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A B S T R A C T   

Predicting the occurrence of broken rails has safety and economic benefits, and reduces accidents and service 
disruptions. This paper aims to build a data-driven model for broken rail prediction using data related to 
infrastructure, operations, inspections, and weather conditions from 2013 to 2019. The railroad data was pro-
vided by one major Class I U.S. railroad. The weather condition data was collected from the National Oceanic and 
Atmospheric Administration (NOAA). Based on time-series data partitioning, three different machine learning 
models are developed for predicting broken rail occurrence one month in advance. The selected models, 
including logistic regression, random forests, and gradient boosting, are trained using data from 2013 to 2018. 
The performance of three trained models are evaluated using the data from 2019. The relationship between the 
percentage of the network scanned and the percentage of broken rails found is used to identify locations that are 
more prone to broken rails. The findings of this study show that the gradient boosting model performs better than 
the other two methods for our datasets. The model also identifies that the number of detected rail defects within 
last 365 days, minimum ambient temperature of the last 30 days, days from the last broken rail, segment length, 
traffic density and other factors have significant influences on prediction results. Using this model, 40.4% of 
broken rails can be successfully predicted one month in advance when focusing on 10% of the railroad network 
scanned. The model can potentially be used to prioritize inspection and maintenance activities on broken-rail- 
prone locations, and thus to further improve infrastructure safety given budgetary constraints.   

1. Introduction 

Broken rails (aka rail service failures) are the leading cause of severe 
freight-train accidents in the United States [1,2]. For example, there 
were 219 broken-rail-caused freight train derailments on one mainline 
of a Class I railroad2 from 2000 to 2014, accounting for 22% of all types 
of derailments, exceeding all other causes [3]. Annually, Class I freight 
railroads incur about $83 million in damage costs and service in-
terruptions due to broken rail occurrences [4]. 

Improvements in rail manufacturing and inspection technology have 
significantly reduced the incidence of broken rails [5,6]. In our studied 
data provided by one Class I railroad in the United States, the average 
annual number of broken rails has decreased from 1,940 two decades 

ago (2000–2009) to 806 in the last decade (2010–2019). However, a 
number of broken rails still occur. Efforts are underway in the industry 
to keep this momentum and further reduce broken rail risk. While 
additional inspection and/or maintenance would be helpful for risk 
reduction, it would require additional financial resources. Therefore, 
knowing how to allocate limited resources to maximize safety benefits is 
of great interest and practical value. 

This paper focuses on broken rail occurrence prediction using a 
machine learning based methodology. The proposed methodology is 
applied in practice based on the multi-source data (infrastructure, 
operation, inspection) provided by a major freight railroad company in 
the United States, as well as climatological data from the NOAA. Based 
on time-series data partitioning, three different machine learning 
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models, including logistic regression, random forests, and gradient 
boosting, are developed and trained using the data from 2013 to 2018. 
The performance of three trained models is evaluated using the data 
from 2019. Additionally, factors that significantly influence broken rail 
prediction results are identified using the trained model. Finally, the 
case study shows that the model can potentially be used to prioritize 
inspection and maintenance activities on broken-rail-prone locations, 
and thus further improve infrastructure safety given budgetary 
constraints. 

The organization of the article is as follows. Section 2 discusses the 
topic background and the significant contributions of the current study. 
In section 3, the methodology of the model in this study is demonstrated. 
Section 4 shows an overview of the data collected and the analysis of 
input variables of the models. Subsequently, the results of different 
models are compared. Discussions of the results and future directions of 
the study are provided in Section 5 and Section 6. 

2. Literature review 

Broken rails are mainly caused by fatigue, which can be initiated at 
the rail head, at the web, and at the foot [46]. There is an increased risk 
of broken rails in winter because tensile thermal stresses reach peak 
values in cold weather [47]. Previous research on data-driven analysis 
on broken rails falls into three categories: 1) Statistical models proposed 
for predicting the occurrence and frequency of broken rails [4,8–12]; 2) 
Machine learning based models for predicting the occurrence and fre-
quency of broken rails [2,4,11]; 3) Probabilistic models used for 
analyzing the risk of broken rails under different scenarios [13–17]. 

Statistical models were developed to predict the occurrence and 

frequency of broken rails over a specific period. A multivariate statistical 
model based on logistic procedure was developed to predict the prob-
ability of broken rails over a two-year period [4,8–11]. Stepwise 
regression was used to determine the most relevant parameters and 
combinations of parameters for inclusion in the model. A probability 
threshold is determined to estimate whether a broken rail is predicted to 
occur. A fuzzy model based on the fuzzy logic process was developed to 
predict the frequency of broken rails [12]. This model was shown to 
perform well with basic factors that are relatively easy to collect for long 
segments. Nevertheless, it would not have an accurate prediction over a 
short segment due to data limitations. 

The second type of data-driven analysis refers to machine learning 
models for predicting the occurrence and frequency of broken rails. Two 
types of hybrid model that combine a multilayer perception (MLP) 
neural network and logistic regression were proposed to predict the 
occurrence of broken rails over a four-year period, which outperformed 
the logistic regression model in terms of accuracy [4,11]. The first 
hybrid model applied a logistic regression model to pre-select the most 
useful variables, and then developed an MLP model based on these 
selected variables. The second hybrid model was developed using the 
logistic regression model to calculate the probability of broken rail and 
added the calculated probability as an additional input variable into the 
MLP model. More recently, a gradient boosting classifier with resam-
pling and bootstrap aggregation (or bagging) incorporated into the al-
gorithm was implemented to predict the occurrence of broken rails 
between two successive rail inspections using data from a railroad for 
the six-year period from 2011 to 2016 [2]. 

Probabilistic models were proposed to analyze the risk of broken rail 
impacted by various factors. Chattopadhyay and Kumar [13] applied 

Table 1 
Comparison of Selected Data-Driven Models of Broken Rail Prediction.  

Objective Scope of data Methodology Model variables Data partitioning and 
model performance 

Authors and research 

Estimate occurrence 
of broken rails 
during a two-year 
period 

3,676 records from 
one U.S. railroad, 
1998–2000 

Logistic regression 
model 

Rail characteristics, traffic-related variables, 
curve degree, speed, presence of turnout, and 
combinations of variables 

Accuracy: 87.4% Dick (2001) [8]; Dick 
et al. (2002) [9]; Dick 
et al. (2003) [10] 

Estimate occurrence 
of broken rails 
during a four-year 
period 

15,999 records from 
one U.S. freight 
railroad, 2003–2006 

Hybrid logistic 
regression and neural 
network hybrid 
model 

Rail characteristics, traffic-related variables, 
speed, curvature, superelevation, grade, tie 
work, grinding, presence of turnout, presence of 
rail defect and geometry defect, grinding, 
presence of infrastructure, and combinations of 
variables  

Testing accuracy: 
67.9% 

Schafer and Barkan 
(2008) [11] 

25,370 records from 
one U.S. freight 
railroad, 2003–2006 

Logit model Rail characteristics, traffic-related variables, 
presence of rail defect and geometry defect, and 
presence of bridge 

Random partitioning: 
60% of data for 
training, 40% of data 
for testing 
Testing accuracy: 
66.3% 

Schafer and Barkan 
(2008) [4] 

Predict the frequency 
of broken rails 

– Fuzzy logit model Tonnage, temperature, rail age, and curve 
degree 

Predicted number of 
broken rails in 2010 is 
6.72 and real number is 
6. 

Vesković et al. (2012)  
[12] 

Estimate rail service 
life 

– Weibull distribution Rail characteristics, curve, season (winter or 
summer), tonnage 

– Chattopadhyay and 
Kumar (2009) [13] 

648 records from 
freight and 
passenger railroad, 
2010–2015 

Markov stochastic 
processes 

Tonnage, rail defects, curve, grade, segment 
length 

The first quartile and 
third quartile errors are 
− 1.8 and 0.8 years 

Bai et al. (2017) [16] 

Predict the risk of 
broken rails 
between two rail 
inspections 

290,735 records 
(21,000 miles) 
freight railroad, 
2011–2016 

Survival analysis 
model 

Tonnage, inspection schedules, segment length, 
broken rails, rail defects, geometry defects, days 
from last grinding, grade, curve degree, rail age, 
product age curvature, and turnouts 

Training data from 
2011 to 2015, testing 
data in 2016 
Testing accuracy: 
68.3% 

Ghofrani et al. (2020)  
[17] 

Predict the 
occurrence of 
broken rails 
between two rail 
inspections 

5,270 miles from 
heavy haul line 
2011–2016 

Gradient boosting Tonnage, rail age, temperature, segment length, 
rail inspection schedules, rail defects, geometry 
defects, days from last grinding, grade, curve 
degree, turnouts, product of age curvature 

G-Mean: 0.95, AUC: 
0.95 

Ghofrani et al. (2021)  
[2]  
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Weibull distribution to model the relationship between the probability 
of broken rail and million gross tons (MGT), where the failure proba-
bility function monotonically increased with MGT. A defect-based risk 
analysis methodology for estimating broken rail risk was developed 
[14]. The Bayesian inference method was initially employed to capture a 
robust model of squat (over 4 mm) broken rail probability. Then, squat 
was divided into four experimental categories according to crack depth 
and visual length. Finally, relying on the broken rail probability sce-
narios and severity categories, the broken rail risk was defined. Along 
with directly using the crack information as the index for evaluating the 
squat severity, MGT was adopted as an intermediate variable for eval-
uating the growth length [15]. This is because rail staff can more easily 
collect the MGT data and apply the model in management. A model for 
estimating the rail service life of a section (1 km, 0.63 miles) was built 
using Markov processes, where the service life was defined as the period 
from the date when the rail is put into use to the date when the rail is 
replaced [16]. The estimated rail service life is close to the real rail 
service life. However, it assumed that if a severely defective rail was 
replaced and the length of the rail was small (for example, 25 m), such 
unplanned replacement activities would have little effect on the overall 
service life of the section, which means the proposed model cannot be 
applied to identify rail condition over a short segment. A survival 
analysis model was developed to predict the risk of broken rails between 
two successive rail inspections using multiple data sources [17]. This 
study also analyzed the impact of covariates on rail life defined by the 
total cumulative tonnage. Further details about the comparison of data- 
driven models for broken rail prediction are shown in Table 1. 

Nevertheless, the problem of data-driven analysis of broken rails is 
still understudied in the current literature. Many prior related studies 
have focused on a relatively longer prediction period (e.g., one year) for 

railroad capital planning. Different from long-term prediction models, 
the development of a short-term prediction model for broken rails is 
more challenging due to the scarcity of broken rail occurrences in 
shorter periods. However, a short-term prediction model would be 
helpful in guiding inspection and maintenance [18,19]. Thus, in this 
paper, we develop an effective framework that is customized for broken 
rail prediction in a shorter period, specifically one month in advance. 
This framework consists of a pipeline of methodologies, including data 
cleaning, data partitioning, feature extraction, track segmentation, 
covariance analysis, and hyperparameter optimization. Additionally, 
compared to the literature using older datasets, we have collected and 
analyzed more recent data from one major freight railroad. Finally, in 
this research, as compared to the data partitioning performed in most 
previous studies, testing data for evaluating the performance of the 
proposed models were generated by partitioning all data according to 
time sequences to avoid data leakage. This paper provides the following 
contributions:  

1. A framework consisting of a pipeline of methodologies is proposed 
for short-term prediction of broken rails. The effectiveness of the 
proposed framework is validated using data from one Class I 
railroad. 

2. Feature-based track segmentation is proposed to delineate the rail-
road network, which is able to improve the performance of the 
proposed model by reducing variations in data records.  

3. This paper extracts more features and uses them as input variables 
for the machine learning models. While previous studies did not 
include them, the feature importance identifies the top influencing 
variables, such as minimum temperature and crossing angles of 
turnouts, for broken rail prediction. 

Fig. 1. Machine Learning Framework for Broken Rail Prediction.  

X. Wang et al.                                                                                                                                                                                                                                   



Construction and Building Materials 346 (2022) 128353

4

3. Methodology 

A machine learning based methodology is proposed in this paper to 
predict the occurrence of broken rails. Fig. 1 shows a methodological 
framework for data-driven broken rail prediction. First, data cleaning is 
used to handle the issues of the raw data collected from one Class I U.S. 
railroad and the NOAA. Subsequently, important features (input vari-
ables) are extracted according to the processed data. Next, heteroge-
neous datasets are combined into an integrated dataset, and track 
segmentation is applied to combine shorter segments with the same or 
similar attributes into longer segments. By partitioning data according 
to time series, the data from 2013 to 2017 are defined as training data, 
and the data from 2018 and 2019 are separately selected as validation 
data and testing data. The model fitted by the training data (with and 
without data resampling) and the validation dataset is evaluated using 
testing data. Finally, the model is applied to a network-level case study 
on a major freight railroad. 

3.1. Data cleaning 

Due to human factors and possible errors from inspection machines, 
there can sometimes be more than one record associated with identical 
locations and time windows (if any), with observations being uniform 
(data duplication) or different (data inconsistency). Data cleaning aims 
to address data duplication and inconsistency issues and to process in-
formation combination for the left-side and right-side rail. To address 
the data duplication problem, only one of the duplicated records is kept 
in the database. To address the data inconsistency issue, the record with 
the worst condition information (to be conservative) will be retained in 
the database. For instance, if there is more than one record concerning 
curve information in the same segment, the maximum curve degree 
among different records would be assigned to this segment. Further, 
some databases differentiate between the left-side and right-side rail of 
the same track. In this study, data from two sides of the same track are 
combined according to their data types since many important datasets 
(e.g., traffic density) are recorded on the track level. 

3.2. Data partitioning 

When some data attributes are time-related and dynamically change 
with time, time-series splitting can provide a statistically robust model 
evaluation. If the testing data is randomly selected from all the original 
data, information regarding the future condition may leak into the 
model, which would lead to an over-optimistic estimation of the model. 
Therefore, in this study, time-series partitioning is used to sort all data 
into training, validation, and testing data. Specifically, the data from 
2019 is selected as the testing data for evaluating model generalization. 
The data from 2018 is used as validation data which provides an unbi-
ased evaluation of a model fit on the training data from 2013 to 2017 
when model hyperparameters are tuned. 

3.3. Data resampling 

In the railroad network, the vast majority of track segments did not 
experience broken rails in a short time period, leading to imbalanced 
classification issues. As a result of this issue, the performance of a ma-
chine learning model leans partially toward the majority class in the 
imbalanced data. Data resampling aims to balance data by reducing the 
majority class samples or resampling the minority class samples, known 
as undersampling and oversampling, respectively [20–22]. Thus, data 
resampling is applied to address imbalanced data issues in this research. 

Cluster-based majority undersampling is applied by generating a 
smaller set, based on centroids, using clustering methods. This algorithm 
samples the majority class by replacing a cluster of majority samples 
with the cluster centroid of a K-mean method, where the number of 
clusters is set according to the required level of undersampling [23]. 

Traditional oversampling algorithms, such as the synthetic minority 
oversampling technique (SMOTE), create synthetic examples in feature 
space from randomly selected pairs of feature examples from the mi-
nority class [24,25]. Based on SMOTE, He et al. [26] developed an 
adaptive synthetic sampling approach (ADASYN) by shifting the clas-
sifier decision boundary to focus more on those samples that are difficult 
to learn. It uses a weighted distribution for different minority class ex-
amples according to their level of difficulty in learning, where more 
synthetic data is generated. Therefore, in this research, cluster-based 
majority undersampling is used as an undersampling method, and 
ADASYN is the oversampling technique used in the machine learning 
models. 

3.4. Prediction models 

3.4.1. Logistic regression 
Logistic regression is used to model the probability of the target 

object as a function of other variables. Consider a set of prediction 
vectors (feature vectors) X = [x1,⋯, xi,⋯, xn] ∈ Rd×n where n is the 
number of records, xi = [k1, k2⋯kd] is the ith record of a column vector 
containing the values of d variables. The response variable for the col-
umn vector xi is yi where yi ∈ [0, 1]. Logistic regression establishes the 
relationship between prediction vectors and the response variable as 
follows: P(y|xi) = 1

1+e− (wT xi+b). Maximum likelihood estimation (MLE) is 
applied to estimate the parameters w and b that maximize the condi-
tional likelihood of 

∏n
i=1P

(
yi
⃒
⃒xi;w,b). 

3.4.2. Random Forests 
Random Forests is one of the most famous bagging (Bootstrap 

Aggregating) algorithms: a bagged decision tree [27,28]. It does not 
require a lot of preprocessing and can be highly advantageous for 
training with heterogeneous data. Random Forests works according to 
the following steps: 

Step 1: Sample m datasets X1,⋯,Xm from all training data X. 
Step 2: In each Xj(j = 1,2,⋯,m), only a limited number (smaller than 

d, number of variables) of prediction vectors are used to train a full 
decision tree hj(Xj). 

Step 3: The final performance of the Random Forests model H(X) is 
evaluated by averaging all the decision tree models H(X) = 1

m
∑m

j=1hj(Xj). 

3.4.3. Gradient boosting 
Gradient boosting produces a prediction model in the form of an 

ensemble of weak prediction models in an iterative fashion. In iteration 
t, the classifier αtht(x) is added to the ensemble, where αt is the weight of 
the classifier ht(x). Thus, all T classifiers are used to create the ensemble 
classifier HT(x) =

∑T
t=1αtht(x). 

XGBoost is a scalable tree-based ensemble machine learning algo-
rithm that uses a gradient boosting framework. Traditional gradient 
boosting uses a gradient algorithm to minimize errors in the sequential 
model, while XGBoost is optimized by parallel processing, tree-pruning, 
and handling regularization to avoid overfitting [29,30]. Thus, XGBoost 
is ultimately the selected gradient boosting model in this study. 

3.5. Evaluation metric 

The evaluation metric is used to measure the performance of a ma-
chine learning model. Broken rail data only takes up a small proportion 
of the whole railroad network. Misclassifying observations of these 
territories has much more severe consequences, including service 
interruption or even derailment. A reasonable evaluation metric is able 
to provide a trade-off between the majority class and minority class. 
Typically, binary classification results can be divided into four cate-
gories (aka confusion matrix): the number of True Positives (TP), True 
Negatives (TN), False Positives (FP), and False Negatives (FN). The 
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following measures can be obtained [31]: 
True positive rate (recall or sensitivity):.TPR = TP

TP+FN 

True negative rate (specificity):.TNR = TN
TN+FP 

False positive rate:.FPR = FP
TN+FP 

False negative rate:.FNR = FN
TP+FN 

Positive predictive value (precision):.PPV = TP
TP+FP 

To resolve the imbalanced data issue, oversampling the minority and 
using the geometric mean (G-Mean) as the evaluation metric were 
implemented for dealing with the same problem [2]. G-Mean computes 
the geometric mean of the accuracy of two classes. It maximizes the 
square root of the product of TPR and PPV, while obtaining a good 
balance. On the other hand, the receiver operating characteristics (ROC) 
curve and area under the ROC curve (AUC, AUC = 1+TPR− FPR

2 ) provide a 
visualization and index of the relative trade-off between TPR and FPR. 

The goal of the proposed model is to identify more broken rails with 
fewer track miles inspected. For a given score threshold T that de-
termines the confusion matrix, TPR(T) represents the percentage of 
broken rails detected, and the percentage of railroad network inspected 
is P(T) = TP+FP

TN+FP+FN+TP if all segments have identical lengths. When it 
comes to an extremely imbalanced classification problem, as in this 
study, only thousands out of millions of total segments have broken rails. 
Thus, it is clear to have TP≪FP and TP + FN≪TN + FP, and the P(T) can 
be approximately equal to FPR. Finally, the customized evaluation 
metric E in this study is given by: 

E =

∫ 1

0
TPRdP =

∫ ∞

− ∞
TPR(T)P′

(T)dT ≈

∫ ∞

− ∞
TPR(T)FPR′

(T)dT (1)  

3.6. Hyperparameter optimization 

Underfitting and overfitting are two challenges associated with 
model training [32,33]. They are concerned with the degree to which 
the data in the training set is extrapolated to apply to unknown data. 
Overfitting refers to a phenomenon where the model learns a function 
with very high variance to perfectly model the training data, while 
underfitting occurs when the machine learning model is incapable of 
capturing the variability of the data [34]. The hyperparameter refers to 
the configuration of the model whose setting cannot be estimated from 
the training process. Appropriate hyperparameters provide a trade-off 
between bias and variance, and avoid the mistakes of underfitting and 
overfitting. 

Bayesian optimization is selected as the hyperparameter optimiza-
tion approach. On one hand, grid search and random search would 
require massive trials, especially for high dimensional data, which 
would affect the ultimate accuracy of model results. On the other hand, 
Bayesian optimization internally maintains a Gaussian process model of 
the objective function and uses objective function evaluations to train 
the model. One innovation in Bayesian optimization is the use of an 
acquisition function to determine the next point for evaluation [35]. The 
acquisition function can balance sampling at points that have low 
modeled objective functions, and explore areas that have not yet been 
modeled well. 

4. Case study 

The data collected for the current research comes from one Class I U. 

S. railroad for seven years from 2013 to 2019 and weather condition 
data from the NOAA. The railroad datasets provide infrastructure 
design, operation, and inspection information. The NOAA data includes 
climatological information for over 20,000 track miles. 

4.1. Database description 

4.1.1. Infrastructure data 
Infrastructure data includes curvature data, grade data, rail data, 

turnout data, and signal data of the track. Curvature data indicates de-
gree of the curvature, length of the curvature, length of spiral, super-
elevation, and direction of the curvature that shows the horizontal 
alignment of the track. Grade data (slope) shows the vertical alignment 
of the track. Rail data records the latest rail characteristics, including rail 
weight, the laid date of the rail, new versus re-laid rail, and joint versus 
continuous welded rails (CWR). 

Turnout data specifies the turnout direction, frog type, turnout size, 
and other related information. In this study, the crossing angle is used so 
that the greater angle may incur more severe operation conditions [36]. 
The signal data indicates whether a track is in a signalized territory. 

4.1.2. Operation data 
Operation datasets contain the maximum allowable speed and traffic 

data. Speed data provides the maximum allowable speed of track on 
different segments. Traffic data specifies the track segments, corre-
sponding gross tonnage, and gross number of passing cars. This study 
uses the monthly gross tonnage. Table 2 illustrates the distribution of the 
annual gross tonnage of the whole network. 

4.1.3. Inspection related data 
Broken Rail Data 
Broken rails can be detected by the signal system, track inspectors, or 

maintenance of way crews in the field [8]. Once a broken rail is detected 
and the failure type is investigated, information regarding the broken 
rail is recorded in this database, such as the type of failure and found 
date. Ordinary broken rail (BRO) refers to a partial or complete break in 
which there is no sign of a fissure [49]. In our studied data, BRO is the 
primary type of broken rail, accounting for 28.15% of all broken rails. 
Furthermore, there is a significant difference among the average 
numbers of broken rails in different months (Fig. 2). For example, the 
average number of broken rails in January (197) is ten times greater 
than that in July (18). Broken rails in November, December, January, 
and February accounted for 64.3% of the total number of broken rails in 
our dataset. 

Ultrasonic Rail Inspection Schedule Data 
Ultrasonic rail inspection schedule data records the location, direc-

tion, and time when an inspection vehicle passes. The monthly average 
number of track miles inspected in this period is 9,010. The inspection 
interval of ultrasonic vehicles (in number of days) is shown in Fig. 3. The 
minimum inspection interval is 16 days. It also indicates that most 
segments are distributed in several inspection intervals such as 30 days, 
60 days, 120 days, and 180 days. Fig. 4 demonstrates the cumulative 
percentage of the railroad network (non-repetitive) with ultrasonic rail 
flaw inspection. It shows that about 88.7% of the whole network track 
(non-repetitive) is inspected by an ultrasonic vehicle at least once every 
200 days. 

Rail Defect Data 
Cyclic dynamic load on the rail can result in rail deterioration, and 

the rail can also be subject to mechanical and thermal forces during 
installation and track maintenance operations. Ultrasonic rail inspection 
is applied to detect rail defects, including the size and type of defects. 
About 78,000 rail defects (excluding broken rail) were found between 
2013 and 2019 in the studied railroad network, with approximately 0.53 
rail defects per mile per year. Detail fracture (TDD) is the dominant type 
of rail defect, accounting for 26.8% of all rail defects. TDD means a 
progressive fracture originating at or near the surface of the rail head 

Table 2 
Distribution of Annual Tonnage of the Whole Network.  

Average Annual Tonnage 
(MGT) 

0–10 10–20 20–30 30–40 Over 40 

Track Miles 8241 3344 3340 2030 3547 
Percent of the Whole 

Network 
40.20% 16.31% 16.29% 9.90% 17.30%  
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[49]. It may originate from shelly spots, head checks, or flaking. 
Track Geometry Exception Data 
Track geometry refers to the geometrical data of the track, such as 

alignment, profile, cross-level, warp, and gauge. As the geometry de-
teriorates, the dynamic loads on the rail increase, resulting in the 
occurrence of rail defects or broken rails [37,38]. Once geometry defects 
(including wide gauge) were found and corrected if needed, types of 
geometry exception, size of the defects, found date, and other related 
data were recorded in the track geometry exception data. Among all the 
exception types, wide gauge is the primary type of track geometry 
defect, accounting for 16.1% of all defects. Wide gauge is one of the most 
important causes of derailments on main lines [50]. In this research, all 
types of geometry exception are included in the model. 

Vehicle-Track Interaction Exception Data 
The Vehicle Track Interaction (VTI) system is used to measure car 

body accelerations, truck frame accelerations, and axle accelerations 
[39–41]. It can assist in the early identification of vehicle dynamics that 
might lead to rapid degradation of track and equipment [48]. The VTI 
database includes the location information, exception date, exception 

type, exception value, and exception priority [51]. 

4.1.4. Climatological data 
The NOAA collects local climatological data (LCD) observed from 

nearly 2,400 locations within the United States. The land-based, or 
surface, observations include air temperature, dew point, relative hu-
midity, precipitation, wind speed and direction, visibility, atmospheric 
pressure, and types of weather occurrences [52]. Previous research 
shows broken rails are more likely to occur in cold weather due to tensile 
thermal stresses [1,42]. Thus, in this study, the minimum ambient 
temperature of the last 30 days is used as one input variable, in order to 
consider the influence of rail temperature. The temperature data from 
the nearest weather stations are allocated to segments of the railroad 
according to the geological information of the central point of segments. 

4.2. Feature extraction 

Feature extraction refers to the translation of raw data into the input 
variables (features). The following variables (Fig. 5) are generated as 

Fig. 2. Distribution of Average Monthly Number of Broken Rails on the Studied Railroad.  

Fig. 3. Distribution of Ultrasonic Rail Flaw Inspection Interval.  
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preliminary input variables from the raw data based on the literature 
review (Table 1). When it comes to inspection related information, they 
are separately defined as input features of the machine learning model. 
For instance, features associated with rail defects (excluding broken rail) 

are solely extracted from the rail defect database. While broken rail (rail 
service failure) is the output variable (prediction target) of the model, 
the past information of the broken rail is defined as input variables, such 
as the number of days from the last failure occurrence and the number of 

Fig. 4. Cumulative Distribution of Railroad Network with Ultrasonic Rail Flaw Inspection.  

Fig. 5. Features Extracted from Raw Railroad Data and Climatological Data.  
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rail failures within the last 365 days. Further, some combinations of 
attributes are added as additional features in the final integrated data-
base. These include dynamic wheel load, product of rail age and degree 
of curvature, product of annual traffic density (in MGT) and rail weight, 
and quotient of annual traffic density and rail weight [10]. 

4.3. Track segmentation 

Track segmentation is a process of delineating the railroad network 
into various segments. This section introduces track segmentation using 
the integrated dataset generated based on temporal and spatial infor-
mation. The integrated data set is first divided into segments with a fixed 

Fig. 6. A Hypothetical Illustrative Example of Feature-based Track Segmentation.  

Fig. 7. Correlation Plot for the Majority of Input Variables.  
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length, which is defined as fixed-length track segmentation. The reso-
lution of traffic data is 0.1 miles. Thus, in this paper, the primary 
segment length is set to 0.1 miles. While short segment length incurs 
high computation costs due to large records, long segment length results 
in an increase in the detection workload. Thus, in this paper, feature- 
based track segmentation is introduced to combine 0.1-mile segments 
with the same or similar attributes into longer segments, in order to 
reduce variances in the new data records and save computation costs. 
Fig. 6 demonstrates an example of feature-based track segmentation 
based on partial features selected. The track segmentation was per-
formed according to the following steps: 

Step 1: Generate 0.1-mile segments for the whole network. Each 
segment representing one record has a fixed length and can be uniquely 
identified by location information, including Prefix, Track Type, and 

Milepost. 
Step 2: According to the location information of the segments, for 

each segment, map all of the time-independent attributes, including all 
of the infrastructure-related attributes and maximum allowable speeds. 

Step 3: Timestamps that indicate the year and month of each record 
are introduced to specify the time attributes of the integrated data. 

Step 4: According to the time information and geographic informa-
tion, for each segment, map the time-dependent variables, including 
inspection data, traffic data, and climatological data. 

Step 5: If adjacent segments have similar values of infrastructure 
attributes and operation attributes, they are combined into a longer 
segment. The maximum length of segments in this research is 0.5 miles. 

4.4. Correlation of input variables 

Pearson correlation analysis was conducted (Fig. 7). The results 
illustrate that most features can be directly used due to their low values 
of correlation with each other. The correlation coefficient between the 
days from last rail inspection and rail inspection interval is 0.72, indi-
cating a strong linear relationship. This is reasonable since segments 
with greater inspection intervals are more likely to have more days since 
the last rail inspection. Of these two variables, only the inspection in-
terval is selected as an input variable. Three attributes (speed, tonnage, 
and signal) are also related, since the territory with signal control tends 
to have higher speeds, which further contributes to larger traffic vol-
umes. Finally, except for days from last rail inspection having a strong 
correlation with inspection interval, all the other single features and 
combinations of features (see details in section 4.2) are used as input 
variables in the model. 

4.5. Model results 

Using the aforementioned parameters as inputs, we develop three 
different machine learning methods that are trained based on data from 
2013 to 2018. The model is used to predict the monthly broken rail 
occurrence in 2019. A comparison is made among these methods 

Fig. 8. Testing Performance of Proposed Models without Resampling.  

Fig. 9. AUC of Models under Different Scenarios.  
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without data resampling in terms of the ROC and the AUC, as shown in 
Fig. 8. The gradient boosting model with a 0.843 AUC value outperforms 
Random Forests and Logistic Regression, whose values are 0.829 and 
0.799, respectively. The training, validation, and testing AUC of the 
gradient boosting model are 0.876, 0.854, and 0.843, respectively. 

Additionally, we apply the same sequence of methodologies using 
fixed-length track segmentation. In this case, all segments have a fixed 
length of 0.1 miles. The results show that although higher computation 
costs are needed to fit machine learning models using the integrated 
dataset with 0.1-mile segmentation, gradient boosting still demonstrates 
better performance than the other two algorithms. However, the AUC 
value of the testing dataset with fixed-length segmentation dropped 
from 0.843 to 0.828. Therefore, the feature-based track segmentation 
proposed in this research can effectively improve the performance of the 
proposed model. 

Further analysis is conducted to study the effectiveness of extra 
variables, including minimum temperature and crossing angles of 
turnouts, which have not been considered in previous studies. The 

results show that model performance significantly decreases when 
minimum temperature and crossing angles of turnouts are excluded 
from the input variables of the machine learning models. While the 
gradient boosting still outperforms the other two algorithms, the AUC 
drops from 0.843 to 0.798, demonstrating the significance of extra 
variables in this research. 

It is interesting to see that the performance of our gradient boosting 
model cannot be significantly improved with the implementation of data 
resampling (Fig. 9), while previous research [2] showed the benefits of 
resampling for model improvement. This might be due to the use of 
different datasets for different locations. Our model is for the entire 
network, while Ghofrani et al. [2] focused on high-density corridors. 

Fig. 10 includes the top ten influencing variables for broken rail 
prediction. It indicates that the number of rail defects within the last 
365 days, minimum ambient temperature for the last 30 days, days from 
last broken rail, segment length, and days from last rail defect are among 
the variables that significantly influence broken rail prediction results. 

Temperature variations affect the tensional state of the rails. Broken 
rails are more likely to occur in the cold season, given all else is equal 
[2,43]. Among the top ten variables, two variables are associated with 
traffic density: the average monthly traffic and the product of annual 
traffic density and rail weight. Traffic density is related to wheel-rail 
interaction, which can affect rail degradation [44,45]. 

4.6. Model application 

In the model application, the developed machine learning model can 
be used to identify the track segments that are most prone to broken rail 
occurrence. First, raw data are collected for generating input variables 
for the machine learning model. Then, the probability of broken rail 
occurrence for each segment is predicted using the developed model. 
Finally, segments with higher predicted risks of broken rail should be 
given priority during inspection and/or maintenance. The relationship 
between the percentage of the network scanned and the percentage of 
broken rails identified shows the performance of the model application. 
Fig. 11 illustrates an example of the model application for predicting 
broken rail occurrence in January 2019. When 10% of the railroad 
network is scanned using our proposed model, around 41% of the total 
number of broken rails can be found in those locations. Fig. 12 shows the 
predicted risk of broken rail over the partial network on the studied 

Fig. 10. Top Influencing Variables for Broken Rail Prediction.  

Fig. 11. Application Performance of Proposed Model for January 2019.  
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railroad in January 2019, where the segments with relatively higher 
probabilities of broken rail are colored in red. 

Finally, the proposed model is applied to predict broken rails in 
different months for further evaluation of its generalization performance 
(Fig. 13). The model’s performance varies in different months, which 
may be caused by the different numbers of broken rails in various 
months. However, it shows that the proposed model can be helpful in 
improving the efficiency of railroad inspection and maintenance in all 
months. The performance of the model in all months ranges from 26.7% 
to 58.8%, and the average performance is 40.4% when 10% of the 
railroad network is inspected. Between 37.5% and 66.7% of broken rails 
can be predicted, and the average performance is 51.9% when 20% of 
the railroad network is scanned. If 30% of the railroad network is 
inspected based on the proposed model, between 50.0% and 78.5% of 
broken rails would be identified, and the average performance in all 
months would be 62.7%. 

5. Conclusions 

Predicting the occurrence of broken rails has safety and economic 
benefits in the form of reducing accidents and service disruptions. The 
purpose of this study is to develop a data-driven prediction model with 
good performance for predicting broken rails one month in advance. 
With infrastructure data, operation data, inspection data, and weather 
condition data for the railroad from 2013 to 2019 being considered in 
the machine learning models, gradient boosting outperformed the other 
two methods for our datasets. To avoid data leakage and resultant over- 
optimistic estimations of the model, the testing data used for evaluating 
the performance of the proposed model was generated by partitioning 
all of the data according to time sequences. Featured-based track seg-
mentation is proven to be an effective way of saving computing costs and 
improving the performance of the proposed model. 

Compared to previous research, extra variables including minimum 
temperature and crossing angles of turnouts are extracted and consid-
ered as input variables to further improve the model’s prediction per-
formance. Regarding feature importance, this study identifies that the 
number of detected rail defects within the last 365 days, minimum 
ambient temperature of the last 30 days, days from last broken rail, 
segment length, traffic density and other factors have significant in-
fluences on prediction results. Using the model proposed in this paper, 
on average, 40.4% of broken rails can be predicted one month in 
advance when focusing on 10% of the railroad network scanned. The 
model can potentially be used to prioritize inspection and maintenance 
activities on broken-rail-prone locations, and thus further improve 
infrastructure safety given budgetary constraints. 

6. Future work 

This section discusses the future directions of this research. First, 
more variables can be included to further improve the performance of 
the prediction model. As broken rails are subject to various factors, 
additional variables such as substructure conditions could be incorpo-
rated for future model improvement. For example, track segments in the 
highly fouled territory (greater ballast fouling index) are more likely to 
have greater dynamic loads on the rail, leading to a higher risk of broken 
rails. 

A more fine-tuned model may perform better in broken rail predic-
tion than the current model, using the same methodology proposed in 

Fig. 12. Predicted Top 10% Risk (Red Segments) of Broken Rails over Part of Studied Railroad Network.  

Fig. 13. Application Performance of Proposed Model in Different Months 
in 2019. 
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this research. The strategy of track segmentation, for example, can be 
further studied. The influence of the diversity of involved features for 
segmentation needs to be further analyzed to select the best appropriate 
features for delineating the railroad network. Another alternative 
approach for fine-tuned segmentation is associated with segment length 
such as setting appropriate upper and lower thresholds of segment 
length. Additional research might be necessary to better handle the 
imbalanced data mining issues due to the scarcity of broken rail oc-
currences. For instance, a weighted evaluation function that can 
consider the weight of segments with occurrence of broken rails (mi-
nority class) can be used in the machine learning model. 

Last but not least, data-driven optimization of inspection and 
maintenance planning requires further exploration to provide a detailed 
inspection and spot maintenance strategy for railroad staff. 
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[43] B. Suárez, P. Rodriguez, M. Vázquez, I. Fernández, Safety assessment of 
underground vehicles passing over highly resilient curved tracks in the presence of 
a broken rail, Vehicle system dynamics 50 (1) (2012) 59–78. 

[44] J.W. Ringsberg, Life prediction of rolling contact fatigue crack initiation, 
International Journal of fatigue 23 (7) (2001) 575–586. 
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