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A B S T R A C T   

Track geometry is highly important for ensuring railroad safety. Predicting track geometry degradation can 
support preventive maintenance by identifying and prioritizing track segments that are more prone to potential 
track geometry defects. This paper develops a novel machine learning approach that can simultaneously geo-
spatially align track geometry data from multiple inspections accounting for positional errors, and also predict 
foot-by-foot track geometry change over time. The proposed position correction method considers multiple 
geometry parameters to provide highly accurate positional information for geometry measurements, which is a 
prerequisite for foot-by-foot track geometry prediction. A hybrid CNN (convolutional neural network)-LSTM 
(long short-term memory neural network) machine learning model is developed to account for spa-
tial–temporal dependence with respect to foot-by-foot track geometry change. Specifically, CNN is used to 
incorporate spatial dependence of track geometry on adjacent segments. LSTM is applied to learn dynamic 
changes in track geometry data over time to consider the temporal dependence. The hybrid CNN-LSTM model is 
validated using track inspection data provided by one major freight railroad in the United States. The results 
show that our positional error correction method can reduce the relative positional error to less than 1 foot with a 
99% confidence interval. Our proposed CNN-LSTM model outperforms four other models, including a naïve 
model (using the last observation), multi-layer perceptron (MLP), plain CNN, and plain LSTM, for both short- 
term and long-term prediction periods. The proposed hybrid machine learning methodology can be adapted 
to various other freight and passenger rail lines. The predictive track geometry change information can be used 
by the industry to plan and prioritize resources for preventative maintenance, yielding benefits in safety and 
operational efficiency.   

1. Introduction 

Track geometry is one of the most important factors in rail infra-
structure management and maintenance [1,2]. Track geometry degra-
dation can lead to significant increases in the dynamic loads between 
rails and wheels, decreasing track service life and jeopardizing rail 
transportation. According to the Federal Railroad Administration (FRA) 
rail equipment accident database, track geometry defects are the second 
largest cause of freight-train derailments in the United States [3], 
following broken rails. Accurate track geometry prediction can assist 
maintenance staff in preventive maintenance that aims to improve the 
safety and sustainability of freight rail service. In this way, rail trans-
portation safety can be enhanced alongside an increase in economic 
competitiveness within the industry. 

Autonomous track assessment cars (ATACs) travel in revenue ser-
vice, measuring track geometry including profile, alignment, gauge, 
crosslevel, and warp (Fig. 1). The track geometry data are sampled at 1- 
foot intervals. To improve the inspection quality, concrete is added to 
increase the weight of the ATACs (to 110 tons total) [4]. 

Modeling and predicting track geometry have been key parts of the 
advanced railroad management system and are important for predictive 
maintenance and capital planning [5,6]. However, accurate foot-by-foot 
track geometry prediction has been challenging due to issues of posi-
tional error (offset) and complex temporal and spatial dependence: 

(1) Positional error: The offset between two geometry measure-
ments has been extensively studied in previous research to pro-
vide high-quality geometry data for track condition evaluation 
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and prediction [7,8]. These studies also indicate that highly ac-
curate positional information is essential for microscale track 
condition analysis, such as foot-by-foot track geometry 
prediction.  

(2) Temporal dependence: Generally, track segments with greater 
geometry amplitudes tend to experience significantly higher dy-
namic loads between wheel and rail, leading to faster degrada-
tion. Track geometry changes dynamically over time due to the 
influence of traffic [9–12], curve [13], grade [14], track class/ 
speed [15,16], and other factors [17,18].  

(3) Spatial dependence: Track geometry of adjacent track segments 
might be correlated and has similar degradation patterns. The 
infrastructure (e.g., curve and grade) and substructure condition 
(e.g., settlement, fouling level, and drainage properties) of adja-
cent segments are correlated, resulting in similar geometry 
amplitude and degradation patterns [19]. However, spatial 
dependence in track geometry has not yet been investigated in 
previous studies. To this end, this paper introduces a method to 
evaluate the spatial dependence of geometry amplitude and 
degradation, as shown in Fig. 2(a). The spatial correlation of 
geometry amplitude is calculated by comparing two geometry 
measurements with different offsets. To determine the spatial 
correlation of geometry degradation, the change in amplitude is 
first generated by taking the difference between two measure-
ments. Subsequently, the correlation is given based on the 
degradation amplitudes and lagged (shift) copies of the values. 
The correlation results (Fig. 2(b)) indicate that both geometry 
amplitude and geometry change (degradation) are spatially 
correlated with the values on adjacent track segments, especially 
for geometry amplitudes. 

The issues described above make it challenging to accurately predict 
foot-by-foot track geometry measurements. First, accurate positional 
information is a prerequisite for predicting foot-by-foot track geometry. 
A novel data alignment method is proposed to provide highly accurate 
relative positional information to align multiple geometry measurement 
data. Some new issues in geometry measurements have been found to be 
associated with the data collected by inspection vehicles approaching 
from two directions (see Section 4.1.1), and an algorithm for data 
alignment needs to be developed to handle geometry data with these 
issues. The second challenge is predicting the geometry over a short 
segment because of the complex spatial–temporal dependence. This 
means that the dynamic changes of geometry over time (temporal 
dependence) and the inter-segment degradation correlation (spatial 
dependence) must be taken into account. In this paper, we develop a 
novel hybrid machine learning method to capture the spatial–temporal 
dependence of track geometry to achieve highly accurate predictions. 

2. Literature review 

Data alignment (synchronization) is a crucial component of 
analyzing time series data in order to identify variations and common 
patterns across individual signals [20,21]. In railway engineering, po-
sitional error is a common issue associated with geometry measurement, 
which is caused by radius errors of the rolling wheel [22,23], wheel/rail 
contact condition (e.g., slip and slide) [24], and calibration frequency of 
the measurement system [25,26]. Positional errors can be divided into 
two categories: (1) absolute positional error, and (2) relative positional 
error. Absolute positional error refers to the difference between the 
positional information inspected and the actual location. Relative posi-
tional error refers to the difference of positional information between 
multiple measurements [27]. The absolute positional information is 
important for maintenance workers to locate the geometry defects on 
the track that are detected during inspection. To correct absolute error, 
physical positional devices including global positioning system (GPS) 
[26,28–31], differential global positioning system (DGPS) [32], and 
radio frequency identification (RFID) [33] are applied during the in-
spection process. Algorithms were proposed to match the characteristics 
of track equipment (i.e., curves and turnouts) during the inspection and 
to correct the absolute positional error using actual positional infor-
mation [27,34]. 

On the other hand, accurate relative positional information is needed 
for track degradation analysis, especially for foot-by-foot track geometry 
degradation predictions. Most researchers manually selected one pre-
vious inspection dataset as their reference file for aligning the current 
inspection data. The least square method is a commonly used alignment 

Fig. 1. Schematic Diagrams of Some Track Geometry Characteristics.  

Fig. 2. Correlation of Geometry Measurements Under Different Offsets.  
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method that compares the total sum of squares of signals to determine 
offsets [35,36]. Cross-correlation coefficient was also applied to mea-
sure the similarity and determine the lag that maximizes the correlation 
between the two signals [37]. Dynamic time warping (DTW) and 
extension of DTW (i.e., variable penalty DTW) utilize a distance matrix 
and a warping path to align datasets in different fields including track 
geometry alignment [38] and spoken word processing [39]. 

However, the aforementioned models are subject to outliers in the 
inspection data. The position of geometry data could be falsely corrected 
if the selected geometry parameter included multiple outliers [8]. Cor-
relation optimized warping (COW) divides the signals into smaller 
segments of equal length and aligns corresponding segments by 
stretching or compressing them, which can reduce the impact of outliers 
on the alignment process [40]. Similarly, partial linear fit [41], interval 
correlated shifting [42], and peak alignment by Fast Fourier Transform 
[43] align datasets based on local correlation by splitting the dataset 
into equal segments. To take both local and global correlations into 
consideration, hierarchical cluster-based peak algorithm [44] and 
segment-wise peak alignment were developed [45]. Furthermore, Wang 
et al. [8] proposed a more robust position synchronization model by 
considering multiple parameters of geometry information in high-speed 
railroads, which could reduce the miscorrection of positional errors even 
if one geometry parameter data had multiple outliers or missing values. 
Recently, a combined method based on recursive alignment by fast 
fourier transform and correlative optimized warping was applied to 
improve the alignment precision of different inspection measurement 
data [7]. The positional errors of single track geometry defects could be 
reduced to below 0.25 m. Nevertheless, when dealing with geometry 
data collected by inspection vehicles approaching from two directions, 
new challenges arise, such as rail sides and data sign contradictions, 
which have not been addressed in previous studies. 

Predictive maintenance for railroads using data-driven models le-
verages the prediction of infrastructure and rolling stock deterioration to 
proactively schedule maintenance activities [5,46]. They are crucial for 
maintaining the reliability and functionality of infrastructure and rolling 
stock to ensure the safety and efficiency of rail transportation and to 
avoid service disruptions [47]. Track geometry prediction has been one 
of the most important aspects in this context, as geometry can signifi-
cantly impact the service life of both infrastructure and rolling stock. 
The degradation process of track geometry is subject to dynamic changes 
influenced by varying operation conditions (e.g., traffic volume and 
speed) and track components (e.g., grade and curve), which requires 
massive dynamic and static datasets from different sources to accurately 
predict the changes over time. 

Extensive data-driven models have been developed in the field of 
track geometry prediction. Earlier prediction of TQI (Track Quality 
Index) can be found in Hamid and Gross [13], wherein they used a 
stepwise regression model considering previous TQI and physical pa-
rameters such as tonnage and speed. Other statistical methods, including 
linear function [48], exponential function [18], multi-stage linear model 
[49], piecewise linear regression model [50,51], autoregressive (AR) 
model [52], and autoregressive moving average (ARMA) method [53], 
have been applied to predict track geometry over a defined track section, 
such as 200-meter track section. Some other researchers have consid-
ered stochastic modeling techniques to characterize track geometry 
degradation, with Gaussian random process [54], bivariate Gamma 
process [55], Markov chain model [56] being explored. Furthermore, a 
survival model, a brunch of stochastic models, was developed to study 
the degradation of geometry defects and to model derailment risk as a 
function of track conditions [57]. The methods mentioned above are 
parametric as they rely on predefined functional forms and assumptions 
about the data distribution, which limits the flexibility and scalability of 
models in capturing complex relationships in the data. 

With the development of big data and artificial intelligence, non- 
parametric machine learning models have been proposed and 
employed in recent years to predict track geometry degradation, 

including random forests (RF), support vector machine (SVM), and 
artificial neural networks (ANNs). For example, RF was used to predict 
the future track deterioration index that was calculated based on the 
standard deviation of track geometry parameters [58]. Hu and Liu [15] 
elaborated SVM to predict both the change in track geometry defect 
amplitude, and when a yellow tag defect might grow large and become a 
red tag defect. Later, Lasisi and Attoh-Okine [59] applied the SVM model 
to predict deviation from the predefined TQI threshold and found that 
SVM outperformed the RF for the studied dataset. Multi-layer percep-
tron (MLP) consists of multiple layers of neurons where each is fully 
connected to those in the layers below and above [60]. MLP was applied 
to predict the track geometry deterioration rate [61] and geometry 
change in terms of TQI [16] over a track section. Three types of models, 
RF, SVM, and MLP, were employed to predict the track degradation 
index (a mixture of geometry deviations) for a tram network using 
vehicle acceleration data [62]. They found that RF made more accurate 
predictions compared to the other developed models (i.e., SVM and 
MLP) [62]. However, the aforementioned studies can only be used to 
predict the track geometry over a long track section and could not 
provide accurate predictions over short segments (foot-level) because of 
the ignorance of spatial dependence of geometry. 

In addition to MLP, other common neural networks are the con-
volutional neural network (CNN) and recurrent neural networks (RNN). 
CNN has been widely used to acquire spatial dependence in image 
recognition [63], audio [64], and text [65]. RNN improves prediction 
accuracy iteratively by incorporating the previous output as an addi-
tional input [66]. Thus, RNN is particularly suited for applications with 
sequential data, and is able to consider the temporal dependence, such 
as track circuit fault diagnosis [67] and text mining [68]. However, CNN 
or RNN considered only one type of data characteristic (spatial or 
temporal feature) in their analysis. To overcome this limitation, the 
graph convolutional network (GCN) was applied to consider the spatial 
and temporal dependence of data with a complex graph structure 
including trafffic flow prediction [69] and clash change component 
prediction [70]. 

On the other hand, the railroad is a linear engineering infrastructure. 
CNN is able to perform convolution operations to consider the spatial 
effect from adjacent track segments, which is similar to acquiring spatial 
dependence in image recognition. To this end, the hybrid neural 
network, CNN-RNN, has shown its powerful capacity for feature 
extraction by taking advantage of both CNN and RNN. It has demon-
strated its superior performance in multiple applications such as the 
prediction of vehicle-body vibration [71], patent risk prediction [72], 
and residential assistance [73]. Nevertheless, traditional RNN models 
often suffer from the vanishing gradient problem, which hinders their 
ability to learn long-term dependence in the data. In contrast, LSTM is an 
improved form of RNN, which introduces memory blocks instead of 
conventional simple RNN units to handle the problem of vanishing and 
exploding gradient [74–76]. LSTM algorithm learns long-term depen-
dence between time steps in time series and sequence data. In other 
words, LSTM provides better capability in handling long sequences and 
capturing the temporal dependence in the data. In summary, by 
combining the strengths of both CNN and LSTM, the hybrid network 
could extract both spatial and temporal features from data in a more 
robust and effective way. This demonstrates the potential of the CNN- 
LSTM approach for analyzing track geometry data. 

3. Knowledge gap and intended contribution 

Many studies have been conducted to handle the offset between 
multiple geometry measurements [7,8,35–38]. Multiple geometry pa-
rameters were considered to provide a robust estimation of the posi-
tional errors for passenger railroads [8]. However, for geometry data 
collected by inspection vehicles approaching from two directions, issues 
including rail sides and data sign contradiction would occur, and have 
not been considered in previous studies. Therefore, a customized 
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algorithm is needed to properly handle geometry data with this issue. 
Furthermore, there are many existing geometry prediction methods 

that consider temporal dependence, including linear function [48], 
exponential function [18], stepwise autoregression model [13], SVM 
[15], RF [58], and MLP [16,62]. While those methods consider the 
dynamic change of track geometry, they do not account for the spatial 
dependence of track geometry degradation over a short track segment, 
especially for foot-by-foot track geometry prediction. 

Considering the limitations of prior studies, this paper develops a 
spatial–temporal approach for predicting foot-by-foot track geometry 
measurement by considering spatial and temporal dependence based on 
the aligned track geometry data after automatically correcting posi-
tional errors. Our specific research tasks are as follows. First, this 
research proposes an algorithm for aligning multiple geometry mea-
surements collected by vehicles approaching from two directions. Then, 
based on the processed data and other related data (i.e., traffic, speed, 
grade, and curvature), a spatial–temporal model, CNN (convolutional 
neural network) -LSTM (long short-term memory neural network), is 
developed to predict the foot-by-foot geometry measurement. This can 
assist maintenance staff in preventive maintenance and proactive 
planning that aim to improve the safety and sustainability of rail service. 
This paper provides the following key contributions:  

1. A spatial–temporal model, CNN-LSTM, is proposed to effectively 
capture spatial and temporal information from data.  

2. A case study has been conducted based on track inspection data from 
Class I U.S freight railroad mainlines to demonstrate the feasibility of 
the proposed approach for practice in the industry. To the best of our 
knowledge, this is the first time that both spatial and temporal 
dependence have been simultaneously considered in foot-by-foot 
track geometry prediction on railroads. CNN is employed to extract 
the spatial features from different track segments as inputs. Based on 
the obtained time series data with spatial features, the LSTM model 
was applied to capture temporal patterns and predict the dynamic 
changes in geometry.  

3. Multi-source data including historical geometry measurements, 
traffic, speed, grade, and curvature are included in the spa-
tial–temporal model.  

4. An algorithm for aligning the multiple track geometry measurements 
on railroads is customized to provide accurate relative positional 
information for geometry measurements. 

4. Methodology 

A novel spatial–temporal hybrid machine learning model is proposed 
in this paper to predict foot-by-foot track geometry on railroads. Fig. 3 
illustrates the technical framework of the proposed research. The 
framework mainly consists of data preparation and spatial–temporal 
modeling for predicting track geometry. 

Data preparation consists of three steps: positional error correction, 
data cleaning, and data integration. The method for aligning the relative 
position of track geometry data includes mapping rail sides and cor-
recting relative positional errors. Then, data cleaning is applied to 
address the data issues including missing values and outliers. Data 
integration combines different databases related to geometry measure-
ments, infrastructure data, and operation data according to positional 
information. Based on the processed data, a hybrid CNN-LSTM model is 
developed to predict foot-by-foot track geometry measurements by 
capturing both the spatial and temporal features. The following sub-
sections present the proposed methodology in detail. 

4.1. Data preparation 

4.1.1. Positional error correction 
Mapping Rail Sides 
Typically, in high-speed railroad networks, trains travel in one di-

rection on one track [8]. However, single track is commonly seen on 
freight railroads where track geometry inspection vehicles run in two 
directions on same track, as shown in Fig. 4. The first issue associated 
with geometry measurements from this kind of inspection is rail side 
contradiction. If one inspection vehicle (Vehicle 1) travels from left to 
right, the positional information in inspection files is recorded in 
ascending order. In this case, Rail 1 and Rail 2 are defined as left and 
right rail in the geometry measurement, respectively. However, when 
another inspection vehicle (Vehicle 2) runs from right to left, the posi-
tional information is in descending order. Rail 1 and Rail 2 are recorded 

Fig. 3. The Framework of Positional Error Correction and Track Geometry Prediction.  
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as right and left rail, respectively. 
Furthermore, there is the sign (positive or negative values) contra-

diction issue. The alignment of Rail 1, for example, is offset to the left 
and is recorded as having positive amplitudes in the database collected 
by Vehicle 1. The same geometry would be recorded as being offset to 
the right, which is indicated as having negative values in the database 
from Vehicle 2. 

To solve the issues caused by inspection vehicles running in opposite 
directions, geometry measurements with the positional information in 
ascending order are used as reference files to uniform geometry mea-
surements. The detailed procedures for handling the geometry mea-
surements collected from the other direction (data recorded in 
descending order) are presented in Table 1. 

Correction of Relative Positional Error 
Correcting the relative positional error refers to shifting the foot-by- 

foot position of geometry measurement data to the most likely position. 
Prior to this, it is important to estimate the positional error. 

Suppose that there are two track geometry inspection runs at the 
time of i and j with track geometry measurement (e.g., profile) as Xi and 
Xj (Fig. 5), respectively. For a track segment, the geometry measurement 
from i and j inspections are: 

X(k,l)
i =

{

xin|k−
l
2
< n < k+

l
2

}

(1)  

X(k,l)
j =

{

xjn|k−
l
2
< n < k+

l
2

}

(2)  

where k is the central point of the track segment and l is the segment 
length. 

The relative positional error (offset) of segment k in i inspection with 
respect to j inspection (Xj is used as reference data) is δij, which is 
defined as the distance to maximize the Pearson correlation coefficient r. 
The positional error δij is calculated using Eq. (3). 

δij = argmax
δ

(
r
(

X(k,l)
i ,X(k+δ,l)

j

))
(3)  

r
(

X(k,l)
i ,X(k+δ,l)

j

)
=

cov
(

X(k,l)
i ,X(k+δ,l)

j

)

σX(k,l)
i • σX(k+δ,l)

j

(4)  

Where σ is the standard deviation, and cov is the covariance of two 
vectors. In this case, the correlation coefficient ρij is defined in Eq. (5). 

ρij = r
(

X(k,l)
i ,X(

k+δij ,l)
j

)

(5)  

When m(i, j < m) inspection runs are conducted on the railroad, the 
relative positional error of segment k between two inspection files can be 
denoted using an overall error matrix E. 

E =

⎡

⎣
δ11 ⋯ δ1m
⋮ ⋱ ⋮

δm1 ⋯ δmm

⎤

⎦ (6)  

The relative positional error can be falsely estimated due to the periodic 
geometry pattern and outliers in the geometry measurement. Therefore, 
three constraints are introduced to avoid the false estimation of relative 
error, as shown in Eq. (7). 

First, the relative error should be limited to a given threshold δ0, to 
avoid false mapping of the geometry measurements with periodic ge-
ometry patterns. Second, the correlation coefficient between geometry 
measurements at different times should be greater than threshold ρ0 
because they are highly correlated and have similar geometry patterns. 
Last, positional errors of adjacent track segments are similar, which 
means that the difference of positional errors between two adjacent 
track segments ∇δij should be limited to a given threshold δ1. 

s.t. :

⎧
⎨

⎩

δij ≤ δ0
ρij ≥ ρ0
∇δij ≤ δ1

(7)  

Fig. 4. Illustration of Geometry Inspection Car Movement from Two Directions on Railroads.  

Table 1 
Procedures for Handling Geometry Measurement Collected from the Other 
Direction.  

Geometry parameter Switch the rail side Change the sign 

Left/Right rail profile √ – 
Left/Right rail alignment √ √ 
Gauge – – 
Crosslevel – √ 
Warp – √  

Fig. 5. Relative Positional Error Between Two Geometry Inspections.  
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Once the false estimation is identified using one geometry parameter, 
other geometry parameters are used for positional error correction. Prior 
to using other parameters, the positional errors between the different 
parameters are addressed using the method proposed by Wang et al. [8]. 
For example, the profile is used as the geometry parameter in positional 
error estimation. When the δij is obtained using Eq. (3), and the con-
straints (Eq. (7)) are violated, the alignment will be used as the geometry 
parameters for positional error estimation. This process is iteratively 
performed until the correct error is determined. When the reliable 
estimation cannot be determined after leveraging all geometry param-
eters, δij in E would be replaced with a missing value. 

The most likely position is determined based on the assumption that 
the relative positional error of each pair of two files is randomly 
distributed. In other words, the summation of the distance from the 
measured positions to the most likely position is equal to zero. Addi-
tionally, the most likely position provides minimum difference from all 
measured positions. Therefore, the offset of a track segment between the 
position measured from i inspection to the most likely position θ*

i can be 
determined by Eq. (8). 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

θ*
i = argmin

θi

∑m

i=1

∑m

j=1

(
δij − θi

)2

∑m

i=1
θi = 0

(8)  

The augmented Lagrangian method is applied to solve the least squares 
problem with equality constraint by defining the Lagrangian function 
(Eq. (9)). It combines the objective function with a penalty term for 
constraint violations. 

L =
∑m

i=1

∑m

j=1

(
δij − θi

)2
+ λ

∑m

i=1
θi +

μ
2
∑m

i=1
θ2

i (9)  

where λ is the Lagrange multiplier and μ is the penalty term. 
The Lagrangian function L is minimized by computing the gradient of 

the function with respect to the variables δij and θi, updating the esti-
mates for the variables, and iteratively updating λ. If the constraint is 
satisfied, increase the value of μ. If the constraint is not satisfied, 
decrease the value of μ. This procedure is recursively repeated until the 
constraint is satisfied and the objective function is minimized to the 
desired tolerance. The most likely position θ*

i can be estimated using Eq. 
(10). 

θ*
i =

1
m
∑m

i=1
δij −

1
m2

∑m

i=1

∑m

j=1
δij (10)  

When δij is identified as a false estimation, it is defined as a missing 
value. To consider the effect of false estimations, a binary variable bij is 
introduced to indicate if the relative positional error can satisfy the 
constraints, which is shown in Eq. (11). The number of reliable esti-
mations m* is calculated using Eq. (12). 

bij =

{
1,whenδij ≤ δ0 ∩ ρij ≥ ρ0 ∩∇δij ≤ δ1

0, otherwise (11)  

m* =
∑m

j=1
bij (12)  

Finally, the most likely position θ*
i is defined by Eq. (13) with consid-

eration of the false estimation. 

θ*
i =

1
m*

∑m

i=1
δijbij −

1
m*2

∑m

i=1

∑m

j=1
δijbij (13)  

After having offset for each track segment, the linear interpolation 
approach is applied to generate the positional information after 
correction. 

4.1.2. Data cleaning 
The previous section presents the algorithm that can provide a robust 

correction of positional error even with outliers in the raw geometry 
measurement data. However, data issues including outliers and missing 
values can still significantly affect the machine learning model and track 
geometry prediction. In this research, the change rate of each set of two 
adjacent track segments (one foot) is applied to identify the outliers in 
the geometry data. When the change rate is greater than a given 
threshold c, the geometry amplitude is defined as an outlier. For ge-
ometry data at location n inspected at time of i denoted by xin, the cri-
terion for identifying outliers is represented by Eq. (14). 

|xin+1 − xin| ≤ c (14)  

Once the outliers are detected using the criterion above, values from the 
nearest track segments are applied to replace these outliers as well as the 
missing values. In the studied railroad network, 0.15 % of data has 
outliers or missing values. 

4.1.3. Data integration and splitting 
Data integration is performed to integrate various datasets into one 

file. First, relevant features that impact the deterioration of track ge-
ometry are extracted to capture the key influencing factors identified in 
the literature review. Specifically, historical track geometry measure-
ments, annual traffic density (in MGT), curve degree, maximum allow-
able speed for each track segment, and track grade are used as the input 
variables for the proposed model. Multiple geometry files (p in total) and 
other related datasets are collected, which are combined according to 
location information, as shown in Fig. 6. Prefix, Track Number (single or 
multiple tracks), Milepost, and Feet are used to unify each track segment 
(one row) in the integrated file. 

Once the inputs and outputs of the model are in one integrated file, 
the entire dataset is divided into training, validation, and test data. The 
training and validation data are implemented to develop a machine 
learning model. The test data is used to evaluate the performance of the 
model at predicting unseen data. In this research, 60 %, 20 %, and 20 % 
of the entire dataset were split according to temporal order for model 
training, validation, and testing, respectively, which could avoid data 
leakage causing model overfitting. 

4.2. Track geometry prediction 

The data-driven approach proposed for foot-by-foot geometry pre-
diction includes spatial dependence modeling and temporal dependence 
modeling. The proposed model was fit on training data and was ulti-
mately evaluated based on test data. In the model development stage, a 
hybrid CNN-LSTM model was developed to simultaneously account for 
the spatial and temporal dependences of track geometry measurement. 
CNN was used to capture the spatial features with the historical geom-
etry data from different track segments as inputs. Based on the obtained 
time series data with spatial features, the LSTM model was applied to 
extract temporal features and predict the dynamic changes in geometry. 
The predicted track geometry amplitudes were generated through a fully 
connected (FC) layer. 

4.2.1. Spatial dependence modeling 
The main building block of CNN is the convolution layer, a mathe-

matical operation that performs vector inner product to merge different 
sets of information. In this way, CNN is able to consider spatial depen-
dence by automatically extracting local spatial features from the inputs 
and combining the local features into higher-order features. 

This research sets the threshold of correlation coefficient at 0.8 to 
determine the length of segments with spatial dependence. At a certain 
offset, if there exists a strong correlation (over 0.8) between two ge-
ometry measurements (or geometry degradation), it is considered to be 
spatially correlated. Fig. 2(b) indicates that the geometry degradation (i. 
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e., change of geometry amplitude) of a track segment is highly corre-
lated with segments that are within two-foot offset. In terms of geometry 
amplitude, the offset of track segments with spatial dependence is 
extended to about 5 feet. In this research, the spatial features include 
geometry measurements within 5 feet of the central segment, allowing 
the consideration of spatial dependence of geometry degradation and 
amplitude. 

As shown in Fig. 7, assuming that segment #6 is the central segment, 
the CNN model is applied to consider the spatial relationship between 
the central segment and its adjacent segments. In other words, the in-
fluence of historical geometry measurements from segment #1 to #11 
are included to predict the future geometry amplitude of segment #6. 

In addition to historical geometry measurements, other features 
associated with traffic, curve, speed, and grade are also included. They 
are defined as the constant values for each segment of interest. In total, 
there are 15 features considered in this research. 

For a given training dataset D = {
(
Ii, yi

)⃒
⃒i = 1,2,⋯,n}, Ii represents 

the input data. The prediction target yi is a value indicating the geometry 
measurement at 1 ft over a future inspection run. n is the number of data 
samples. In the traditional models, each Ii indicates a 1-D vector con-
taining temporal features. With the consideration of spatial dependence, 
in our proposed model, the input Ii is a 2-D matrix generated by Eq. (15). 

Ii = concat
(
Xpq,T1q, S1q,C1q,G1q

)
(15)  

where concat(•) is the concatenate operation to integrate the matrix 
vertically. Xpq (Xpq ∈ Rp×q) is geometry measurements from p time steps 
and q positions. This research sets p = 32 due to data availability and 
q = 11 according to domain knowledge as the track segments within 5 
feet exhibit high spatial correlation (Fig. 2(b)). T1q, S1q,C1q and G1q 

represent the traffic, speed, curve, and grade information, respectively, 
each consisting of a 1-D vector with dimensions of 1× q. Thus, the input 
Ii (Ii ∈ Rp×q+4) includes both spatial and temporal features. 

In CNN, the high-level feature representation is obtained by 

extracting the original feature Ii, as shown in Eq. (16). 

Ai = f
(
ω • Ii:i+g− 1 + bc

)
(16)  

where Ai denotes the output of the convolution layer; ω is the convo-
lution kernel; Ii:i+g− 1 is the ith feature to the (i + g − 1)th feature; g is the 
size of the convolution kernel; bc is the bias term of the layer; and f(•) is 
the nonlinear activation function. 

The pooling layer is introduced to reduce the size of the output 
feature by taking the maximum value within a sliding window. The 
output of the pooling layer is denoted by M and can be computed using 
Eq. (17). 

M = max
(
A1,A2, ..,Ap− g+1

)
(17)  

There are four 2-D convolution layers adopted with rectified linear unit 
(Relu) as the activation function. More details about the hyper- 
parameters of convolution layers are presented in Table 2. 

The output of the last pooling layer is then flattened into a 1-D vector 
V using Eq. (18), which is utilized as input for the temporal dependence 
model (See section 4.2.2). 

V = flatten(M) (18)  

where flatten(•) function is used to convert the multiple 2-D matrices to 
a 1-D vector V (V ∈ R6144×1 in this research). The flattened 1-D vector 
retains the information from the original 2-D matrices M but represents 
it in a single continuous sequence. 

4.2.2. Temporal dependence modeling 
By incorporating memory blocks, the LSTM algorithm can effectively 

capture and model long-term dependence between time steps in 
sequence data. An LSTM layer consists of the hidden state (aka. output 
state) and the cell state [77], as shown in Fig. 8(a). The hidden state 
contains the output of the LSTM layer for the current time step. The cell 

Fig. 6. Process of Data Integration for Various Datasets.  

Fig. 7. Spatial Dependence of the Geometry Measurements.  
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contains the information learned from the previous time step. At each 
time step, the LSTM layer adds or removes information from the cell 
state. It controls the flow of information using three multiplicative units: 
input gate, output gate, and forget gate. 

In the previous phase, the spatial dependence model, CNN, generates 
the 1-D vector V with dimension of 6144 × 1. Subsequently, this vector 
is utilized as the input of the temporal dependence model, LSTM, to 
capture temporal patterns and dependence in the data (Fig. 8(b)). At 
time step t, the input gate (it), forget gate (ft), and output gate (ot) are 
calculated based on the hidden state at time step t − 1 (Ht− 1), using Eq. 
(19)–(21). 

ft = σ
(
Wsf Ht− 1 +Wxf Vt + bf

)
(19)  

it = σ(WsiHt− 1 +WxiVt + bi) (20)  

ot = σ(WsoHt− 1 +WxoVt + bo) (21)  

where, Wsf , Wsi, Wso, Wxf , Wxi, and Wxo are learnable weight parameters. 
bf , bi, and bo are learnable bias parameters. Vt denotes the data infor-
mation at time step t from the 1-D vector V. σ is the sigmoid function in 
this research for computing the gate activation function. The cell state at 
time step t Ct is given by Eq. (22): 

Ct = ft ⊙ Ct− 1 + it ⊙ C̃t (22)  

where ⊙ is the Hadamard product operator (element-wise multiplication 
of vectors). C̃t is the input node using a tanh function with a value range 
of ( − 1, 1) as activation function, which can be determined based on Eq. 
(23). 

C̃t = tanh(WscSt− 1 +WxcVt + bc) (23)  

Where Wsc and Wxc are learnable weight parameters, and bc is learnable 
bias parameter. Finally, the output of cell state Ct at time step t, i.e., the 
hidden state Ht , is calculated using Eq. (24). 

Ht = ot ⊙ tanh(Ct) (24)  

The input gate determines which relevant information can be added. 
The forget gate decides which relevant information from the prior steps 
is needed. The output gate finalizes the next hidden state of the neural 
network. For example, the output gate is always in the interval (0,1). 

When the output gate is close to 1, the cell state can impact the subse-
quent layers uninhibited, whereas for output gate values close to 0, the 
current cell state is prevented from impacting the other cell states. 

This research uses two LSTM layers with 150 LSTM cells in each 
layer, as shown in Table 3. The “Dropout” is introduced between flatten 
layer and the first LSTM layer, and between the second LSTM layer and 
FC layer to randomly set their connection weights to zero to avoid over- 
fitting. The probability of dropping out is set at 20 %. The final pre-
diction result ŷi of the spatial–temporal model is generated by con-
verting the output of two-layer LSTM using the nonlinear activation 
function f(•), which is presented in Eq. (25). 

ŷi = f (H1,H2,⋯,H150) (25)  

The proposed deep learning model, CNN-LSTM, has 4.6 million learn-
able parameters. Furthermore, multi-step prediction of geometry is used 
to provide long-term prediction results to assist with predictive main-
tenance and capital planning. This method entails predicting the sub-
sequent geometry in a sequence using results predicted in previous steps 
as inputs. 

4.2.3. Loss function and evaluation metrics 
In the training process, the goal is to minimize the difference be-

tween the actual geometry amplitudes and the predicted values. The loss 
function of the CNN-LSTM model is shown in Eq. (26). 

L =
1
n

∑n

i=1
(yi − ŷi)

2 (26)  

where n is the number of instances, yi indicates the actual geometry 

Table 2 
Hyper-parameter of the Spatial Dependence Model.  

Layer Input Output Kernel number Kernel size Batch normalization Number of learnable parameters 
(Conv2D layer + batch normalization) 

Input 15 × 32 × 1 15 × 32 × 1 – –  – 
Conv2D 15 × 32 × 1 15 × 32 × 32 32 4 × 4 × 1 Yes 544 + 64 
Conv2D 15 × 32 × 32 7 × 16 × 64 64 4 × 4 × 1 Yes 32832 + 128 
Conv2D 7 × 16 × 64 3 × 8 × 128 128 4 × 4 × 1 Yes 131,200 + 256 
Conv2D 3 × 8 × 128 3 × 8 × 256 256 4 × 4 × 1 Yes 524,544 + 512 
Flatten 3 × 8 × 256 6144 × 1 – –  –  

Fig. 8. Temporal Dependence Modeling (a). Process of Computing the Hidden State in LSTM Cell; (b). Structure of Temporal Dependence Model.  

Table 3 
Hyper-parameters of the Temporal Dependence Model.  

Layer Input Output Dropout Number of learnable 
parameters 

LSTM 6144 
× 1 

150 ×
1 

Between flatten layer and 
the first LSTM layer 

3,777,000 

LSTM 150 ×
1 

150 ×
1 

– 180,600 

FC 150 ×
1 

1 × 1 Between the second LSTM 
layer and FC layer 

151 

Output – 1 × 1 – –  
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value, and ŷi denotes the predicted result. Evaluation metrics are mea-
sures for indicating the performance of the proposed model. Root mean 
square error (RMSE) is a widely used metric for comparing the differ-
ence between values predicted by a model and actual values, which is 
defined in Eq. (27). 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n

∑n

i=1
(yi − ŷi)

2

√

(27)  

The mean absolute percentage error (MAPE) is another metric 
commonly used to measure the accuracy of a model, and is calculated by 
Eq. (28). 

MAPE =
100

n
∑n

i=1

⃒
⃒
⃒
⃒
yi − ŷi

yi

⃒
⃒
⃒
⃒ (28)  

However, it can be deceptive when the actual geometry value is close to 
zero [78]. The weighted mean absolute percentage error (WMAPE) is 
proposed to overcome the shortage of MAPE, which is defined using Eq. 
(29). 

WMAPE =
100
n

∑n
i=1|yi − ŷi|
∑n

i=1|yi|
(29)  

In this research, both RMSE and WMAPE are applied to evaluate the 
performance of the prediction model. 

5. Case study 

5.1. Data overview 

Data pertaining to this study were collected from one major Class I U. 
S freight railroad. The data came from the inspection of around 80 miles 
of track on this railroad. There are three types of data used in this case 
study: track geometry data, infrastructure data, and operation data. The 
following sections present the details of the railroad data. 

Track geometry describes the surface of the track based on multiple 

geometric parameters including profile, alignment, gauge, crosslevel, 
and warp. In the studied railroad network, track geometry for each foot 
is inspected by automated track inspection vehicles twice per week. This 
research’s data includes 61 geometry measurements collected over 8 
months of inspection. 

Infrastructure data contains curve data and grade (slope) data. The 
curve data includes the curve degree, curve length, superelevation, and 
curve direction, which indicates the horizontal alignment of the track. 
Grade data provides the percentage of track slope, showing the vertical 
alignment of the track. 

Operation data includes traffic data and speed data. Traffic data 
specifies the track segments and corresponding annual tonnage density 
(MGT). Speed data presents the maximum allowable speed for track 
segments. 

5.2. Positional error correction 

The aforementioned method (Section 4.1.1) was applied to obtain 
the relative positional error δ (Eq. Eq. (3)), correlation coefficient ρ (Eq. 
(5)), and the difference of positional errors between each set of two 
adjacent segments ∇δ, shown in Fig. 9. In this research, the threshold of 
δ, ρ, and ∇δ were determined according to the 99 % confidence level, 
and were 14 ft, 0.82, and 8 ft, respectively. 

The thresholds above were applied to identify false estimations of the 
positional error. Then, all the reliable estimations were used to correct 
the positional error. The comparison of track geometry data before and 
after positional error correction is shown in Fig. 10. Fig. 10(a) presents 
the raw left rail profile data from inspection runs. Confusion regarding 
rail side can be seen where the left rail profile data actually contains 
information from both the left and right rails, resulting from inspection 
vehicles traveling in two directions. Fig. 10(b) shows the data after 
mapping the rail side. At this step, the issue of mismatched rail side is 
solved. Fig. 10(c) indicates the geometry data after the positional error 
correction. At a 99 % confidence level, the positional error between 
multiple geometry measurements is reduced from 14 feet to less than 1 
foot. 

Fig. 9. Statistical Distribution of δ, ρ, and ∇δ.  
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5.3. Prediction of track geometry 

The spatial–temporal model is trained on the training and validation 
dataset. In the training process, we set the learning rate to 0.001, the 
batch size to 64, and the training epoch to 1,500. The training and 
validation loss curves of the CNN-LSTM model are presented in Fig. 11. 
It indicates that the validation loss curve remains stable when the 
training epoch reaches around 1,300. Then, the trained CNN-LSTM 
model is applied to predict the geometry in the test dataset. The RMSE 
and WMAPE are calculated based on test dataset (12 measurements) 
accounting for 20 % of total dataset to evaluate the performance of the 
proposed model. 

To compare their performance, the MLP, plain CNN, and plain LSTM 

models are separately developed. MLP has five hidden layers, and the 
numbers of hidden neurons for each hidden layer are 100, 100, 200, 
100, and 100, respectively. The Relu function is used as the activation 
function for the hidden layers. The CNN and LSTM models apply the 
same hyper-parameters, as shown in Table 2 and Table 3. These three 
models are trained and tested based on the same training, validation, 
and test datasets. A naïve model is also employed by simply using the 
last observation of geometry amplitude for both short-term and long- 
term predictions. Furthermore, using multi-step prediction method, 
five models including the naïve model, MLP, CNN, LSTM, and CNN- 
LSTM are applied to predict track geometry over different timespans. 
In other words, it involves sequential prediction of subsequent geometry 
based on the same trained models by using previously predicted results 
as inputs. The relative performance of different methods is presented in 
Table 4. 

It is observed that the performance of all five models decreases when 
they are applied for predicting track geometry over a longer term period 
(e.g., two months in advance), as compared to short-term prediction (e. 
g., one week in advance). This is because, for multi-step prediction, the 
predicted geometry values will be directly used as inputs for the next 
prediction, which results in the accumulation of errors. In addition, it 
indicates that the CNN-LSTM model outperforms the other four models 
(i.e., naïve model, MLP, CNN, and LSTM), both at short-term (one week) 
and long-term prediction. The CNN-LSTM model has RMSE of 0.0093, 
with WMAPE of 4.51 % for one-week prediction. The RMSE and WMAPE 
increase to 0.0119 and 8.41 %, respectively, when the CNN-LSTM model 
is applied to predict geometry amplitudes two months in advance. These 
results also demonstrate the capability of LSTM in capturing temporal 
dependence in the geometry data as the plain LSTM has the second-best 
WMAPE of 11.34 % for two-month prediction. Although CNN alone may 
not provide accurate prediction results as effectively as LSTM, the 
integration of LSTM leads to a significant improvement. Specifically, the 
WMAPE of CNN reduces from 20.14 % to 8.41 % for a two-month pre-
diction when LSTM is incorporated. 

Fig. 10. Performance of Positional Error Correction (a) Raw Left Rail Profile Data from Inspection Runs, (b) Data After Mapping the Rail Side, (c) Data After Po-
sitional Error Correction. 

Fig. 11. Loss Curve of Training and Validation Dataset.  
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On the other hand, naïve model yields the worst prediction results 
compared to the other four models. Notably, the RMSE values of the 
naïve model are substantially higher, while WMAPE values are rela-
tively higher. It suggests that the overall percentage error in the pre-
dictions is low, but individual errors can be quite significant in 
magnitude. In other words, naïve model cannot capture the degradation 
pattern of geometry for track sections having large geometry amplitude, 
especially for longer-term predictions. 

The results above also demonstrate the significance of accounting for 
spatial–temporal dependence in track geometry prediction. The CNN- 
LSTM model allows for the consideration of historical geometry mea-
surements as well as surrounding conditions of the segment of interest. 
From an engineering perspective, the dynamic changes of the track ge-
ometry are affected by geometry amplitude and historical degradation 
of the track segment of interest, which can be considered as temporal 
dependence. In addition, geometry degradation of the central segment is 
also impacted by the surrounding segments and substructure conditions. 
Therefore, spatial dependency should be considered for adjacent seg-
ments. CNN-LSTM uniquely accounts for both spatial and temporal 
dependence in track geometry prediction and thus achieves superior 
performance. 

Fig. 12(a) compares the predicted track geometry (partial of test 
dataset) one month in advance with the actual geometry measurement 
in the time domain. Fig. 12(b) presents the statistical distribution of the 
difference between the actual and predicted geometry amplitude. It 
indicates that the proposed model can provide an accurate prediction of 
geometry measurements. The error of the predicted results is symmet-
rically distributed, the mean error is approximately 0, and the standard 
deviation is 0.019. 

Finally, the proposed model is applied to predict track geometry in 
two years (blind prediction) in support of predictive maintenance and 
capital planning. The trajectory of the geometry degradation (without 
intervention) over a short segment is presented in Fig. 13, where each 
line shows the trajectory of geometry degradation of a one-foot track 
segment. This indicates that track geometry at different locations has 
various degradation rates. Using the proposed model, track segments 
with faster degradation rates might be prioritized for maintenance 

activities. 

6. Conclusion and discussion 

6.1. Conclusion 

Foot-by-foot track geometry prediction can be used to support 
maintenance tasks and capital planning and to enhance rail trans-
portation safety by identifying track segments that are prone to track 
geometry defects. Highly accurate position information is a prerequisite 
for foot-by-foot geometry prediction. Therefore, this paper first proposes 
methods for correcting the relative positional error between different 
geometry measurements. Issues (i.e., rail side confusion and sign 
contradiction) associated with inspection vehicles moving in different 
directions are handled prior to estimating the positional error. The 
proposed positional error correction method is able to reduce the rela-
tive positional error to less than 1 foot with 99 % confidence interval, 
and thus supports foot-by-foot track geometry prediction. 

Based on the processed geometry data and other related data (i.e., 
traffic, speed, grade, and curvature), the CNN-LSTM model is proposed 
to predict foot-by-foot track geometry measurements with consideration 
of spatial–temporal dependence. Specifically, CNN is applied to capture 
the spatial dependence by considering the surrounding conditions of 
central segments. LSTM is applied to capture the temporal dependence 
by learning the dynamic changes of geometry measurements. Our pro-
posed CNN-LSTM model outperforms four other models, including the 
naïve model, MLP, plain CNN, and plain LSTM, in both short-term and 
long-term prediction. Finally, multi-step prediction is applied to provide 
the trajectory of geometry degradation over a long period in support of 
predictive maintenance and capital planning. 

6.2. Discussion 

This section discusses the limitations of current research and di-
rections for future research. In data cleaning, current research applies 
threshold-based outlier detection approach to identify outliers in track 
geometry measurements. Nevertheless, this may cause misclassification 

Table 4 
Performance Comparison of the Different Approaches.  

Time Evaluation metric Proposed model 

Naïve model MLP CNN LSTM CNN-LSTM 

1 week RMSE (inches)  0.0958  0.0153  0.0241  0.0124  0.0093 
WMAPE  14.40 %  9.80 %  12.64 %  7.86 %  4.51 % 

1 month RMSE (inches)  0.1940  0.0177  0.0303  0.0159  0.0105 
WMAPE  21.65 %  11.19 %  17.88 %  9.98 %  6.66 % 

2 months RMSE (inches)  0.3150  0.0196  0.0349  0.0181  0.0119 
WMAPE  29.48 %  12.05 %  20.14 %  11.34 %  8.41 %  

Fig. 12. CNN-LSTM Model for Predicting Track Geometry for One Month in Advance (a). Track Geometry Amplitudes; (b). Histogram of the Prediction Errors.  
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in particular track sections (e.g., bridge–embankment transition zones) 
with large amplitude change due to the change of track stiffness. To this 
end, alternative outlier detection techniques based on characteristics of 
historical measurements may be considered in future research, which 
could provide a more robust solution for identifying outliers in geometry 
measurements. 

Secondly, more geometry data could be collected to validate the 
performance of the proposed model at geometry prediction over a longer 
timespan. The current model can provide the trajectory of geometry 
degradation over a long period; however, the accuracy of the model 
decreases for long-term predictions. Therefore, in future research, it is 
essential to quantitively evaluate the accuracy of the model when 
applying it for long-term predictions. 

Furthermore, it is important to optimize and improve the perfor-
mance of the current prediction model, especially for long-term pre-
dictions. The first way to do so would be to consider more historical 
geometry measurements in the model, which would allow the model to 
learn the deterioration pattern of geometry from more historical mea-
surements. An alternative solution would be to collect more factors 
related to the deterioration of track geometry to improve the perfor-
mance of the model. Substructure and weather conditions (e.g., season, 
temperature, and precipitation) can affect the deterioration of track 
geometry. For example, track segments in highly fouled areas (greater 
ballast fouling index) are more likely to have a faster rate of geometry 
deterioration. Additionally, considering the influence of maintenance 
activities on the deterioration process, especially for long-term pre-
dictions (e.g., annual predictions), will further refine the model’s pre-
dictions. Therefore, data with longer timespans and more influencing 
factors should be included in the model to contribute to better results in 
long-term geometry predictions, which ultimately supports better 
decision-making for railroad infrastructure maintenance and planning. 

Lastly, the proposed methodology that combines a CNN-LSTM model 
for spatial and temporal dependence modeling has promising applica-
tions and scalability potential in various engineering domains, espe-
cially those dealing with time-series data and spatially correlated 
features. CNN considers the spatial correlation of data by conducting 
convolution operations. LSTM is able to capture the long-term depen-
dence in the data by incorporating memory blocks to avoid vanishing 

and exploding gradient. Therefore, the proposed methodology could 
also be applied to infrastructure degradation such as highways by 
indicating locations susceptible to fatigue cracking and corrosion under 
both spatial and temporal influence. In addition to linear assets, the 
proposed methodology can be utilized to analyze complex systems by 
effectively extracting spatial and temporal features from data. For 
example, it can be employed to predict the behavior of traffic flow and 
weather systems as the CNN and LSTM can extract information from 
adjacent areas and historical records. 
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