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A B S T R A C T   

Analyzing the relationship between track geometry defect occurrence and substructure condition can provide 
assistance for track inspection and spot maintenance, which contributes to better train operation quality. This 
paper develops a data-driven approach to estimate the occurrence of track geometry defects on concrete-tie 
tracks on one passenger railroad in the United States, using substructure data, rail seat abrasion data, infra-
structure data, traffic data, track class information, and maintenance data. Feature extraction was implemented 
to generate input variables for the machine learning models. Recursive feature elimination (RFE) was applied to 
reduce data dimensionality by recursively considering smaller sets of features. Three data treatment methods, 
including no resampling, undersampling, and oversampling, were incorporated to address imbalanced data is-
sues. The developed models included logistic regression, artificial neural network, and gradient boosting. The 
hyperparameters of the proposed models were optimized using Bayesian optimization. The performance of the 
proposed methods was finally evaluated based on the test dataset generated using random data partitioning. 
Based on data collected from one passenger railroad, the gradient boosting method with data oversampling 
shows the highest performance in estimating the occurrence of geometry defects. The F1-score of the model is 
0.662, with G-Mean of 0.738. Feature importance identifies that surfacing, traffic, curvature, switch, and rail 
replacement are the top five factors influencing the predicted probability of track geometry defect occurrence. 
The proposed model can be used to prioritize maintenance activities on locations prone to track geometry defects 
and thus further improve infrastructure safety given budgetary constraints.   

1. Introduction 

1.1. Overview 

Track geometry defects are considered to be one of the most 
important factors affecting the stability and safety of train operations 
[1,2]. They result in a significant increase in dynamic loads between rail 
and wheel leading to the reduction of passenger comfort, earlier 
development of rail fatigue failure, and an associated decrease in rail 
service life [3,4]. For instance, based on the FRA rail equipment accident 
database from 2001 to 2010, track geometry is the second largest cause 
of derailments [5]. While track geometry indicates track deterioration, 
the substructure information allows observers to identify causal factors 
of deterioration. Ground penetrating radar (GPR) is a non-destructive 
method for routine substructure inspections that enables the 

evaluation of railroad conditions in terms of layers geometry, settle-
ments, fouling level, and drainage assessment [6–8]. The information 
provided by GPR is crucial for efficient maintenance action and depth of 
the intervention of track when track geometry defects are caused by 
substructure conditions. 

Due to relatively higher initial costs, concrete-tie tracks are only 
economical in applications when they have a longer service life and 
require less maintenance/inspection than wood-tie tracks [9]. To limit 
the costs of maintenance and duration of traffic interruptions, spot 
maintenance of track geometry defects on concrete-tie tracks has to be 
well planned. To enable this, it is necessary to investigate the influence 
of various factors, such as track substructure, traffic, and infrastructure 
factors, on the occurrence of track geometry defects on concrete-tie 
tracks. 

Many researchers have previously studied the influence of differing 
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track components on track geometry degradation using physics-based 
methods or data-driven methods [10–12]. The physics-based models 
reveal the mechanical behavior as well as the deformation mechanisms 
of the track geometry. However, it is difficult for mechanical models to 
simultaneously provide all location-specific risks in one railroad line by 
considering various influencing factors. On the other hand, data-driven 
methods allow the consideration of multiple sources of data and predict 
the location-specific risk along the railroad line with low computational 
cost [13,15]. In this paper, researchers develop a data-driven framework 
for estimating the probability of track geometry defects under various 
factors on concrete-tie track on one passenger railroad in the United 
States, using substructure data, rail seat abrasion data, infrastructure 
data, traffic data, track class information, and maintenance data. The 
proposed framework consists of a pipeline of methodologies including 
data processing and model development, which has been applied and 
tested on a passenger railroad. 

1.2. Knowledge gaps and intended contributions 

Previous studies have shown that track geometry degradation and 
the occurrence of geometry defects are subject to various factors 
including multiple substructure conditions [14–17]. Most of the previ-
ous data-driven research focuses on analyzing the relationship between 
track geometry defects and substructure on freight railroads [4,24–26]. 
But to date, there has been little research on estimating the risk of track 
geometry defects on passenger railroads using substructure condition 
and other related factors (e.g., maintenance activities) [23]. Further-
more, the importance level of multiple factors affecting the geometry 
defects on passenger railroads has not been studied yet. There remains a 
research gap in analyzing geometry defects on passenger railroads by 
simultaneously considering multiple substructure conditions measured 
by GPR, maintenance activities, and other related factors. 

Considering the limitations of prior research mentioned above, the 
main intended contributions of this paper are summarized as follows.  

• This paper customizes a framework for estimating the risk of track 
geometry defects on concrete-tie track on one passenger railroad via 
a data-driven approach using multi-source data.  

• More influencing factors are considered in this paper, including 
substructure conditions measured by GPR, rail seat abrasion, infra-
structure, traffic, track class, and maintenance activities. Some of 
them have not been considered in the previous studies on geometry 
defects, such as multiple substructure conditions and maintenance 
activities. 

• To improve model performance, data resampling including under-
sampling and oversampling are implemented to solve the imbal-
anced data issue. Multiple meaningful metrics are discussed and 
reported for each of the prediction methods. 

• The importance level of selected factors is identified to provide in-
sights into the significance of factors affecting geometry defects on 
passenger railroads. 

The organization of the article is as follows. Section 2 talks about the 
previous related work and the state-of-the-art studies. Section 3 provides 
an overview of the data collected from one passenger railroad. In Section 
4, the methodology of this study is presented. Then, the results of 
different models are compared in Section 5. The conclusions and future 
research direction are provided in Section 6. 

2. Literature review 

Previous research identified that the degradation of track geometry 
is affected by traffic [10–16], curve [10–12], grade [12], maintenance 
activities [14,16], track class/speed [11,15], and substructure (ballast 
fouling index) [17]. This section reviews state-of-the-art data-driven 
models for analyzing factors influencing track geometry defects as well 

as the relationship between track geometry defects and substructure 
conditions. Table 1 summarizes studies that are the most related to the 
context of this paper. 

The probability of track geometry defects under different influencing 
factors has been studied. Sadeghi and Askarinejad [18] applied artificial 
neural network (ANN) to determine the track geometry defects and track 
structural conditions including rail, sleeper, ballast, and fastening. Lo-
gistic regression was applied to predict the probability that a given track 
segment will generate a ballast-related track geometry exception as a 
function of key independent variables such as missing ballast, annual 
MGT, and curvature [19]. This confirmed the relationship between 
missing ballast and the development of track geometry defects. Further, 
a high order polynomial logistic regression model in combination with 
hierarchical clustering analysis was proposed to determine the proba-
bility of a track geometry (profile) defect occurring at segments with 
substructure conditions [20,21]. The convolutional neural network 
(CNN) model was developed to estimate the probability of geometry 
defect as a function of sleeper condition and sleeper positions [22]. 
Gradient boosting was applied to predict the profile defects using ge-
ometry measurement data, traffic density, track class, and ballast fouling 
index [23]. 

In terms of the study of the relationship between track geometry 
defects and substructure conditions, most previous studies focused on 
freight railroads [4,24–26]. Alsahli et al. [24] found that track segments 
with geometry defects are associated with poorer tie conditions by 
comparing statistical distributions of wood tie conditions on track seg-
ments with and without geometry defects. Yurlov et al. [20] indicated a 
statistically significant relationship between track geometry defects and 

Table 1 
Summary of Reviewed Papers related to Track Geometry Defects.  

Objective Approaches Factors Railroad 
Type 

Authors 

Relationship 
with tie 
condition 

Statistical 
analysis 

Wood tie 
condition 

Freight 
railroad 

Alsahli et al.  
[24] 

Relationship 
with 
missing 
ballast 

Missing ballast Zarembski 
et al. [26] 

Relationship 
with rail 
defects 

MARS Rail defects Zarembski 
et al. [25] 
Zarembski 
et al. [4] 

Probability of 
geometry 
defect  

ANN Rail, sleeper, 
ballast, and 
fastening 

Not 
mentioned 

Sadeghi and 
Askarinejad  
[18] 

Logistic 
regression 

Missing ballast, 
annual MGT, and 
curvature 

Freight 
railroad 

Zarembski 
et al. [19] 

Substruction 
condition (BFI, 
BLT) 

Yurlov et al.  
[20]; 
Zarembski 
et al. [21] 

CNN Sleeper 
conditions 

Alsahli et al.  
[22] 

Gradient 
boosting 

BFI, standard 
deviation of 
profile, defect 
ratio, traffic 
density, and track 
class 

Passenger 
railroad 

Goodarzi 
et al. [23] 

Multiple 
substructure 
conditions (BTI, 
FDL, BFI, BDM, 
and TDI), 
curvature, 
switch, annual 
MGT, track class, 
rail replacement, 
and surfacing 

This paper  
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key track subsurface conditions. In particular, the ballast fouling index 
(BFI) and ballast layer thickness (BLT) measured by GPR are well 
correlated with track geometry defects. Another statistical analysis 
found that increasing volumes of missing ballast results in increases in 
geometry defect occurrences [26]. Multivariate regression splines 
(MARS), a non-parametric function, was applied to account for the 
quantitative relationship between geometry defects and rail defects 
[4,25]. The study demonstrated a significant relationship between ge-
ometry defects and the occurrence of rail defects. Researchers also found 
that most crosslevel track defects are usually caused by ballast settle-
ments [50,51]. 

3. Data overview 

The data collected for this study comes from one passenger rail 
agency in the United States. It has around 220 miles of concrete-tie track 
containing about 571,000 concrete ties. This research collected track 
geometry defect data (from 2020 to 2021), substructure conditions 
(from 2019 to 2020), rail seat abrasion data (from 2020), infrastructure 
data, traffic, track class, and maintenance activity data (from 2019). Due 
to data limitations, the dates of collecting geometry data and GPR data 
are not the same. This research assumes that the substructure conditions 
do not deteriorate over a short period. Therefore, GPR data is used to 
analyze its relationship with track geometry defects. The following 
subsections describe the data in detail. 

3.1. Track geometry defect data 

Track geometry describes the surface of the track. The amplitudes of 
the track geometry are inspected by track geometry inspection cars 
twice a year in the studied railroad network. Track geometry defects 
occur when the amplitudes of specific measures (e.g., gage) exceed an 
established threshold in the FRA’s Track Safety Standards (49 CFR Part 
213) [43]. FRA divides track quality into different classes corresponding 
to different maximum train speeds [53]. Requirements of geometry 
prescribed in Track Safety Standards are more stringent for higher 
classes. For example, the deviation of the mid-offset of alignment on 
tangent track from a 62-foot line may not be more than 5, 3, 1.75, 1.5, 
and 0.75 in. for Class 1–5 track, respectively. Gage must be at least 4′8′′

for Class 1–5 track but not more than 4′10′′ for Class 1 track, 4′9.75′′ for 
Class 2 and 3 track, and 4′9.5′′ for Class 4 and 5 track. Relevant features 
of defects such as location, found date, type, size (length), and other 
related data are recorded [54]. Three track geometry inspections were 
collected in spring 2020, fall 2020, and spring 2021. A binary variable 
was used to indicate if a track section had a geometry defect between 
2020 and 2021. Track geometry defects that are presumed to be related 
to substructure conditions include profile, alignment, gage, crosslevel, 
excess elevation, twist/warp, and curve speed, which are used for this 
study. 

3.2. Substructure condition data 

Substructure condition data in this study refers to ballast conditions. 

Fig. 1. GPR Data Reports from Milepost 16.0 to Milepost 16.6.  
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GPR uses a reflection of radar waves in the 300 to 400 MHz range to 
identify properties in the ballast along the railroad line. Fig. 1 shows the 
digitization of partial ballast conditions [21,52]. In this research, nine 
parameters (BFI, FDL, BTI, LRI, BVM, BDM, TDI, SMI, and TCS) of GPR 
data were collected to indicate the ballast conditions from 2019 to 2020, 
which are shown in detail below. 

Ballast fouling index (BFI) measures the percentage of fine material 
trapped in the ballast and sub-ballast layer to the modeled average 
depth. Fouling depth layer (FDL) is a measure of the thickness of clean 
ballast. Ballast thickness index (BTI) indicates track sections where the 
thickness of the primary ballast layer falls outside of an optimum range 
as defined by the standard track bed design thickness. Layer roughness 
index (LRI) reflects the variation in the depth to the base of the primary 
track bed layer. Ballast volume metric (BVM) measures the excess or 
deficit ballast volumes relative to a predefined ballast cross-section. 
Ballast deficit metric (BDM) shows the deficit in ballast volume rela-
tive to a predefined track bed design profile (cross-section). Track 
drainage index (TDI) reflects the efficiency of the track drainage at a 
location. Surface mud spot index (SMI) indicates the amount of mud in 
the ballast or on the sleepers/rails. Track bed condition summary (TCS) 
provides an indication of the overall quality of track bed by combining 
various GPR measurements. 

Table 2 presents more details of the parameters included in the GPR 
database. 

3.3. Rail seat abrasion data 

Rail seat abrasion (RSA) refers to the deterioration of concrete 
beneath the rail [41,42], as shown in Fig. 2. It is measured using a vision- 
based inspection system: the Aurora inspection system [27]. This study 
collected RSA information included in the Aurora dataset which has 
around 571,000 concrete ties. To be specific, the left-rail-side and right- 
rail-side RSA values are measured separately and refer to the estimated 
depth of degradation of rail seat beneath each rail. Greater values 
indicate worse conditions. Additionally, the RSA database contains 
concrete tie ID, a binary variable used to indicate whether the tie 
inspected is a concrete tie. 

3.4. Infrastructure data 

Infrastructure data in this research includes curvature data and 
turnout (switch) data. Curvature data shows the curve degree indicating 
the track’s horizontal alignment. The distribution of the curve degree in 
the studied railroad line is shown in Table 3. It indicates that 52 % of the 
total railroad network is tangent track. 

Turnout data is a binary variable specifying whether a track is within 
a turnout structure. When the whole network is divided into 71,096 16- 
feet-long segments (see details in Section 4.2), 2,742 track segments are 
in turnout area, accounting for 3.9 % of the total network. 

3.5. Traffic data 

Traffic loading has a significant influence on the deterioration of 

track geometry [10–13]. Traffic data collected for this research specifies 
the track segments and corresponding annual gross tonnage. Fig. 3 il-
lustrates the distribution of the annual gross tonnage of the studied 
network. The portion of the network decreases as the traffic density 
increases. Around half of the network has traffic density from 15 to 20 
MGT while track with traffic density from 35 to 40 MGT only takes up 
2.3 % of the whole network. 

3.6. Track class information 

The Federal Railroad Administration (FRA) has established a classi-
fication system for railroad track quality. The classification of a track 
indicates specific construction details, including tolerance requirements 
for the geometrical measurements of the track, which finally determine 
the speed limits for both freight and passenger trains. FRA track classi-
fication information was collected for this research. Table 4 illustrates 
the distribution of track class in the studied network. 

3.7. Maintenance data 

Maintenance data in this study reflect maintenance activities from 
2019 including tie production, rail replacement, and surfacing. Tie 
production data records the segments of track where ties were replaced. 
Rail wear is considered as the main cause of rail replacement [28]. The 
rail replacement data provides the location and date of replacement 
activities. Surfacing activities such as tamping and ballast renewal are 
applied not only to provide a firm foundation for ties but also to bed 
them so that the track will not be thrown out of line by the lateral thrust 
of passing trains [40]. 

In this research, three types of maintenance activity are defined as 
three binary variables indicating whether a track experienced a certain 
type of maintenance action in 2019, the year prior to when the geometry 
data was collected. In this period, 17.0 % of the railroad network 
experienced maintenance activities. The number of track segments 
having tie production, rail replacement, and surfacing is 89, 1,943, and 
10,024, respectively. 

4. Methodology 

A data-driven approach is proposed in this paper to estimate the 
occurrence of track geometry defects in concrete-tie track segments on 
one passenger railroad. Fig. 4 shows the methodological framework of 
the proposed research. First, data cleaning was applied to identify 
concrete-tie track segments, handle missing values, and combine data 
that have multiple data values (e.g., BDM) at a given longitudinal 
location into a single value per track location. Then, all datasets were 
combined into an integrated dataset according to their location infor-
mation. The GPR data with 16-foot-long segments was used as the base 
file in the integration process. Feature engineering was implemented to 
extract features (input variables) from the integrated dataset. Next, the 
integrated dataset was split into training, validation, and test data by 
randomly partitioning the integrated data. Feature selection was con-
ducted to reduce the dimensionality of data based on training data. 
Three data treatment methods were incorporated into data-driven 
models to address imbalanced data issues. Finally, the model fit on 
training and validation data was evaluated using test data. The best-fit 
model was applied to estimate the risk of track geometry defects in 
the railroad. 

4.1. Data cleaning 

Data cleaning aims to identify concrete-tie tracks, handle missing 
values, and combine the information of left side, central, and right side 
of track. Both concrete-tie tracks and wood-tie tracks are included in the 
studied railroad network. While the concrete tie ID in the Aurora dataset 
indicates if the tie inspected is a concrete tie, this could be falsely 

Table 2 
Parameters of Ballast Condition Data.  

No. Parameters Number of Categories Inspection Location on Track 

1 BFI 5 Left, Center, and Right 
2 FDL 4 Left, Center, and Right 
3 BTI 5 Left, Center, and Right 
4 LRI 3 Left, Center, and Right 
5 BVM 5 Left, Center, and Right 
6 BDM 3 Left, Center, and Right 
7 TDI 3 Left and Right 
8 SMI 3 Track 
9 TCS 3 Track  
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reported when inspection machines cannot get a clear view of the tie 
surface due to mud, ballast, leaves, or other obstructions. To minimize 
the impact of this error, if over 50 % of ties are concrete ties in a 
segment, this segment is defined as concrete-tie track and is finally 
included in the studied network. For instance, for a track segment with 
eight ties, if there are five concrete ties labeled as concrete ties in the 
Aurora dataset, this segment is defined as a concrete-tie segment. 

Missing values were filled with the parameter values of the nearest 

segments. Sometimes, but not often, errors caused by inspection ma-
chines, classification rules, and human factors may cause missing values. 
BFI, for example, could not be calculated due to high electromagnetic 
induction (EMI) or the presence of a surface / sub-surface structure, 
which results in a missing value. 

Some parameters differentiate among the left side, central, and right 
side of the track, which is defined as track-side-level data in this 
research. For instance, values of BDM of different track sides are sepa-
rately measured. On the other hand, some datasets are recorded on the 
track level called track-level data. This paper focuses on track-level 
analysis because some important factors such as traffic and curvature 
are track-level data. Therefore, the track-side-level information needs to 
be transformed into track-level information. The strategy for informa-
tion combination for different track sides is to retain the records with the 
worst condition information in the database. When the track-side-level 
data are inconsistent, they will be integrated into track-level data 
where the records with the worst condition are finally kept in the 

Fig. 2. Concrete Tie Rail Seat Abrasion.  

Table 3 
Distribution of FRA Track Class in Studied Railroad Network.  

Curve Degree 0 0–1 1–2 2–3 3–4 Over 4 Total 

Track Miles  114.0  47.9  40.9  10.7  3.6  2.1 219.2 
Portion of the Whole Network  52.0 %  21.8 %  18.6 %  4.9 %  1.7 %  1.0 % 100 %  

Fig. 3. Distribution of the Annual Traffic Density Over the Studied Railroad Network.  

Table 4 
Distribution of FRA Track Class in Studied Railroad Network.  

FRA Track Class Class 2 Class 3 Class 4 Total 

Track Miles 3.7 57.1 158.4 219.2 
Portion of the Whole Network 1.7 % 26.0 % 72.3 % 100 % 
Limited Speed for Passenger Railroad 

(MPH) 
30 60 80 –  
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database, as shown in Fig. 5. For instance, if BDM values measured on 
the left side, central, and right side of a track at the identical location 
(same track mile) are different, the minimum category value among 
different records would be assigned to this segment. 

4.2. Data integration and feature extraction 

This section introduces the data integration and feature extraction 
process in the following steps. Spatial information was used to identify 
segments and map all datasets. Then, feature extraction was applied to 
transform the integrated data into input variables of data-driven models. 
Fig. 6 illustrates the data integration process and preliminary input 
variables generated for the data-driven model. 

Step 1: Generate segments for the whole network. The ballast con-
dition database (GPR data) is used as the base file for integration, where 
each segment is 16 feet long and can be uniquely identified using 
location information including subdivision/line, track type, and mile-
post. Railroad staff can easily identify exact track locations that are 
prone to geometry defects using 16-foot-long segments without exces-
sive inspection efforts. 

Step 2: Map RSA for each segment according to location information. 
Step 3: Map infrastructure data, traffic density data, FRA track class 

data, and maintenance data for each concrete-tie segment. 
Step 4: Extract features for the data-driven models based on the in-

tegrated database. 

Fig. 4. The Framework for Estimation of Track Geometry Defect Risk.  

Fig. 5. Diagrammatic Sketch of Information Combination for Rail-level Data.  
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4.3. Data partitioning 

Random data partitioning was introduced to avoid an over- 
optimistic estimation of the model by splitting the entire dataset into 
three parts: training, validation, and test datasets. The training dataset 
was used to fit the parameters of the data-driven model. The validation 
dataset was to provide an unbiased evaluation of the trained model 
during the hyperparameter tuning of the models. The test dataset was 
used for evaluating the generalization performance of models. This 
study uses 60 %, 20 %, and 20 % of the entire dataset as training, 
validation, and test datasets, respectively. 

4.4. Feature selection 

To lower the computation costs and increase the performance of 
machine learning models, feature selection is introduced by reducing 
the number of input variables [44]. The principal component analysis 
(PCA) [47,48] and regularization techniques (e.g., Ridge or Lasso reg-
ularization) [49] were applied in railroad engineering for feature 
selection. 

Recursive feature elimination (RFE) is applied for feature selection in 
this research because it is easy to configure and effective at selecting the 
most relevant features contributing to predicted results [45]. It selects 
features by iteratively considering progressively smaller sets of features. 
First, the model is fit on initial features. Then, the feature importance is 
calculated using the trained model. The least important feature is 
removed from the current feature list because it contributes the least to 
the predicted results. This procedure is recursively repeated on the 
pruned set of features until further removal of features cannot improve 
the models’ performance. Eventually, the final input variables for data- 
driven models are determined. 

4.5. Data resampling 

Data resampling refers to procedures of undersampling and over-
sampling, which balances data by reducing the majority class samples or 
resampling the minority class samples [29–31]. In the studied railroad 
network, only 2.4 % of total segments have experienced geometry de-
fects. However, misclassifying those segments would incur more costs. 

Therefore, data resampling was introduced to balance the data. Random 
undersampling was applied in this research by randomly selecting 
samples of the majority class without replacement. He et al. [32] 
developed an adaptive synthetic sampling approach (ADASYN) to focus 
more on data samples that are hard to learn. It applies a weighted dis-
tribution for minority class samples according to their difficulty of 
learning. More synthetic data is generated for minority class examples 
that are harder to learn. The synthetic samples are created based on the 
majority nearest neighbors via the k-NN method. This study adopted 
ADASYN as the oversampling technique in the machine learning models. 

4.6. Data-driven models 

For a given dataset D = {(xi, yi)
⃒
⃒i = 1,2,⋯,n}, xi is inputs of model 

having n observations and m features (i.e., xi ∈ Rm), and yi is actual 
label. In this study, yi is a binary variable indicating if the observation is 
associated with a geometry defect. Three data-driven models (i.e., lo-
gistic regression, ANN, and gradient boosting) are applied in this 
research, which is presented in detail as follows. 

4.6.1. Logistic regression 
Logistic regression fits the logit probability of the response variable 

as linear function of input variables (Eq.(1)). It not only provides a 
measure of how appropriate an input variable is, but also indicates the 
direction of influence of each input variable on the response variable 
(positive or negative). However, the main limitation of logistic regres-
sion is the assumption of linearity between the dependent variable and 
the input variables. Thus, it cannot be applied to solve the nonlinear 
problem. 

P(y|xi) =
1

1 + e− (wT xi)
(1)  

where P(y|xi) is the predicted probability ranging from 0 to 1, w is a 
parameter vector (w = [w0,w1,⋯,wm]), T is the transpose of a vector. 
Maximum likelihood estimation (MLE) is applied to estimate the pa-
rameters w that maximize the conditional likelihood of 

∏n
i=1P

(
yi
⃒
⃒xi)

using Eq. (2). 

Fig. 6. Steps for Data Integration and Feature Extraction.  
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ŵ = argmax
w

−
∑n

i=1
log
(

1 + e− wT xi
)

= argmin
w

∑n

i=1
log
(

1 + e− wT xi
) (2)  

where ŵ is the estimated parameter using MLE. 

4.6.2. Ann 
ANN is also known as multi-layer perceptron (MLP) [33]. It consists 

of multiple layers of neurons where each is fully connected to those in 
the layers below and above. Different from logistic regression, between 
the input and output layers of ANN, there can be one or more nonlinear 
layers. It can be applied to complex nonlinear problems. However, it 
cannot provide to what extent the response variable is affected by each 
input variable. 

The first layer of ANN is the input layer, and its units take the values 
of the input variable xi, as shown in Eq (3). In any feed-forward neural 
network, any middle layers are called hidden layers because their inputs 
and outputs are masked by the activation function (Eq. (4)). The last 
layer is the output layer, and it has a single unit in the case of binary 
classification, which is calculated by Eq. (5). 

h(1)
i = Φ(1)

(
∑

j
w(1)

ij xi + b(1)
i

)

(3)  

h(k)
i = Φ(k)

(
∑

j
w(k)

ij hk− 1
j + b(k)

i

)

(4)  

ŷi = Φ(K)

(
∑

j
w(K)

ij hK− 1
j + b(K)

i

)

(5)  

where h(k)
i is the units in k layer, w(k)

ij is weight parameter for in k layer, 

b(k)i is the bias parameter for k layer, ŷi is the output of the neural 
network, Φ(k) is the activation function for the k layer, k is the number of 
entire layers, having K in total. The cross-entropy loss is applied as the 
loss function of ANN model, which measures the distance between the 
model output ŷ and actual labels y. It is defined in Eq. (6) shown as 
follows. 

l(y, ŷ) = −
∑n

j=1
tjlog

(
Pj
)

(6)  

where tj is the actual class, pj is the probability for the jth class, n is the 
number of the total classes. For the binary classification problem in this 
research, n is set to 2. The training process of the ANN is adjusting the 
connection weights to minimize the loss function l. Using gradient 
descent, the change in each weight is calculated by Eq. (7–8). 

Δw(k)
ij = − η ∂l

∂w(k)
ij

(7)  

Δb(k)
i = − η ∂l

∂b(k)
i

(8)  

where η is the learning rate, Δw(k)
ij and Δb(k)i are the changes in weight 

and bias parameters, respectively. This process (Eq. (3)–(8)) is recur-
sively repeated until the loss function is minimized. 

In this research, a five-layer MLP is applied, and the number of 
hidden neurons for each hidden layer is 10, 20, 40,20, and 10, respec-
tively. The rectified linear unit (Relu) function is used as the activation 
function for the hidden layer. The sigmoid function is applied as the 
activation function for the output layer. 

4.6.3. Gradient boosting 
Gradient boosting (GB) creates the ensemble classifier in an iterative 

fashion. XGBoost is a scalable tree-based ensemble machine learning 
algorithm that uses a GB framework, as shown in Eq. (9) [34]. It is easy 
to implement and does not require normalization for input variables 
because it is a tree-based algorithm. 

ŷi =
∑K

k=1
αkfk(x) (9)  

where fk is an independent tree structure, αk is the weight of the clas-
sifier fk(x), and k is the iteration step having K steps in total. XGBoost is 
optimized by parallel processing, tree-pruning, and handling regulari-
zation to avoid overfitting. The regularized objective function L is 
shown in Equation (10), which is to be minimized in the training 
process. 

L =
∑n

i=1
l(yi, ŷi)+

∑

k
Ω(fk) (10)  

Ω(fk) = γP+
1
2

λ‖ω‖
2 (11)  

where ω is the leaf weight in the tree structure model fk, γ is the penalty 
value to penalize the complexity of the model, P is the number of ter-
minals or leaves, λ is the scale to perform the regularization process. 

GB is trained in an additive manner. Suppose that the prediction of i 
data sample (xi) at the tth iteration is denoted by ŷ(t)

i . Then, the model 
traning is to minimize the objective function (Eq.(10)) with fk added that 
most improves the model according to Eq.(12). 

L
(t)

=
∑n

i=1
l
(

yi, ŷ(t− 1)
i + ft(xi)

)
+
∑K

k=1
Ω(fk) (12)  

4.7. Hyperparameter optimization 

The hyperparameter refers to the configuration of the model whose 
setting cannot be estimated from the training process. For example, 
XGBoost normally has five hyperparameters need to be tunned including 
the learning rate, subsample ratio of columns, regularization term on 
weights, maximum depth of a tree, and the number of gradient boosted 
trees. They can be optimized by selecting the appropriate set of hyper-
parameters to avoid overfitting or underfitting. Overfitting occurs when 
the model learns a function with a very high variance to perfectly model 
the training data [35]. Underfitting refers to a phenomenon where the 
model is incapable of capturing the variability of the data [36]. In this 
paper, Bayesian optimization was applied to find the appropriate set of 
hyperparameters for each model because it requires fewer trials by 
reasoning about the best set of hyperparameters based on past trials. 

One innovation in Bayesian optimization is using an acquisition 
function, which the algorithm employs to determine the next point to 
evaluate [46]. Bayesian optimization works by building a probabilistic 
model of the objective function that is searched efficiently with an 
acquisition function. The acquisition function can balance sampling at 
points that have low modeled objective functions and exploring areas 
that have not yet been modeled well. 

4.8. Model evaluation 

4.8.1. Evaluation metric 
The main objectives of railroad staff are to correctly predict the 

occurrence of track geometry defects and identify factors that contribute 
the most to the occurrence of such defects. In machine learning termi-
nology, binary classification results can be divided into four categories 
(aka. Confusion matrix): the number of True Positives (TP), True Neg-
atives (TN), False Positives (FP), and False Negatives (FN). TP and TN 
are used to measure track segments that are predicted correctly. FP and 
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FN indicate the instances that are classified incorrectly. Five typical 
measures can be obtained [37]: 1) true positive rate (recall or sensi-
tivity), where TPR = TP

TP+FN, 2) true negative rate (specificity), where 
TNR = TN

TN+FP, 3) false positive rate, where FPR = FP
TN+FP, 4) false negative 

rate, where FNR = FN
TP+FN, and 5) positive predictive value (precision), 

where PPV = TP
TP+FP. 

Accuracy is the most frequently used metric for estimating the per-
formance of machine learning models in classification problems. It is 
defined by: Accuracy = TP+TN

TP+FN+TN+FP. However, standard evaluation 
criteria focus on the most frequent cases, which goes against the prac-
tical preference in engineering. For example, territory concerned with 
geometry defects only makes up a small proportion of the whole railroad 
network. Misclassifying observations of these territories has much more 
severe consequences than territory observations without a geometry 
defect. 

Several measures were proposed for dealing with the imbalanced 
data issue [37]. Geometric mean (G-Mean) computes the geometric 
mean of the accuracy of the two classes. It is calculated by G − mean =
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
specificity × Recall

√
. Graphical-based metrics were proposed to resolve 

the imbalanced data issue: the receiver operating characteristics (ROC) 
curve and area under the ROC curve (AUC). However, AUC may produce 
misleading estimates because of the existence of variations in the eval-
uation of AUC [38]. F1-score is the harmonic mean of precision and 
recall, defined by F = 2 Precision•recall

precision+recall. It is informative about the effec-
tiveness of a classifier on predicting the samples that matter to the user 
(minority class samples). Therefore, this research applies F1-score as the 
evaluation metric of the data-driven models. 

4.8.2. Model evaluation 
The performance of trained models is evaluated and compared based 

on the test dataset. The test dataset U = [X,Y] is generated by randomly 
selecting 20 % of the entire dataset (Section 4.3), where X is the input 
variables of the test samples, and Y is the corresponding actual labels of 
the samples. Then, trained models are applied to predict the labels of test 
dataset given input variables using Eq. (13). 

Ŷ k,ρ = Mk(X, ρ) (13)  

where Mk(k = 1, 2,3 ) represents three types of trained models (i.e., 
logistic regression, MLP, and GB), respectively, ρ is the threshold of the 
probability determining if the data sample is associated with a geometry 
defect, Ŷk,ρ is the predicted label of the test dataset using ρ as threshold. 
Based on the predicted labels Ŷk,ρ, the F1-score can be calculated using 
actual label and predicted label of the test dataset (Eq. (14)). 

Fk,ρ = F
(
Y, Ŷ k,ρ

)
(14)  

where Fk,ρ is the F1-score of the trained model Mk under probability 
threshold ρ. After F1-score is calculated, the performance of the three 
trained models can be compared. The model with the highest F1-score is 
finally selected as the best-fit model and applied in the proposed 
research. 

5. Case study 

In this case study, researchers applied the data analytic methodology 
to one passenger railroad in the United States. 71,096 16-foot-long track 
segments (around 220 miles) were generated using the described data 
integration method. Among these segments, 1,708 segments, accounting 
for 2.4 % of total segments, had geometry defects from 2020 to 2021. 

5.1. Feature selection 

17 features (as shown in Section 4.2) were extracted from the inte-
grated dataset and applied for feature selection. Fig. 7 shows the number 
of features adopted and corresponding values of the F1-score using the 
RFE algorithm. It indicates that in most cases, when more features are 
removed from the feature list, F1-score steadily increases because data 
noise caused by redundant data decreases. However, when the number 
of features adopted in RFE drops to 11, further removing a feature re-
duces the F1-score because significant influencing factors are ignored by 
the algorithm. Particularly, when only one or two features are applied, 

Fig. 7. Number of Features Adopted and F1-score Using RFE Algorithm.  
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the F1-score drops close to zero. Finally, 11 features selected by RFE 
include FDL, BFI, BTI, BDM, TDI, curvature, switch, FRA track class, 
traffic, rail replacement, and surfacing, which are finally applied as the 
input variables for the machine learning models. In other words, six 
features (i.e., LRI, BVM, SMI, TCS, RSA, and tie production) that are 
removed from the feature list contribute the least to the predicted 
results. 

For practical purposes, feature importance has been conducted to 
identify features that the railroad staff should focus on and analyze more 
than other features, which is shown in Fig. 8. Particularly, surfacing 
activity and traffic density have the highest importance rate. Railroads 
conduct surfacing activity to maintain stable and properly aligned track 
structure, and to further slow potential track geometry defect growth. 
The traffic that passes over the rail segments leads to track geometry 
degradation due to cyclical dynamic loads. Further, rail segments with 
poor geometry conditions can further increase the dynamic load be-
tween rail and wheel when vehicles pass, which accelerates the deteri-
oration of track geometry. 

Another practical outcome is that infrastructure-related features, 
including curvature and the presence of switch, play a crucial role in 
geometry defect occurrences. Therefore, segments with a certain 
configuration of infrastructure information may be prone to geometry 
defect occurrence. An investigation found that isolated track geometry 
degradations usually occur in spirals at special substructure conditions 
such as soft subgrade or poor drainage areas [39]. 

Finally, substructure conditions measured by GPR such as BTI, FDL, 
and BFI are associated with the occurrence of geometry defects, which is 
also supported by previous research [15,20,21]. 

Additionally, the scatter plot matrix is provided to investigate the 
strength of correlation between 11 input variables, as shown in Fig. 9. It 
indicates that there is no significant linear correlation between them. 
Therefore, all these 11 variables are finally used in the data-driven 
models. 

5.2. Model results 

Three different data treatment methods, including no sampling, 
undersampling, and oversampling, were implemented into the training 
dataset to address the imbalanced classification issue. Three different 
machine learning methods were separately fit using training and vali-
dation datasets with different data treatment methods. The 

hyperparameters of each model were optimized using Bayesian 
optimization. 

To evaluate the performance of the model, various performance 
criteria were considered. Table 5 includes the precision, recall, G-Mean, 
and F1-score for all data treatments. It illustrates that classification 
performance is highest when oversampling is incorporated into the GB 
algorithm in terms of F1-score. The F1-score of the proposed methods is 
0.662, which is better than logistic regression (0.071) and MLP (0.555). 
With the implementation of oversampling, the F1-score of GB increases 
from 0.617 to 0.662. It is also observed that oversampling technique can 
slightly improve the performance of logistic regression and MLP. 

Four metrics (i.e., precision, recall, G-Mean, and F1-score) change 

Fig. 8. Importance Rate of Selected Features.  

Fig. 9. Scatter Plot Matrix for Input Variables.  
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with different classification threshold [38]. The results in Table 5 are 
based on the threshold of 0.5. It shows that GB with oversampling 
achieves relatively good balance between these four metrics. For other 
methods such as logistic regression with undersampling, even though it 
has recall rate of 0.600, the precision rate only has 0.038. However, the 
low recall rate suggests a high number of false negative classifications, 
which could incur severe consequences. Therefore, the classification 
threshold can be adjusted to have a higher recall rate to reduce the false 
negative data samples. Fig. 10 presents the effect of the classification 
threshold on different metrics of the GB algorithm with oversampling. 
As the classification threshold decreases, the recall rate gradually in-
creases, indicating that more geometry defects are correctly predicted. 
When the threshold drops from 0.5 to 0.003, the recall rate increases 
from 0.55 to 0.88. It is observed that at this point, both the recall and G- 
mean are equal to 0.88. It also indicates at the intersection point of the 
recall, precision, and F1-score curves, the classification threshold is 
0.21. When the classification threshold decreases from 0.5 to 0.21, three 
metrics (i.e., precision, recall, and F1-score) are equal to 0.67. 

The proposed research can be applied to support the inspection and 
maintenance prioritization decisions. In the studied network, track 

geometry is inspected by geometry cars twice a year. This research can 
be applied to point out the track locations prone to geometry defects, 
and assist railroad staff in monitoring these high-risk track segments. For 
example, a portable geometry measurement device can be used to 
monitor track geometry at a local level. Track segments having higher 
predicted probability of track geometry defect occurrence should be 
additionally inspected during the interval of geometry car inspection. 
Besides, this research can be used for capital planning, such as mainte-
nance prioritization decisions. Track segments prone to geometry de-
fects might be given priority for maintenance, such as tie production and 
tamping. 

To compare the characteristics of the segments with high and low 
predicted risk, Table 6a and Table 6b show the top 10 segments with the 
highest and lowest predicted probability of geometry defect occurrence, 
respectively. It is found that segments associated with higher traffic 
density and/or sharper curves are prone to track geometry defects, such 
as #1 and #3 track segments in Table 6a. Track segments with higher 
traffic volume are prone to vertical geometry defects (e.g., profile) due 
to larger dynamic loads on tracks. On the other hand, curved tracks are 
more likely to experience lateral geometry defects (e.g., alignment) 
because the rail on the curved tracks is consistently subjected to more 
lateral loads leading to more alignment variations. 

However, it is observed that some high-risk segments that are not 
associated with high traffic density or shape curves usually have poorer 
substructure conditions measured by GPR. It implies that track geometry 
defects on those track segments are mainly caused by poor substructure 
conditions. Both drainage index (TDI) and ballast fouling property (BFI 
and FDL) reflect the ballast drainage. Track with poor BFI, FDL, and/or 
TDI indicates that the trackbed drainage is compromised. Mud pumping 
may occur due to poor drainage, which results in vertical geometry 
defects including profile, crosslevel, and twist. On the other hand, the 
ballast thickness and volume are assessed by BTI and BDM, respectively. 
Track with poor BTI and BDM shows improper thickness and deficit in 
ballast volume. In this case, there would be a high rate of track geometry 
degradation in both vertical and lateral directions. For instance, #6 
track segment in Table 6a has 6th highest predicted probability of 

Table 5 
Performance of Proposed Methods.  

Method Criteria No 
Sampling 

Undersampling Oversampling 

Logistic 
Regression 

Precision  0.010  0.038  0.038 
Recall  0.006  0.600  0.533 
G-Mean  0.077  0.617  0.602 
F1-score  0.008  0.071  0.071 

MLP Precision  0.749  0.838  0.790 
Recall  0.432  0.334  0.441 
G-Mean  0.656  0.578  0.663 
F1-score  0.528  0.478  0.555 

GB Precision  0.868  0.828  0.841 
Recall  0.479  0.467  0.545 
G-Mean  0.691  0.682  0.738 
F1-score  0.617  0.597  0.662  

Fig. 10. Influence of Threshold on Different Metrics of Gradient Boosting Model with Oversampling.  
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geometry defects. Compared to other track segments with the highest 
predicted probability, while this track segment is not within a sharp 
curve and does not experience high traffic density, it has poorer sub-
structure conditions including poor fouling depth (FDL = 2), moderately 
fouled ballast (BFI = 3), and small deficit in ballast volume (BDM = 2). 
In other words, the geometry defect on #6 track segment is mainly 
caused by poor substructure conditions. 

Notably, segments that have undergone maintenance activities such 
as surfacing in the prior year have higher predicted probability in some 
cases and lower predicted probability in others. Segments associated 
with larger traffic density and sharper curves tend to have significantly 
higher predicted probability. In other words, those segments are still 
prone to geometry defect occurrence even though they have been 
maintained in the previous year. Meanwhile, segments with smaller 
traffic density and curve degrees are less likely to experience geometry 
defects once they have experienced maintenance in the previous year. 

6. Conclusions and future work 

6.1. Conclusion 

Accurate evaluation of geometry defect occurrences under the in-
fluence of different factors can assist the maintenance-of-way task and 
contribute to better operation quality. This research develops a data- 
driven framework to investigate the impact of various influencing fac-
tors on the occurrence of track geometry defects, with a particular 
application to concrete-tie track on one passenger railroad in the United 
States. The framework consists of a pipeline of methodologies including 
data cleaning, data integration, feature extraction, data resampling, 
feature selection, and hyperparameter optimization. Data cleaning was 

used to identify concrete-tie track segments and to handle data issues. In 
data integration, heterogeneous data are combined into one integrated 
file. Feature extraction was implemented to generate the input variables 
for the machine learning models. Recursive feature elimination (RFE) 
was applied to reduce data dimensionality by recursively considering 
smaller and smaller sets of features. Three data treatment methods, 
including no resampling, undersampling, and oversampling, were 
incorporated into the model. Hyperparameters of proposed models were 
separately optimized using Bayesian optimization to avoid overfitting 
and underfitting. The performance of the proposed methods was finally 
evaluated based on a dataset generated by random data partitioning, 
which can avoid an over-optimistic estimation of the model. Using data 
collected from one passenger railroad, gradient boosting with over-
sampling shows the highest performance in predicting the occurrence of 
geometry defects using data including substructure condition data, rail 
seat abrasion data, infrastructure data, traffic data, track class infor-
mation, and maintenance data. 

Feature importance identifies that surfacing, traffic, curvature, 
switch, and rail replacement are the top five factors influencing the 
predicted probability of track geometry defect occurrence. It is found 
that track segments with larger traffic density and sharper curves are 
still prone to geometry defect occurrence even though they have been 
maintained in the previous year. Meanwhile, segments with smaller 
traffic density and curve degrees are less likely to experience geometry 
defects once they have experienced maintenance in the previous year. 
The results illustrate that the model can be used to prioritize inspection 
and maintenance activities on locations prone to track geometry defects, 
thus further improve infrastructure safety given budgetary constraints. 

Table 6a 
Segments with Highest Predicted Probability of Geometry Defect Occurrences.  

No. Surfacing (1 
= Yes; 0 =
No) 

Traffic 
(MGT) 

Curve 
Degree 

Switch (1 
= Yes; 0 =
No) 

Rail Replacement 
(1 = Yes; 0 = No) 

BTI Track 
Class 

FDL BFI BDM TDI Actual Geometry 
Defect 
Occurrence 

Predicted 
Probability of 
Geometry Defects 

1 0  18.2 2.98 0 0 4 4 4 3 2 1 1  0.99932 
2 0  18.2 3.03 0 0 3 4 3 3 3 1 1  0.99669 
3 0  18.2 2.99 0 0 3 4 4 4 2 1 1  0.99645 
4 1  27.0 2 0 0 3 4 4 5 3 3 1  0.99458 
5 1  27.0 1.19 0 0 3 4 4 5 3 1 1  0.98748 
6 0  22.7 1.04 0 0 3 4 2 3 2 1 1  0.98310 
7 0  22.7 0.71 0 0 4 3 2 4 2 1 1  0.98129 
8 0  22.7 0.72 0 0 4 3 2 4 2 1 1  0.98129 
9 1  27.0 1.4 0 0 4 4 4 5 3 3 1  0.98053 
10 0  30.5 0.01 0 0 2 3 3 5 3 3 1  0.97946  

Table 6b 
Segments with Lowest Predicted Probability of Geometry Defect Occurrences.  

No. Surfacing  
(1 = Yes; 0 
= No) 

Traffic 
(MGT) 

Curve 
Degree 

Switch (1 =
Yes; 0 = No) 

Rail 
Replacement  
(1 = Yes; 0 =
No) 

BTI Track 
Class 

FDL BFI BDM TDI Actual Geometry 
Defect Occurrence 

Predicted 
Probability of 
Geometry Defects 

1 0  19.2 0.86 0 0 1 4 4 4 3 1 0 2.73E-07 
2 1  19.2 0.25 0 0 3 4 4 5 2 3 0 2.43E-07 
3 0  19.2 0.86 0 1 4 4 4 5 1 3 0 2.39E-07 
4 1  19.2 0 0 0 2 4 3 3 2 3 0 2.38E-07 
5 0  19.2 0.88 0 0 1 4 3 3 3 3 0 1.78E-07 
6 1  16.9 0.02 0 0 3 3 3 3 2 3 0 1.73E-07 
7 0  19.2 0.02 0 0 3 4 4 5 1 3 0 1.67E-07 
8 0  18.2 0.04 0 0 1 4 4 5 1 3 0 1.51E-07 
9 0  19.2 0.92 0 0 3 4 4 5 3 1 0 1.38E-07 
10 0  19.2 0.9 0 0 1 4 3 3 3 3 0 8.12E-08 

Note: 
BTI: 3 indicates the best condition. Values greater or smaller than 3 represent poorer conditions. 
FDL, BFI, and BDM: The greater values indicate better conditions. 
TDI: The greater values indicate poorer conditions. 

X. Wang et al.                                                                                                                                                                                                                                   



Construction and Building Materials 365 (2023) 130066

13

6.2. Future work 

This section discusses the limitations and future research directions 
of this study. First, some critical factors are not included in this data- 
driven framework due to limited data availability, which results in a 
not very high recall rate. For example, track segments with tamping 
interventions are less likely to experience track geometry defects in a 
short period. In future research, more influencing factors can be 
collected and incorporated into the model to further improve its 
performance. 

Furthermore, current research does not support time series analysis 
because the timespan of data is limited. In other words, this study fo-
cuses on correlation within relatively short time duration and cannot be 
used for predicting future track conditions due to data limitations. In the 
future, as more years of data are collected, future research will focus on 
forecasting the occurrence of geometry defects in a specific time inter-
val, such as one month or one year in advance, to understand the tem-
poral effects of various factors on track geometry defects. The 
chronological relationship between the influencing factors and the 
occurrence of track geometry defects should be identified during data 
processing. Additionally, time-series data partitioning should be used 
for splitting the dataset into training, validation, and test datasets, to 
avoid data leakage during the model training process. 
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