock. Thorlacius
et al. (2015) propose an integrated rolling stock plan-
ning model that simultaneously considers all practical
requirements for rolling stock planning. Haahr et al.
(2016) employ two approaches (mixed integer linear
program and a column and row generation approach)
to create daily schedules and test their real-time applica-
bility through tests with different disruption scenarios.

A number of recent studies have focused on inte-
grated optimization. Kaspi and Raviv (2013) formulate
an integrated line planning and timetabling model with
the objective of minimizing both user inconvenience
and operational costs. Some others (Yang et al., 2016;
Yue et al., 2016) focus on the integrated optimization
of train stopping patterns and schedules. Niu and Zhou
(2013) and Niu et al. (2015) concentrate on passenger
flow and timetabling. Michaelis and Schöbel (2009)
formulate an integrated model and present a heuristic
to address three well-known problems (line planning,
timetabling, and vehicle scheduling) in bus transporta-
tion. Schöbel (2017) presents a generic, bi-objective
model for this problem and design iterative algorithms
as heuristics for the integrated problem. However, the
methods that they propose have not been applied to
railways. Table 1 lists the mathematical formulations
and solution algorithms of existing studies.

1.2 Knowledge gaps

Note that line planning, timetabling and rolling stock
scheduling are often studied independently in the
literature due to the complexity of each problem (see
Figure 1). Although a few researchers have attempted
to explore integrated line planning, most of them focus
on the integration of line planning and timetabling
for railways, whereas simultaneously accounting for
line planning, timetabling and rolling stock scheduling
for a railway system is rarely discussed in the litera-
ture. Moreover, the solution methods for integrated
optimization are usually optimization software and
have not been applied in large-scale, real-world daily
transportation systems. In this article, we propose a new
methodology to simultaneously account for total pas-
senger waiting times, train timetabling costs and rolling
stock usage for URT lines. The framework of our
proposed methodology is illustrated in Figure 2. In our
model, the inputs are URT line data and section-specific
passenger flow. The decision variables correspond to

the train path and rolling stock trajectory. In both the
model and the algorithm, the first step is to optimize
train frequency while guaranteeing passenger flow
constraints. The model simultaneously schedules train
timetables and rolling stock usage while guaranteeing
constraints related to passenger flow, train flow and
rolling stock size. The model output is a near-optimal
train timetable and rolling stock scheduling.

We intend to address the following specific objec-
tives:

(1) Analyze the time-dependent passenger flow, train
timetabling and rolling stock scheduling in URT
systems and discuss their interactions. This arti-
cle develops an optimization methodology that en-
ables the integration of train timetabling, line plan-
ning and rolling stock scheduling.

(2) URT lines include both loop and linear lines. To
formulate an integrated optimization model, this
article proposes a general train flow model that
can be applied to all types of URT lines.

(3) Formulate a bi-level programming model for inte-
grated train timetabling and rolling stock schedul-
ing. The upper level model optimizes train fre-
quency and train timetables, minimizing passen-
ger waiting times and operation costs. The lower
level model schedules rolling stock to minimize
the number of infeasible train paths and proposes
a simulated-annealing (SA)-based heuristic algo-
rithm to solve the model.

(4) Illustrate the use of an integrated optimization
model and SA-based algorithm to improve the
timetable of three typical real-world URT lines in
Beijing, China.

The remainder of this article is structured as follows.
First, we present detailed problem descriptions and
assumptions for URT lines. Second, we develop an
integrated train frequency, train timetabling and rolling
stock scheduling model. Third, an SA-based algorithm
is proposed to solve the model. Subsequently, we gener-
ate computational results from real-world instances of
the Beijing URT and demonstrate the effectiveness of
our proposed model. Finally, the principal conclusions
are presented, and possible future research directions
are suggested.

2 PROBLEM DESCRIPTION

2.1 URT timetable and key elements

A train timetable defines train departure and arrival
times at each station and is an essential plan for the
operation of a railway system. We obtained
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Input 1: 
Urban rail transit network 
(stations, sections, tracks)

Input 2: 
Timetable parameters

(travel time, stopping time)

Train timetabling Rolling stock usage

Real time management

Network planning
Strategical Level

Tactic Level

Operational Level

Our integrated model

Crew schedules

Line Planning

Input 3: 
Time dependent passenger flow

Output: 
Near optimal timetable and 

rolling stock usage plan

Fig. 2. Framework of integrated URT planning methodology.

Station 1

Station 2

Station 3

Station 4

(a) Urban rail transit timetable

1 2

2

8:00 8:03 8:098:06

(b) Urban rail transit timetable (simplified)

Station 1

Station 2

Station 3

Station 4

8:00 8:03 8:098:06

Fig. 3. Illustration of a train timetable along a rail transit line.

passenger data from Beijing Subway Company’s
operation database, which includes the number of
passengers arriving and departing each station in time
units of minutes. Figure 3a provides an illustration of
a URT timetable. In most URT systems, train types
are similar, and trains stop at each station. We focus
only on the train frequency in line planning. Trains
experience similar dwell times without overtaking
operations, which exceed acceptable waiting times.
Therefore, arrival and departure times can be defined
by the departure time at the origin station or the
arrival time at the terminal station, as shown in Figure
3b. In this simplification, the decision variables for
train timetables are the departure times at the origin
station instead of the departure and arrival times at
every station. Thus, the problem is simplified, and the
calculation amount is dramatically reduced.

Each train departs from a depot when service begins
and returns to a depot when service terminates. Stations
that connect directly to depots have greater importance
and are named “D-stations” in the model. For example,
in Figure 4, Xizhimen and Jishuitan are D-stations
for Line 2; Tiantongyuanbei and Songjiazhuang are
D-stations for Line 5; and Bagou, Chedaogou and
Songjiazhuang are D-stations for Line 10.

The URT lines have three key elements: passenger
flow, train flow and rolling stock. In a URT system,
the movement of people is referred to as passenger
flow. Passengers’ arrival times are determined by
their individual travel purposes (e.g., home-to-work
or home-to-shopping) and are affected by external
random factors such as freeway conditions and the
walking distances between homes or offices and rail
stations. Passenger flows are time dependent.
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D
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Fig. 4. Illustration of rail transit network in our cases.

(a)  A rolling stock trajectory of a linear line 

(b) A rolling stock trajectory of a loop line

Depot

Station 1

Station 2

Time direction

Station 1

Station 2

Depot

Station 1

Fig. 5. Illustration of rolling stock trajectory.

In a URT network, the line topology structure can
be divided into two main categories: linear lines and
loop lines. Different types of lines have different rolling
stock trajectories. For linear lines, the trajectory of one
rolling stock is illustrated in Figure 5a. After completing
a service run, the rolling stock must turn around on a
lead track or a station track before it begins the next
run. In a loop line, rolling stock can perform multiple
service runs without reversing direction, as shown in
Figure 5b. Each rolling stock may have several trajec-
tories in a day; each trajectory includes a path from
the depot to a D-station, a number of train paths and
a path from a D-station to the depot. Each train path
corresponds to a train in the timetable. We consider
the number of available rolling stocks in each depot
and the minimum time span a rolling stock needs for
maintenance once it reaches the depot.

Fig. 6. Relationship between passenger flow and train flow.

2.2 Relationships between key elements

Figure 6 shows the connection between passenger flows
and train flows. In Figure 6, we show a time span with 21
time intervals, each of which indicates a possible train
departure time. The bar chart indicates the number of
arriving passengers, whereas the line chart shows the
number of passengers waiting on the station platform.
When the peak-hour demand temporarily exceeds the
maximum loading capacity of a train, passengers may
not be able to board the next train and may be forced to
wait in queues for succeeding trains. This condition is
referred to as saturation. Conversely, when the number
of passengers at a station is less than the maximum
loading capacity of a train, the resulting condition is
referred to as nonsaturation. For example, in Figure 6,
the time period before interval “6” involves a period of
nonsaturation, whereas the time period following inter-
val “6” shows a saturated condition. During saturation,
urban rail operators must enter as many trains as possi-
ble into operation. During nonsaturation, operators can
decrease the train frequency to reduce operation costs.

Passengers perceive service coverage and frequency
level as the most important factors in service quality.
The main objective of operators, however, is to maxi-
mize profit. The primary challenge in transit planning
is to discover tradeoffs between these conflicting
objectives.

We illustrate the relationships between train flow
and rolling stock in Figure 7. Each solid line represents
a train, and lines of the same color denote a rolling
stock trajectory. Assume that three rolling stocks exist
in depot 1. The number of trains between station 1 and
station 2 is determined by the train intervals (passenger
flow). Due to constraints on the number of available
rolling stock, some trains (denoted by solid lines) can
be placed into service, whereas other trains (as denoted
by dashed lines) cannot. Dashed lines must be deleted
in the final output train timetable.
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Depot 1

Station 1

Station 2

Time direction

Feasible train Infeasible train Rolling stock trajectoryn

Fig. 7. Relationship between train flow and rolling stock.

Table 2
General subscripts and sets

C Set of stations: 1, . . . , c
D Set of D-stations: 1, . . . , d , D ∈ C
E Set of time intervals: 1, . . . , e
F Set of trains
G Set of rolling stock
i, i ′, j, j ′ Station indices, i, i ′, j, j ′ ∈ C
k, k′ D-station indices, k, k′ ∈ D
t, s, r Time interval indices, t, s, r ∈ E
f Train index, f ∈ F
g Rolling stock index, g ∈ G

3 MATHEMATICAL FORMULATION

3.1 Notations

The general subscripts, input parameters, and deci-
sion variables that are employed in our mathematical
formulations are listed in Tables 2–4.

3.2 General train flow model for urban transit lines

Each rail passenger trip consists of an origin station,
a destination station, and a travel time. We obtain
passenger data from Beijing Subway Company’s opera-
tion database, which includes the number of passenger
arrivals and departures at station in time units of min-
utes. We can obtain the approximate passenger volume
between two adjacent D-stations based on the number
of passengers for each origin–destination matrix. For
URT systems, the number of passengers who travel
between two stations is important. Thus, we need to
calculate this number using the number of passengers
for each origin–destination matrix.

qt
i,i+1 =

∑

j ′∈[i+1,c]

∑

i ′∈[1,i]

ot+ei ′,i
i ′, j ′ ∀t ∈ E, i ∈ C (1)

Using Equation (1), we can obtain the passenger
volume between two adjacent stations as illustrated

Table 3
Parameters

ot
i, j Number of passengers who leave station i for

station j at time t
qt

i, j Passenger volume between station i and station j at
time t

Lmax Maximum number of passengers for a train
Lexpt Expected number of passengers for a train
Fnum

k The number of train paths of D-station k
d( f ) Origin station of a train, d( f ) ∈ D
h Minimum departure and arrival headway (time

interval) between two consecutive train paths at a
station

d(g) Depot connected to the origin station at which
rolling stock g starts to perform transportation
task

ei, j Running time between station i and station j
emax

run Maximum running time for a rolling stock in a day
emax

dwell Maximum waiting time at a D-station for a rolling
stock

emin
stop Minimum stopping time in the depot for a rolling

stock
wt

i Waiting passengers of station i at time t
φ Value of generalized cost for each waiting passenger
ϕ Value of generalized cost for each running of a train
η Value of generalized cost for each infeasible train

path

in Figure 8a. The passenger volume may differ among
various sections. We use a reference value to replace
the real value, as shown in Equation (2). Based on the
section-specific passenger flow between two adjacent
stations, we can obtain the maximum passenger volume
of successive sections.

qt
i, j = max

{
qt

i,i+1, qt+ei,i+1
i+1,i+2, . . . , qt+ei, j−1

j−1, j

}

∀t ∈ E, i, j ∈ C (2)

For example, in Figure 8b, assume that e1,2 =
3, e2,3 = 2, e3,4 = 2, q1

1,4 indicates the passenger
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Table 4
Decision variables

ut
i ( f ) 1, if train f departs from station i at time t

0, otherwise
vt

i ( f ) 1, if train f arrives at station i at time t
0, otherwise

xt,s
k,k′(g) 1, if rolling stock g departs from D-station k at

time t and arrives at D-station k′ at time s
0, otherwise

yt,s
k,k(g) 1, if rolling stock g waits at D-station k from

time t to time s
0, otherwise
and s = t + 1

zt,s
k,k(g) 1, if rolling stock g stops at depot connected

to D-station k from time t to time s
0, otherwise

volume between station 1 and station 4. According
to the passenger volume between two adjacent sta-
tions in Figure 8a, we can calculate the maximum
passenger volume between station 1 and station 4.
q1

1,4 = max{q1
1,2, q4

2,3, q6
3,4}, q2

1,4 = max{q2
1,2, q5

2,3, q7
3,4}.

As previously mentioned, the line topology structure
can be divided into two main categories: linear lines
and loop lines. Figure 9a shows the topologies of six
common types of rail transit lines. Each line may have
a single depot, such as type 1, type 3, and type 5, or
multiple depots, such as type 2, type 4, and type 6.
In types 1 and 2, depots are connected to origin or
terminal stations; in types 3 and 4, depots are connected
to intermediate stations. For mathematical modeling
purposes, we modify linear lines to loop lines by treat-
ing tracks in different directions as virtually different
stations. Thus, we can transform linear lines into a
looped line topology with one or more depots. A rolling
stock departs from a depot, travels some loops along
the stations and returns to the origin depot, as shown in
Figure 9b. In this example, type 1 has one depot, type
2 has two depots, and type 3 has three depots. Multiple
depot line trajectories must be coordinated to satisfy
the minimum train headway constraints at D-stations.

3.3 Bi-level mathematical model

In the traditional serial process of railway planning,
timetable scheduling is higher priority than rolling
stock assignment, the objective of timetable scheduling
usually is satisfying traffic demand, and the objective of
rolling stock assignment is to minimize the number of
rolling stocks in use or the number of infeasible trains
with given rolling stocks. Our integrated model aims to
find tradeoffs between these two objectives simultane-
ously and analyze the interaction between timetabling
and the rolling stock schedule. Thus, we use a bi-level
programming model to describe the integrated model
for URT. The objective of the upper level model is to
optimize train timetables, including minimizing waiting
times for passengers and reducing operating costs.
The objective of the lower level model is to schedule
rolling stock and minimize infeasible trains. When the
solutions of the upper level model and the lower level
model are all feasible, the problem will be solved.

3.3.1 The upper level model. In the upper level model,
we replace the waiting times of each passenger with the
number of queuing passengers in each time interval.
The values α, β are weights for the cost of passengers
and the operation cost.

obj up = Min (α × obj w + β × obj u) (3)

obj w =
∑

k∈D

∑

t∈E

φwt
k (4)

obj u =
∑

f ∈F

∑

k∈D

∑

t∈E

ϕut
k( f ) (5)

(1) “Passenger flow” constraints

The number of passengers waiting at time t is the
number of waiting passengers at the prior time t − 1
plus the number of arriving passengers at time t minus
the number of departing passengers at time t . At

Station 1
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Station 3

Station 4 Station 4

Station 1

Station 2

Station 3

1 3 52 4 6 7 8 9 1 3 52 4 6 7 8 9

1
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6
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2
1,2q
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2,3q

7
3,4q

1
1,4q 2

1,4q

(a) (b)

Passenger volume

Fig. 8. Illustration of passenger volume in sections. (a) Original and modified topologies of URT lines. (b) Trajectories
of rolling stocks.
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Fig. 9. Illustration of topological structure of URT lines and rolling stock arrangement.

saturation, the number of passengers on the train is
equal to Lmax, and at nonsaturation, the number of
passengers on the train is less than Lmax. Considering
cases of saturation and nonsaturation, we use “greater
than” in Equations (6)–(8).

wt
k ≥ 0 ∀t ∈ E, k ∈ D (6)

w1
k ≥ q1

k,k ′ −
∑

f ∈F

u1
k( f ) × Lmax ∀k, k ′ ∈ D (7)

wt
k ≥ wt−1

k + qt
k,k ′ −

∑

f ∈F

ut
k( f ) × Lmax

∀t ∈ E/{1}, k, k ′ ∈ D (8)

(2) “Train flow” constraints

Two trains that travel in the same direction cannot
depart from a station at the same time, and a reasonable
time interval between the trains is needed (typically,
the minimum headway is based on the shortest braking
distance between the trains given the train types and
the signaling systems). The interval between two con-
secutive train departures from the same station i must

be greater than or equal to the minimum departure
headway h.

∑

f ∈F

∑

t∈[r,r+h

ut
k( f ) ≤ 1 ∀r ∈ E, k ∈ D (9)

∑

f ∈F

∑

t∈[r,r+h

vt
k( f ) ≤ 1 ∀r ∈ E, k ∈ D (10)

Train flow f departs from D-station k at time t and
arrives at D-station k ′ at time t + ek,k ′ . If k ′ ̸= d( f ), it
departs from D-station k ′ at time t + ek,k ′

ut
k( f ) = v

t+ek,k′
k ′ ( f ) ∀t ∈ E, k, k ′ ∈ D, f ∈ F (11)

vt
k( f ) = ut

k( f ) ∀t ∈ E, k ∈ D/{d( f )}, f ∈ F (12)

For all train paths, the number of departure times
and arrival times are equal.

∑

k∈D

∑

t∈E

vt
k( f ) =

∑

k∈D

∑

t∈E

ut
k( f ) ∀ f ∈ F (13)
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3.3.2 The lower level model. The lower level model is
used to schedule rolling stock based on train flows. The
objective function is designed to minimize the number
of infeasible train paths.

obj low = Min obj x (14)

obj x =
∑

k∈D

∑

t∈E

η

[

ut
k( f ) −

∑

k ′∈D

∑

s∈E

xt,s
k,k ′(g)

]

∀ut
k( f ) = 1, f ∈ F, g ∈ G (15)

(1) “Flow conservation” constraints

For any space–time node (k, t), the number of
outflows is not more than one.

∑

s∈E

[
∑

k ′∈D

xt,s
k,k ′(g) + yt,s

k,k(g) + zt,s
k,k(g)

]

≤ 1

∀t ∈ E, k ∈ D, g ∈ G (16)

For any space–time node (k, t), the difference be-
tween outflows and inflows should be equal to 1 or
–1 if the node is a source or a sink node, respectively;
otherwise, it should be equal to 0.

∑
s∈E

[ ∑
k ′∈D

xt,s
k,k ′(g) + yt,s

k,k(g) + zt,s
k,k(g)

]

−
∑
s∈E

[ ∑
k ′∈D

xs,t
k ′,k(g) + ys,t

k,k(g) + zs,t
k,k(g)

]

=

⎧
⎪⎨

⎪⎩

1 t = 1, k = d(g)

−1 t = e, k = d(g)
0 otherwise

∀t ∈ E, k ∈ D, g ∈ G

(17)

(2) “Train flow” constraints

For any space–time node (k, t), the number of train
trajectories is no greater than the number of train
paths.
∑

k ′∈D

∑

s∈E

xt,s
k,k ′(g) ≤ ut

k( f ) ∀t ∈ E, k ∈ D, d( f ) = d(g)

(18)

For any space–time node (k, t), trains cannot be
overtaken in a station, and only one train at a time may
remain in a station.
∑

g∈G

∑

k ′∈D

∑

s∈E

xr,s
k,k ′(g)+

∑

g∈G

∑

t∈E

yr,t
k,k(g) ≤ 1 ∀r ∈ E, k ∈ D

(19)

(3) “Rolling stock” constraints

For any space–time node (k, t), a train cannot run
more than emax

run per day.

∑

k∈D

∑

k ′∈D

[

ek,k ′ ×
∑

t∈E

∑

s∈E

xt,s
k,k ′(g)

]

≤ emax
run ∀g ∈ G (20)

For any space–time node (k, t), a train cannot wait in
a D-station for more than emax

dwell each time.

∑

t∈E

∑

s∈[r,r+emax
dwell ]

yt,s
k,k(g) ≤ emax

dwell ∀r ∈ E, k ∈ D, g ∈ G

(21)

For any space–time node (k, t), a train cannot stop in
a depot for less than emin

stop each time.
∑

t∈E

∑

s∈[t,t+emin
stop)

zt,s
k,k(g) = 0 ∀k ∈ D, g ∈ G (22)

4 SIMULATED ANNEALING ALGORITHM

4.1 Algorithm feature and selection

The problem we have proposed is a large-scale combi-
natorial optimization problem including a large number
of constraints. The decision variables of the upper level
model are ut

i ( f ), vt
i ( f ), and wt

i , and the number of
decision variables is 2 × e × d × f + e × d. In the lower
level model, the decision variables are xt,s

k,k ′(g), yt,s
k,k(g),

and zt,s
k,k(g), and the number of decision variables is

3 × g × e × e × d × d. Assume that the operation time
of one subway line is 20 hours, a train runs every 5
minutes, and there are 2 depots and 50 rolling stocks.
Then, one day can be divided into 1,200 time intervals
(of 1 minute each). The number of decision variables
for the upper level model is 1,154,400, and the num-
ber of decision variables for the lower level model
is approximately 8.64 × 108. The sheer size of the
timetable optimization problem for a typical URT line
necessitates an algorithm that can solve the problem
effectively in a time-efficient manner.

To solve this problem, two types of algorithms
can be considered: (1) exact algorithms, such as the
Lagrangian relaxation algorithm and the column gener-
ation algorithm and (2) heuristic algorithms, such as the
genetic algorithm and the ant colony algorithm. Note
the following important considerations in our proposed
models: the decision variables of train paths are based
on the space–time network; train scheduling and rolling
stock assignment will interact with each other; a train
path will affect passenger flow and other train paths;
and the number of variables increases rapidly. The
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application of divide-and-conquer algorithms (such
as the Lagrangian relaxation algorithm and column
generation algorithm) is difficult because they require
decomposing the primal problem into subproblems,
and expressing the relationship of the subproblems.
The ant colony algorithm or genetic algorithm can
hardly address the complex constraints of this model.

SA has been adopted widely to solve engineering
problems, for example, the train platform prob-
lem (Kang et al., 2012), transit network optimization
problem (Zhao and Zeng, 2006), and bottleneck
routing problem at railway stations (Wu et al., 2013),
among others. It is a local search-based algorithm
that has a mechanism to escape from local optima
with the purpose of finding a global optimum. The
essential feature of the SA algorithm is allowing a
hill-climbing movement by introducing an acceptance
criterion. The calculation process of SA is simple and
robust. Moreover, it is suitable for parallel processing
and can be used to solve complex nonlinear optimiza-
tion problems. Considering these factors, we utilize
the SA metaheuristic to solve our proposed models
and to derive a near-optimal solution. We also tried
GAMS with the CPLEX solver to validate the model
and compare the calculation results to the results of
our algorithm. The evaluation function for solution A
is obj(A) = α × obj w + β × obj u + γ × obj x , where
γ is the penalty for the number of infeasible train
paths.

4.2 Procedures for the simulated annealing algorithm

The main process of the algorithm is using the train
timetable from the upper level as the input for the
lower level model. Some train paths will be deleted
after optimizing the rolling stock schedule. We will
iterate this procedure until a good solution is obtained.
In this section, we provide the detailed procedures of
the algorithm. The parameters of the algorithm are
shown in Table A1.

Step 1. Initialize parameters and variables.

Input data on line and passenger volume, initialize
parameters of the algorithm, and initialize variables
ut

i ( f ), vt
i ( f ) and wt

i , obj x, obj(A).

Step 2. Obtain an initial solution F of the upper level
model, and compute obj w, obj u.

We use a blank train timetable (F = ') as the initial
feasible solution.

Step 3. Impose a disturbance and generate a new solu-
tion F ′ of the upper level model.

To generate a new timetable solution, we choose the
existing train path randomly and use a greedy method
to enumerate possible neighboring feasible train path
and add to the existing train list.

Step 4. Neighborhood search method for rolling stock
assignment.

Step 4.1. Choose first train path without rolling stock
assigned, f ∈ F ′.

Step 4.2. Check the availability of rolling stock using the
FIFO (First In, First Out) principle. Available rolling
stocks are the rolling stocks which are located at a
specified depot and also satisfy constraints 20–22.

If the rolling stock is available, go to Step 4.5: assign
the rolling stock to a train path. If not, go to Step 4.3.

Step 4.3. Find next available rolling stock for train path
f till the last rolling stock in the depot.

Step 4.4. Was that entry the end of the rolling stock
stack?

If not, go to Step 4.5. Otherwise, all rolling stocks
are unavailable. This train path is infeasible and will be
deleted from the train path list; obj x′+ = 1, go to Step
4.1.

Step 4.5. Assign the rolling stock to train path f and go
to Step 4.1.

Step 4.6. If f > Fnum
k , obtain a solution A′ and compute

the evaluation function: obj(A), obj(A′).

Calculate the difference: (obj = obj A′ − obj A

Step 5. Update the current best solution:

Determine whether the new solution A′ is accepted
based on the Metropolis-Hastings algorithm. If (obj <

0, the new solution must be accepted; otherwise, the
new solution is accepted with a probability of paccept.

paccept=
{

1 (obj < 0
exp

(
−(obj

M

)
(obj ≥ 0

Step 6. Stop condition.

Two conditions may terminate the algorithm: (1) the
iteration number reaches the maximum limit and (2)
the stable iteration number reaches the maximum limit,
and the number of infeasible train paths is “0.” If one
condition is satisfied, we proceed to Step 8; otherwise,
we proceed to Step 7.

Step 7. Update temperature.

We update the temperature using a method of “two
stage-exponential decline,” which can ensure efficiency
and accuracy. The temperature decreases in two stages.
The temperature drop curve of each stage is an expo-
nential function. Upon reaching the specified number
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Fig. 10. Solution methodology procedures.

of iterations, the temperature is increased by a process
of ”warming up,” and then the temperature decreases
exponentially.

M =

⎧
⎨

⎩

M0 n = 0
ρrise × M0 n = N rise

ρ × M ′ otherwise

where M is the current temperature; M0 is the
initial temperature; M ′ is the temperature in the
previous state; N rise is the number of iterations
to increase temperature. The value ρ!(0,1) is a

constant close to 1, and ρrise!(0,1).
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Table 5
Model parameter definitions

Parameters Value Meaning

h 2 minutes and 15
seconds

Minimum departure and
arrival headway (time
interval) between two
consecutive train paths at
a station

α 1 Weight of passenger
waiting time

β 9,600 Weight of train frequency
γ 1,500,000 Weight of infeasible trains
emax

run 2,880 Maximum running time
emax

dwell 12 Maximum dwelling time in
D-stations

emin
stop 360 Minimum stopping time in

depots

Table 6
Date of Beijing rail transit Line 10

Line
Number of

depots

Number of
rolling
stocks

Number of
stations

Running
time (min-
utes/lap)

Line
length

(km/lap)

10 3 10, 24, 24 45 107 57.1

Step 8. Output the result.

The following iterative procedure was implemented
to solve the problems, as summarized in Figure 10.

5 CASE STUDY

We test the proposed algorithm on three real-world
lines (Line 2, Line 5, and Line 10) of Beijing’s railway

transit network in two situations (weekdays and week-
ends). Due to the limitations of this article, we only
list the case study of Subway Line 10 on a workday to
demonstrate the application of our optimization model
and algorithm. The scheduling algorithms are imple-
mented in Microsoft Visual Studio 2010 on Windows
7 OS. All experiments are conducted on a PC with an
Intel Core Duo 2.93 GHz CPU and 4 GB RAM.

Table 5 shows the parameter definitions: d is the
number of depots, and b represents the number of
time intervals of 1 minute. (For example, when b = 1, a
time interval is 60 seconds; when b = 4, a time interval
is 15 seconds.) The time span for the train operation
considered in this article is 20 hours (1,200 minutes),
from 5:00 AM to 1:00 AM the next day. The time interval
of passenger flow is from 5:00 AM to 11:00 PM for a total
time of 18 hours (1,080 minutes). Table 6 lists the data
of Beijing rail transit Line 10.

5.1 Results and analysis of Line 10

Line 10 of Beijing’s railway transit network is a ring
route. Three depots (refer to blue line in Figure 4)
connect with the Bagou station, Chedaogou station
and Songjiazhuang station, respectively. These three
stations are D-stations in our case. The minimum
departure headway between two consecutive train
paths is 2 minutes and 15 seconds. The time interval
is 15 seconds. In this case, b = 4, d = 3. We consider
the counter-clockwise direction of this ring line. The
passenger demand of Beijing rail transit Line 10 on
workdays is shown in Table A2. These data are real
data obtained for the Beijing Subway.

After 10 rounds of calculations, we obtain the results
(refer to Table 7) for Beijing rail transit Line 10 for
workdays. The calculation time for these cases is ap-
proximately 18 minutes. On workdays, the mean value

Table 7
Results for Beijing rail transit Line 10 (workdays)

Calculation times obj A obj w obj u obj x Number of iterations Computing time

1 15,811,540 7,286,740 888 0 204,487 0:19:05
2 15,958,062 7,346,862 897 0 282,806 0:15:01
3 16,102,443 7,548,843 891 0 247,470 0:20:27
4 15,866,348 7,399,148 882 0 272,230 0:18:26
5 16,058,657 7,562,657 885 0 213,494 0:20:19
6 15,798,396 7,215,996 894 0 251,425 0:17:04
7 15,886,218 7,303,818 894 0 239,748 0:15:33
8 15,774,205 7,163,005 897 0 228,145 0:19:45
9 15,971,274 7,388,874 894 0 260,432 0:16:12

10 16,028,443 7,359,643 903 0 247,070 0:16:17
Mean 15,925,559 7,357,559 893 0 244,731 0:17:49
STDV 115,406 127,923 6.2 – – –
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Table 8
Rolling stock schedule of depot for workdays

No. Running time (minutes) Rolling stock scheduling

1 642 [26 454][975 1,403][1,408 1,836][1,843 2,271][2,963 3,391][3,791 4,219]
2 642 [161 589][597 1,025][1,026 1,454][1,869 2,297][2,297 2,725][3,148 3,576]
3 642 [177 605][608 1,036][1,593 2,021][2,024 2,452][2,460 2,888][3,271 3,699]
4 642 [203 631][631 1,059][1,718 2,146][2,146 2,574][3,000 3,428][3,854 4,282]
5 535 [229 657][1,057 1,485][1,939 2,367][2,368 2,796][3,243 3,671]
6 535 [253 681][685 1,113][1,750 2,178][2,573 3,001][3,426 3,854]
7 642 [283 711][711 1,139][1,967 2,395][2,400 2,828][2,829 3,257][3,665 4,093]
8 642 [299 727][732 1,160][1,167 1,595][2,056 2,484][2,485 2,913][3,292 3,720]
9 535 [445 873][873 1,301][2,075 2,503][2,514 2,942][3,357 3,785]

10 642 [470 898][899 1,327][2,175 2,603][2,606 3,034][3,035 3,463][3,868 4,296]
11 642 [497 925][925 1,353][1,354 1,782][1,789 2,217][2,220 2,648][3,023 3,451]
12 535 [554 982][989 1,417][1,420 1,848][2,390 2,818][3,442 3,870]
13 642 [585 1,013][1,014 1,442][1,446 1,874][2,446 2,874][2,877 3,305][3,679 4,107]
14 642 [656 1,084][1,085 1,513][1,514 1,942][2,500 2,928][2,929 3,357][3,722 4,150]
15 535 [720 1,148][1,153 1,581][2,596 3,024][3,395 3,823][3,823 4,251]
16 642 [1,112 1,540][1,543 1,971][1,981 2,409][2,413 2,841][2,841 3,269][3,882 4,310]
17 428 [1,138 1,566][1,573 2,001][2,721 3,149][3,522 3,950]
18 535 [1,259 1,688][1,688 2,116][2,122 2,550][2,911 3,339][3,948 4,376]
19 535 [1,298 1,726][2,817 3,245][3,256 3,684][3,694 4,122][4,122 4,550]
20 535 [1,326 1,754][2,865 3,293][3,304 3,732][3,736 4,164][4,164 4,592]
21 535 [1,395 1,823][1,830 2,258][2,265 2,693][3,102 3,530][3,979 4,407]
22 321 [2,889 3,317][3,317 3,745][3,750 4,178]
23 321 [2,900 3,328][3,333 3,761][3,763 4,191]
24 321 [2,938 3,366][3,366 3,794][4,287 4,715]

Fig. 11. Iterative solution process of the evaluation function.

of obj A is 15925559, the average number of waiting
passengers is 567 persons/time interval (obj w/(b ×
d × 1,080)), and the average train frequency is 297
trains/day (obj u/d).

Table 8 shows the rolling stock schedule of the depot
that is connected to Chedaogou station for workdays.
The first column represents the rolling stock number.
The second column shows the total number of running
time intervals for each rolling stock. In this case, the
time interval is 15 seconds. The third column represents
the timetable of every rolling stock. For example, [26

454] indicates that the first rolling stock begins its first
service at the 26th time interval and ends at the 454th
time interval (service time interval is 107 minutes). Sim-
ilarly, its last service starts at the 3,791st time interval
and ends at the 4,219th time interval. The total running
time for the first rolling stock is 642 minutes. This depot
has a total of 24 rolling stocks, and all are used in the
schedule. As previously mentioned, the time span of
the rolling stock operation is 1,200 minutes. The results
reveal that the proposed model and the algorithm
apply to the rail transit ring line of multiple depots
and can achieve an approximate optimal solution. The
train timetable for Beijing rail transit Line 10 during
workdays is shown in Figure A1.

5.2 Efficiency analysis of the algorithm

Figure 11 illustrates the iterative solution process of the
evaluation function for Beijing rail transit Line 10 on
a workday. The horizontal axis represents the number
of iterations, and the vertical axis represents the eval-
uation function. The value of the evaluation function
decreased with further iterations and stabilized before
the maximum number of iterations had been completed.
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Table 9
Comparison of different solving methods

Case
Number of

depot Solver obj A
Comparison of

object value
Computing time

(seconds)
Comparison of

computational time

Line 2, workday 1 Upper level
model/CPLEX

1,268,350 1 8 1

Upper level model/SA 1,286,750 1.01 12 1.5
Bi-level model/

SA+neighborhood
searching

1,292,500 1.02 15 1.875

Line 5, workday 2 Upper level
model/CPLEX

3,810,410 1 4,239 1

Upper level model/SA 3,788,936 0.99 95 0.02
Bi-level model/

SA+neighborhood
searching

3,808,960 1 126 0.03

Line 10, workday 3 Upper level
model/CPLEX

18,624,221 1 9,369 1

Upper level model/SA 15,542,351 0.83 682 0.07
Bi-level model/

SA+neighborhood
searching

15,958,062 0.86 1,004 0.11

We also apply a similar optimization approach to
Line 2 and Line 5 in Beijing. To evaluate the efficiency
of the proposed algorithm, we try to use GAMS with
the CPLEX solver to solve the model and compare the
results of different methods. Due to the scale of the
lower level model, the CPLEX solver cannot solve the
lower level model. We only list the calculation results of
the upper model solved by CPLEX and SA (γ=0) and
the bi-level model solved by SA. We employ the calcu-
lation results of the CPLEX solver as a benchmark and
perform a comparative analysis. Table 9 compares the
different solving methods. Three cases are employed:
Line 2 on workdays, Line 5 on workdays, and Line 10
on workdays. For a large-sized problem, our proposed
algorithm outperforms the commercial software.

The following observations are based on the results
presented in Table 9:

(1) For Line 2 on workdays, the results of the upper
level model using CPLEX and SA are similar, but
the computing time for the CPLEX solver is faster
than the computing time for SA. SA and neigh-
borhood searching can obtain the solution for the
bi-level model within 15 seconds.

(2) For Line 5 with a time interval of 30 seconds and
two depots, the results of the upper level model
using CPLEX and SA are similar, but the comput-

ing time for the CPLEX solver exceeds 1 hour, and
the computing time for SA is less than 2 minutes.
SA and neighborhood searching can obtain a bet-
ter solution of the bi-level model within 3 minutes.

(3) For Line 10 with a time interval of 15 seconds and
3 depots, the CPLEX solver can barely obtain a
solution of the upper level model in more than 2
hours, whereas SA and neighborhood searching
can obtain the solution within 16 minutes and 44
seconds. The objective function value is improved
by more than 14%.

From these observations, it appears that SA, as a
meta-heuristic approach, is fast but cannot guarantee
global optimality. For a practical, large-scale problem,
SA may be a promising approach to yield adequate so-
lutions (but not necessarily perfect) given a reasonable
time span.

6 CONCLUSIONS

This article proposes a new mathematical model for
the optimization of train service plans, train timetables
and rolling stock schedules for URT. This model can
simultaneously reduce passenger waiting time and train
operation costs while improving the utilization of train
sets.
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First, we introduce three key elements in URT lines
and propose a general train flow model that can be
employed across all topologies of train lines. Then, we
apply a bi-level programming model to formulate the
scheduling problem for URT. The upper level model
optimizes train timetables by minimizing waiting times
for passengers and operation costs for URT systems.
The lower level model is used to schedule rolling stock
by minimizing the number of infeasible train paths. We
use a simulated-annealing-based heuristic algorithm to
solve the large-scale model. We test our optimization
mathematical model and algorithm using a case study
of the Beijing rail transit network. The calculation
results indicate that the proposed model and algorithm
can obtain reasonable schedule planning. In particular,
our newly integrated algorithm can rapidly obtain a
near-optimal solution and best utilize rolling stock,
which renders it useful for complex real-world applica-
tions. The application of this method in the real world
can help subway operators make decisions quickly and
precisely. In addition, although the methodology and
optimization model are presented in the context of a
rail transit train timetable and rolling stock schedule in
this article, they can also be applied to high-speed and
freight rail lines.

Our future research will focus on three major areas.
First, the neighborhood searching method for vehicle
scheduling is not a global optimization method; we aim
to improve the algorithm’s performance. Second, the
model can be extended to account for train skip-stop
patterns and long/short trains. Finally, we will refine
and validate the proposed model with observed data
from URT systems in Beijing.
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APPENDIX A

Table A1
SA algorithm parameter definitions

Parameter Value Meaning

Number of time intervals 4,800 Number of time intervals
M0 6,000,000 Initial temperature
ρrise 0.3 Heating coefficient
ρ 0.95 Cooling coefficient
N0 720,000 Maximum number of iterations
N stop 3,600 Iteration number of terminating algorithm for no

longer improvement
N1→2 72 Iteration number in initial stage
N2→3 1,440 Iteration number in medium term
N update 3,600 Iteration number for temperature to update
N rise 180,000 Iteration number for temperature to increase
pchange

1 1/600 Update probability in initial stage
pchange

2 1/2,400 Update probability in medium term
pchange

3 1/12,000 Update probability in later stage
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Table A2
Passenger demand of Line 10 on workdays

Scenarios Section 5:00–7:00 7:00–9:00 9:00–11:00 11:00–17:00 17:00–19:00 19:00–22:00 22:00–23:00

Workday
(persons/min)

Bagou→Chedaogou 50 400 200 200 400 200 50

Chedaogou→Songjiazhuang 50 500 450 400 500 400 50
Songjiazhuang→Bagou 50 500 450 400 500 400 50

Fig. A1. Train timetable of Beijing rail transit Line 10 on workdays.


