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Abstract

The volume of video data in the railroad industry has increased significantly in recent years. Surveillance cameras are situated
on nearly every part of the railroad system, such as inside the cab, along the track, at grade crossings, and in stations. These
camera systems are manually monitored, either live or subsequently reviewed in an archive, which requires an immense
amount of human resources. To make the video analysis much less labor-intensive, this paper develops a framework for utiliz-
ing artificial intelligence (Al) technologies for the extraction of useful information from these big video datasets. This frame-
work has been implemented based on the video data from one grade crossing in New Jersey. The Al algorithm can
automatically detect unsafe trespassing of railroad tracks (called near-miss events in this paper). To date, the Al algorithm has
analyzed hours of video data and correctly detected all near-misses. This pilot study indicates the promise of using Al for
automated analysis of railroad video big data, thereby supporting data-driven railroad safety research. For practical use, our
Al algorithm has been packaged into a computer-aided decision support tool (named Al-Grade) that outputs near-miss video
clips based on user-provided raw video data. This paper and its sequent studies aim to provide the railroad industry with
next-generation big data analysis methods and tools for quickly and reliably processing large volumes of video data in order
to better understand human factors in railroad safety research.

The availability of video data in the railroad industry is
increasing every year. The cameras are sited on nearly
every part of the railroad system, such as inside the cab,
along the track, at grade crossings, and in stations. The
Fixing America’s Surface Transportation (FAST) Act
requires all passenger railroads to install inward-facing
cameras to better monitor train crews and assist in acci-
dent investigations, and outward-facing cameras to bet-
ter monitor track conditions (/). The Los Angeles Metro
Transit Authority in California began utilizing video
cameras for law enforcement at grade crossings (2). In
the New York area, Metro-North and the Long Island
Rail Road received $5 million from the Federal Railroad
Administration (FRA) for grade crossing improvements.
Approximately 40% of those funds were committed to
installing a closed-circuit television (CCTV) system on
high-risk grade crossings (3). While video big data have
been collected, analyzing these data quickly and reliably
remains a challenge. In many cases, these camera systems
are manually monitored by railroad staff, either live or
subsequently reviewed in an archive.

There exist many scenarios in the rail industry where
“near-misses”—or dangerous situations without actual

incidents—occur. Because no actual harm occurs, these
near-misses are typically not recorded in FRA safety
databases. For example, if a pedestrian trespasses on a
railroad track when the red signal is on, but this action
does not result in an accident, we call it a near-miss.
Although near-misses do not cause actual damage, they
indicate certain characteristics that may ultimately cause
severe consequences if they occur repeatedly. Learning
from near-miss data is an important research topic in
proactive risk management (4).

The pervasive presence of surveillance cameras pro-
vides a big data platform for collecting and analyzing
near-miss data in support of railroad safety and risk
management. Despite its value, video data analysis can
be extremely laborious, usually taking hours or days to
process and analyze. To address this technological chal-
lenge, this paper describes an artificial intelligence (Al)
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technology to let the computer program “watch,” “iden-
tify,” and “understand” near-miss clips automatically
and efficiently utilizing an existing video infrastructure.
Once this technology is practice-ready, it can be adapted
to various applications in which video big data are used
to support railroad safety decisions.

Objectives of Research

This paper aspires to develop an Al framework to gather
useful information from video footage in support of rail-
road safety research. Specifically, this research aims to
produce the following deliverables:

e Development of a general Al methodological
framework for railroad video big data analytics.

e Application of the technology to a particular use-
case, which is grade crossing near-miss detection.

¢ Implementation of the Al algorithm into a
computer-aided decision-support tool that auto-
matically processes video big data and outputs
near-miss video clips.

Literature Review

A literature review was conducted to understand the state
of the art and practice in two major categories: (1) how
video big data are utilized in the railroad industry for
safety research; and (2) how Al is used for video analytics
in railroad and other relevant domains.

Video Data for Railroad Safety Research

In the railroad industry, the extraction of useful informa-
tion from video data has largely been based on manual
reviewing of the gathered footage. For example,
Ngamdung and daSilva (5) conducted a study to under-
stand illegal trespassing on railroad property in Pittsford,
New York. The video analysis required a large amount
of human resources to accomplish (6). In addition, there
have been studies on the effectiveness of humans watch-
ing CCTV cameras; they show that after 2040 min of
active monitoring, operators often suffer from “video
blindness,” which reduces their ability to effectively com-
plete their task (7). Currently, there is minimal prior
work on how Al can assist us in analyzing video big
data, which is a principal knowledge gap that this
research aims to fill. Effort has been made to quantify
the frequency and severity of highway-rail grade crossing
incidents. Previous studies (8, 9) employed the U.S.
Department of Transportation (U.S. DOT) Accident
Prediction Model to estimate the number of collisions
occurring at grade crossings. An understanding of driver
behavior and human factors can contribute to grade

crossing safety improvement (/0). A comprehensive over-
view of grade crossing research was summarized by
Chadwick et al. (/). Since grade crossing incidents
account for a large portion of casualties on U.S. rail-
roads (77, 12), it is important to better understand this
type of risk so as to develop proper risk-mitigation
strategies.

Al Technologies for Video Analytics

Al has the potential to tremendously reduce the labor-
ious effort required to process video data. Similar sec-
tors, such as roadways and airports, have begun to
implement these techniques for video big data analysis.
Selected Al techniques include background subtraction,
region of interest, and Kalman filtering (/3—76). The first
and most fundamental tool in video analytics is back-
ground subtraction. When attempting to isolate moving
objects in a frame, the removal of the landscape against
which they are moving can improve processing time and
accuracy. Originally, cameras at airports were used to
provide visual confirmation of a plane’s identity, and
infrared cameras were used to ensure security from tres-
passers. In recent years, a network called the Autoscope
Solo Wide Area Video Vehicle Detection System has
been deployed in European airports. This system utilizes
background subtraction in its Al to identify moving
objects within the field of view (/3). Other techniques of
video big data analysis, region of interest (ROI) and line
of interest (LOI), were implemented in a study using a
stationary CCTV camera to count pedestrians and
cyclists crossing an intersection. A user can define a line
or polygon of pixels in the frame which an Al can use as
a reference. In that study, pedestrians and cyclists were
tracked in the frame and only counted as “crossing” if
they passed through the ROI (/6). Another Al technique
is the Kalman filter, which is a set of mathematical equa-
tions to estimate the state of a process (/4). This tech-
nique has been used to track vehicles within a camera
view for highway applications (75).

While Al has the potential to provide useful data anal-
ysis capabilities, there are privacy concerns that may
occur when collecting personally identifiable information
(17, 18). For example, a survey showed that 88% of
Americans “do not wish to have someone watch or listen
to them without their permission” (19). A total of 63% of
respondents “feel it is important to be able to go around
in public without always being identified” (/9). This
opinion has fueled legal and technological changes to
preserve the privacy of individuals. For example, in 1974
the United States Congress enacted the Federal Privacy
Act, which regulated governmental databases in how
they could store and publish information on U.S. citizens
(20). Therefore, it is important to recognize and manage
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these privacy concerns. In 2009 the Federal Trade
Commission (FTC) published a general set of principles
for the collection of information, including awareness,
consent, access, security, and enforcement (2/). To main-
tain these principles and still extract useful information,
specialized video-processing techniques have been devel-
oped to preserve privacy. Google’s Street View’s anon-
ymization techniques are among the examples of how
these concerns are technologically considered. The anon-
ymization techniques involved an intricate neural net-
work approach that first identifies faces and then
performs a post-processing obfuscation resulting in a
final anonymized image (22). In a full-scale implantation
of video analysis on grade crossings, a similar anonymi-
zation algorithm could be implemented to preserve
privacy.

Knowledge Gaps

Currently, Al-driven video big data analytics are still at
an early stage in railroad safety research. Video analysis
occurs largely on a manual basis. A customized Al algo-
rithm would significantly expedite the video analysis
process.

Intended Contributions of this Paper

This paper intends to develop a unique, Al-aided metho-
dological framework for video analytics that can be
adapted to different application scenarios in which rail-
roads need to analyze video big data in support of their
safety decisions. Using an illustrative application in
grade crossing near-miss detection using surveillance
camera videos, we provide a step-by-step analytical pro-
cedure showing how AI can be developed and used to
generate near-miss video clips. The methodology can be
adapted to other scenarios toward automated, real-time,
video monitoring and analysis. Near-miss data, which
supplements accident data, provides additional useful
information for understanding risky behaviors.

Al-Aided Railroad Video Analytics

There are a variety of resolutions, frame rates, opacities,
and brightness levels in railroad video data. Each of these
presents a challenge when training an Al to process and
extract information from these data. There are several
performance requirements for the Al in analyzing video
data. First, it must accurately identify vehicles, trains,
artifacts, shadows, and other objects. Second, the algo-
rithm needs to be robust in diverse environmental condi-
tions. This includes inclement weather (e.g., rain, fog,
snow) and varying light conditions (twilight, nighttime,
daytime). During the night those opacity levels change,
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Figure I. General Al framework for railroad video data analytics.

and when vehicles drive by headlights may cause a false
detection. New opacity levels and extra checking tech-
niques need be implemented to alleviate this issue.

To address the above-mentioned challenges, we intro-
duce general Al approaches for video analytics, includ-
ing background subtraction (/3, 23-25), blob analysis
(26), and Kalman filtering (14, 16, 27, 28) for potential
application to railroad video analysis (Figure 1). These
techniques isolate the moving objects and track their
movement. Background subtraction is particularly useful
because most cameras are static (e.g., those in stations,
at grade crossings, or on bridges). The removal of the
background allows for the isolation of the moving
objects (humans or vehicles) in the frame. Each pixel is
derived in color scale and averaged over several frames
as appropriate to the application. This is important as
the environment causes light and vegetation to shift
slightly, and an average value with inbuilt tolerances
allows for a more dynamic background. The subtraction
occurs on a frame-by-frame basis as well, where each
color-scaled pixel is subtracted from the learned back-
ground, resulting in a binary mask.

In another approach, an AI algorithm establishes
pixel ranges known as LOI or ROI, which aid in the
counting and recording of objects’ behavior as they tra-
verse the frame. By isolating part of the frame, fewer
pixel-to-pixel calculations are required, which is particu-
larly useful in high-resolution footage where there are
many pixels. Finally, Kalman filtering can predict the
movement of objects. This can also aid in the
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classification of specific types of objects that are tracked.
With the values of objects’ sizes and acceleration
obtained and/or predicted, the differentiation between
vehicle and pedestrian or vehicle and train can be ascer-
tained (/4). These techniques—removing the stationary
background, identifying the moving objects, determining
if they are traversing an area of interest, and removing
the non-conforming objects—establish a framework for
Al-aided railroad video data analytics.

The developed Al-based techniques should be trained
to test and verify its robustness. A training program for
an Al application for railroads would require the devel-
opment of an initial algorithm with established environ-
mental parameters. This draft algorithm analyzes a
training set of data, comparing the algorithm’s results to
the knowns. A successful verification would require the
algorithm to correctly “see” images of trains and pedes-
trians independently from the background, using tech-
niques such as background subtraction (/3). The Al can
then be retested with various weather conditions and
diverse daylight conditions, such as dawn, day, dusk,
and dark. After undergoing this training, an Al applica-
tion is able to explicitly capture the images and moving
paths of trains and highway users, such as cars, pedes-
trians, and cyclists, under a wide array of external condi-
tions. Then the Al tool is able to record critical video
information automatically, which is compiled into a
database for future study.

Application to Grade Crossing Near-Miss
Analysis
Grade crossing trespassing accounts for many incidents

and fatalities annually (29). An Al algorithm was devel-
oped and implemented with the data based on one grade

crossing in New Jersey. The CCTV video footage of this
grade crossing was obtained, and a customized Al algo-
rithm was developed to detect near-misses. A near-miss
event occurs when a pedestrian or vehicle traverses the
crossing while the red signal is on. Almost all prior stud-
ies in the field of grade crossing safety have focused on
using accident data (9, 30), without accounting for a
larger number of near-misses that share similar beha-
vioral characteristics but (fortunately) did not cause any
harm. The following section details the process of using
Al to automatically detect near-misses from grade cross-
ing video data. The general methodology can be adapted
to other use cases in the future.

Algorithm Flow Chart

This Al reads the video file looking for a red signal, pro-
cesses the image (details will be presented later), and
evaluates whether a near-miss has occurred. Detailed
analytical steps are presented below.

Step I: Reading Video Frames Sequentially. The first step of
the algorithm is to start reading the video file frame by
frame. During this reading, the prime objective is to
determine whether the active signalized crossing light has
been triggered. To increase processing speed, a frame-
skip segment is included, which advances the reading in
10-s intervals and stops when a red light is detected; this
is practical in this application because the duration of a
stop signal is greater than 10s for this grade crossing.
Frame-skip algorithms also allow for adaptability to
high frame-rate video and reduce analysis time.

Step 2: Detection of Stop Signal. After a frame has been iso-
lated, the stop signal (red signal) is recognized in that
frame. A check of the red pixel values in the small area

Figure 2. Stop signal under day and night conditions.
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Table I. Results for Al-Aided Detection of Near-Misses

Date From To Duration (hours) Red signals Near-misses
Day | 08:00 15:00 07:00 21 0
Day 2 00:19 09:00 08:41 20 2
Day 3 12:00 21:00 09:00 26 0
Total 24:41 67 2

Figure 3. Computer-recognized background using training data.

of the frame where the signal lies determines its status
(Figure 2). The user can configure the location and the
opacity threshold for this application. If a stop signal is
detected, the algorithm performs a frame-by-frame check
backwards to determine the beginning of the stop signal.
Then, the subroutine of near-miss detection is activated.

Step 3: Background Template Learning. The near-miss detec-
tion subroutine follows several steps. The first is to learn
and subtract the background template at the beginning
of the stop signal. Non-moving objects are captured in
the field of view at this time. For each stop signal that is
encountered in the video, a new background is learned.
This overcomes the challenge of the gradual changing of
light levels throughout the day. Other environmental
conditions such as passing rainstorms, parked cars in the
background, and others are also captured in the back-
ground template learning (Figure 3).

Step 4: Objective Tracking. Moving objects are detected in
the foreground with the background subtraction tech-
nique (/3, 23-25). With background subtraction, the
total number of moving pixels can be tracked and
recorded from frame to frame; this detection continues
until the red signal turns off.

Step 5: Identifying Near-Misses. The algorithm identifies a
near-miss event based on the total number of moving

pixels. One main challenge here is to recognize and
remove the “noise” from moving pixels of a train. It was
noted that the number of pixels that a train occupies in
the foreground during a crossing is much larger than that
of highway users (e.g., a pedestrian or a vehicle).
Therefore, a proper threshold can be established to sepa-
rate near-miss objectives from trains. If a near-miss is
detected, all frames of the red signal are extracted to a
video file for further review. After stop signal processing
concludes, the algorithm skips Smin and continues the
analysis from Step 1. This 5-min skip further reduces pro-
cessing time and does not compromise the accuracy of
the analysis since no stop signals re-occur within this
short interval in this case study. These parameters can be
easily changed for different applications.

Results

The goal of our algorithm is to complete the analysis
much faster and with equal or greater accuracy than
manual reviewing. In this case study, the processing of
the video took roughly 2% of the total video duration to
complete. This duration is highly dependent on the num-
ber of stop signals encountered. Two near-miss events
were detected on a 25-h video dataset, covering three dif-
ferent days. The processing time for this video was less
than 40 min. A detailed summary is listed in Table 1.

The algorithm’s output showed two near-miss events
occurring within a single stop signal in the morning of
one day. In the first near-miss, before the train arrived,
two pedestrians entered the grade crossings while the
stop signal was active (Figure 4a). Five seconds after the
two pedestrians crossed the track, the train arrived. The
second near-miss occurred when a cyclist, who had
stopped at the deployment of the arm gates and stop sig-
nal, crossed after seeing that the train was gone, without
waiting for the signal to be deactivated (Figure 4b).

The results of this study epitomize two different types
of highway users and two typical non-compliance
behaviors. The two pedestrians perceived the timing of
train arrival from their judgment and were confident in
their ability to cross the track before the train arrived.
The second case illustrates the assumption that no sec-
ond train would cross, despite the presence of multiple
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Figure 4. Two near-miss incidents detected by the Al algorithm.

Submit Video Processing Request

Submit a request to process your railway grade crossing video to delect near miss instances.
Provide your email address and you'll be notified via email once we are done processing your video,
along with the link to download the output near misses video.

Select the video file (MP4 or AV files only, limit 100MB):
Choose File trimmedmerg...|110fps.mp4

Enter your emall id:

john.doe@rutgers.edu

Your video was uploaded successfully!

Once the video has been processed, you will be notified by an email with a link to download the near misses video.

Figure 5. Al-Grade decision-support tool user interface.

tracks and the continuing signal. Both near-misses repre-
sent risky behaviors with potentially catastrophic conse-
quences, which have been seen in past accident data (12,
30).

Wed-Based Decision-Support Tool (Al-
Grade)

The Al algorithm described above has been implemented
into a web-based decision-support tool called “Al-
Grade” (Figure 5). The web-based AI-Grade streamlines
the automatic processing of railroad grade crossing data
through the following steps:

e Step 1: Log in to the application website.
e Step 2: Select the video file that needs to be ana-
lyzed and enter the user’s email address.

e Step 3: Click “Submit” and the processing will
begin.

e Step 4: Once processing is complete, users will
receive an email that provides the cropped near-
miss video, if any.

Tool Validation

To ensure the usefulness of this Al tool, results must be
accurate and achieved faster than via manual processing.
A validation of this criteria was completed using the col-
lected video data. There are four possible results: (1) an
illegal trespass occurs, and a detection is recorded (cor-
rect); (2) no illegal trespass occurs, but a detection is
recorded (false positive); (3) an illegal trespass occurs,
but there is no detection (false negative); and (4) there is
no illegal trespass and there is no resulting detection
(correct).

For comparison, several students manually reviewed
all the footage and compared their results to the output
of AI-Grade. To date, AI-Grade is 100% accurate with-
out any false positives or negatives (Table 2). In addition,
the AI program completed processing the 25-hour video
within 40 min, totaling 2% of the video time. We are fur-
ther developing and training this algorithm using more
video data (e.g., 1-year data) from our industry partners.
Ultimately, we hope to design a tool for real-time analy-
sis of video data in support of railroad safety decision-
making.

Contributions to Research and Practice
Contribution to Academic Research

This paper describes an Al technological framework for
automatically detecting near-misses at grade crossings.
Before the advent of Al technology, it was not practical
to collect diverse information (e.g., the time, type,
and environmental conditions surrounding illegal
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Table 2. Tool Validation Outcomes for Near-Miss Detection

Trespassing No trespassing

Detection 100% 0%
No detection 0% 100%

trespassing) from video big data because of an inordinate
amount of human resources required for the acquisition
of such information. The expected contribution of this
research to railroad safety parallels what the FHWA-
sponsored study on Naturalistic Driving did for highway
traffic safety, which used sensors to collect vehicle move-
ment and driver attention data and used this information
for highway safety analyses (3/). Similarly, we aim to
empower Al to analyze a large amount of railroad video
data for better understanding of human factors in vari-
ous application scenarios.

Contribution to Practice

The practical contribution of the AI framework is its
applicability to this and other scenarios in the rail indus-
try (e.g., inside cabs, at stations, rail yards, and on plat-
forms). This information will help railroad agencies
make decisions about the allocation of limited safety
budgets. Al can be trained to recognize a variety of envi-
ronmental factors (e.g., weather, track geometry, the
population surrounding the rail facility), as well as risk-
prone human behaviors (e.g., illegal trespassing, operator
fatigue). Further, Al can be developed to quantitatively
measure the association between risky behaviors and
their influencing factors. These results enable develop-
ment of proactive strategies to prevent or reduce near-
misses or incidents in railroad systems, thereby improv-
ing their safety. Additionally, the implementation of this
framework has a low cost. It utilizes an already existing
video-recording infrastructure and has no additional
hardware costs.

Conclusion

This paper proposes the use of a customized Al algo-
rithm for automatically analyzing railroad video data to
solicit useful information for understanding human
behavioral characteristics. An example implementation
and decision-support tool are developed based on grade
crossing surveillance video data. In the study period, our
Al algorithm correctly detected all the near-miss events
associated with unsafe trespassing of the studied grade
crossing. The near-miss data can be used to develop
safety strategies and to prevent the occurrence of risk-

prone behaviors and resultant accidents. This research
indicates the promising applications of Al to other
research areas in the railroad industry in the future, such
as in-cab video analysis for distraction detection or secu-
rity surveillance in railway stations.

Future Work

To take this research further we are increasing the vol-
ume of the training set to include more environmental
conditions and possibly more near-misses. Once the Al
algorithm is trained via a very large and diverse amount
of video data, it can be used to “recognize” and “under-
stand” a wide array of scenarios in real-time settings.
Real-time video analytics in other locations and applica-
tions within the railroad industry will be developed, vali-
dated, and implemented. Another area of future research
would be the analysis of video from the cameras installed
in locomotives based on an adaptation of the AI algo-
rithm described in this paper.

There are several major considerations when imple-
menting a real-time system, some of which are as follows:

e FEthical: maintaining privacy of individuals in anal-
ysis and protection against sensitive data breaches;

e Economical: balancing costs and benefits of the
technology;

e Accuracy: continually improving accuracy with a
growing database;

e Demand: adding data types and metrics as per sta-
keholder request;

e Support: responding to system failures and cor-
recting errors;

e Adaptability: ensuring the ability to perform
under unforeseen or untested scenarios;

e Availability: maintaining access for stakeholders;

Additionally, a potential future step is to use the
developed database for railroad safety risk analysis. As
mentioned above, most previous studies were based on
accidents instead of near-misses. If near-miss data can be
collected, additional insights (particularly behavioral
characteristics) could be drawn to further support rail-
road safety research (9). This would be combined with
potential cost—benefit analyses to understand the practi-
cal value of Al implementation in the rail industry.
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