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A B S T R A C T   

Train safety has been a top priority in the railroad industry. Understanding accident risks is of paramount 
importance for prioritizing effective prevention strategies. Previous work has focused on estimating the severity 
of derailments and various statistical models based on structured data were used. However, unstructured data 
records which provide considerable information about train derailments have received minimal consideration 
due to a lack of procedures of processing and interpreting them. To narrow this knowledge gap, this study aims to 
quantitatively estimate derailment severity by considering unstructured data utilizing topic modeling. A statis-
tical model that integrates both structured and unstructured data was established to analyze U.S. freight train 
derailments from 1996 to 2019. The comparative results of predictions revealed that the model with combined 
text information outperformed the one without the unstructured data.Quantile regression was also developed to 
assess various statistical distributions of derailment severity. Both models with unstructured data provide a 
deeper understanding of derailment severity and ultimately improve railroad safety performance.   

1. Introduction 

Railroads play a vital role in a nation’s economy. Along with the vast 
economic benefits derived from rail transportation, safety is critical for 
the railroad industry and raises concerns from the public as well ad-
ministrations [1]. Train accidents can lead to casualties, damaged 
infrastructure, interruption of services, and damage to the environment 
[2,3]. Based on the Federal Railroad Administration (FRA) records of 
train accidents in the United States (U.S.), train derailments have the 
highest frequency of occurrence among all types of train accidents [4]. 
Previous studies have primarily focused on the evaluation and quanti-
fication of railroad derailment frequency [5], particularly cause-specific 
derailment frequency studies. Moreover, it is also vital to explore and 
assess the magnitude and variability of train derailment severity [6,7]. 

Various factors may influence derailment severity, such as derail-
ment speed, number of cars after the point of derailment, distribution of 
train power, proportion of loaded cars, derailment cause, and ground 
friction [6,8]. There is a continuous interest for government and railroad 
companies in understanding the effects of these factors on derailment 
severity, as these assessments can contribute to improving railroad 

safety by mitigating the consequences of train derailment. 
Previous studies on this subject were performed based on derailment 

accident data using statistical modeling [9–12]. However, most re-
searchers only considered structured data in the recorded derailment 
accident database owing to lack of techniques for processing unstruc-
tured data (e.g., text narratives) in accident records. To narrow the 
knowledge gap and improve train accident risk mitigation, this research 
aims to explore the utilization of topic modeling to leverage the value of 
unstructured data fields with estimation models of derailment severity 
and to improve the performance of railroad derailment severity pre-
diction. A zero-truncated negative binomial (ZTNB) model that in-
tegrates both structured and unstructured data was developed, in which 
the coefficients of different extracted topics also provide additional in-
sights intoreducing derailment severity. 

Moreover, most of the earlier studies focused on developing various 
derailment models that concentrate only on the central tendency of the 
outcomes, while this study also pays attention to investigating how to 
use text analysis to deepen and strengthen the understanding of railroad 
derailment consequences with additional distributional statistics (e.g., 
quantiles). Thus, the quantile regression (QR) model integrating text 
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information was also established in this study. The statistical models 
along with 24-year train derailment records show not only that the in-
formation extracted from unstructured derailment narratives can 
improve the performance of derailment severity estimation models, but 
also that it can strengthen quantitative understandings of derailment 
consequences. The ultimate objective of this study is to enhance the 
understanding of the railroad safety insights via text mining; therefore, 
effective accident prevention strategies can be adapted to reduce rail-
road transportation system risks. The methodology proposed in this 
study can also be adapted to analyze other railroad accidents, and ul-
timately to improve railroad safety and save lives. 

2. Literature review 

2.1. Train derailment severity 

Various metrics have been used to evaluate the severity of train de-
railments in previous studies, such as the number of derailed cars [1,4], 
monetary damage [1], and casualties [14,15]. According to previous 
studies, the number of derailed cars is a suitable and trendy metric for 
evaluating the severity of train derailments. The generic term “cars” 
indicates all vehicles, including railcars, locomotives, and cabooses [6]. 

With targeted measures in the evaluation of derailment severity, 
simulations and statistical analysis are two basic approaches used in 
previous studies to model train derailment severity. The basis of simu-
lation models in train derailment severity is generally related to non- 
linear wheel–rail interaction. The reaction between the railroad vehi-
cles and specific environment-related and track-related conditions can 
be visualized using physics law-driven models [6,9]. In terms of statis-
tical derailment models, historical derailment accident data were pri-
marily utilized to estimate the severity of train derailment. Compared 
with simulation models, statistical models rely significantly more on 
historical data. Consequently, statistical models have attracted the 
attention of academia owing to the rapid development of data process-
ing technologies. Barkan et al. [1] explored the influence of derailment 
speed based on modeling the relationship between derailment severity 
and derailment speed. To further improve the forecast accuracy, Bagheri 
[16] presented an improved model to estimate the probability of 
derailment by position. The distribution of the train power and pro-
portion of loaded cars, as novel factors, were considered by Liu et al. [6]. 
In recent years, there have also beenseveral studies that have attempted 
to use statistical learning methods (both machine learning and deep 
learning) to study train derailment. Dindar et al. [17–18] utilized a 
Bayesian network to identify and classify the human errors and climate 
errors causing derailments, respectively. Then,a novel DAG (Directed 
Acyclic Graph) was proposed to analyze the effects on the derailment of 
these two types of errors. Xu and Saleh [19] reviewed the application of 
machine learning for railroad reliability engineering. More novel and 
accurate insights can be provided by machine learning as compared to 
traditional methods. 

In addition to structured data, unstructured data in accident records 
and databases, such as fixed field entries and narratives, can also provide 
a better understanding of the factors contributing to accidents [20]. 
However, a majority of the above models, even statistical learning 
methods, focus on utilizing structured data in derailment accident da-
tabases only. To date, few studies have included large-scale analyses of 
the narratives of derailments that can further improve railroad safety. 

2.2. NLP in transportation safety 

NLP, also known as computational linguistics, is a rapidly developing 
field that processes both written and spoken languages using computer 
analysis. It is acknowledged to be an interdisciplinary field, utilizing 
concepts from linguistics, computer science, statistics, and machine 
learning or deep learning in general [21]. Spurred by the progress of 
distributed word representations, various NLP tasks (e.g., natural 

language understanding and machine translation) have been successful 
with deep learning architectures [22]. Global interest has grown in 
applying NLP to the comprehension and analysis of transportation ac-
cidents to improve transportation safetyandreliability. Previous studies 
have shown that different NLP tasks have been performed in the trans-
portation area, including automatic record classification, topic modeling 
of accident records, identifying similar records, and some active 
learning tasks [23–24]. 

Even though most researchers do not focus on the railroad industry, 
previous studies have provided remarkable suggestions and solutions for 
enhancing railroad safety with NLP [25]. Kwon et al. [23] used two 
classification methods, namely the naïve Bayes classifier and decision 
tree classifier, to reveal the relative importance of the data fields with 
respect to the resulting severity level. Heidarysafa et al. [24] applied 
deep learning methods together with powerful word embeddings such as 
Word2Vec and GloVe to classify accident cause values for the primary 
cause field using the text in railroad accident narratives. Their work 
showed that text classification can be performed accurately when pro-
cessing transportation accident records, which in turn can help improve 
safety performance. 

Another vital application of NLP in transportation safety is infor-
mation extraction and topic modeling. Pereira et al. [26] utilized a topic 
modeling technique to obtain exact information from ground traffic 
incident records in real time. This study found that the prediction model 
with text features presented errors up to 28% lower than those without 
text information. Brown [20] explored the combination of text mining 
and machine learning algorithms to automatically discover accident 
characteristics that can provide a better understanding of the contrib-
utors to severe train accidents. 

2.3. Knowledge gap 

Various studies have focused on estimating derailment severity using 
different statistical models. However, nearly all of these studies were 
established based on structured data, and only numerical data from 
accident databases were employed. To narrow the knowledge gap and 
leverage the values of unstructured data fields in railroad safety, this 
study aims to investigate the derailment consequences that are defined 
as the number of derailed cars in the consist, using both numerical ac-
cident data information and unstructured accident narratives. The 
derailment severity statistical models (e.g., ZTNB model and QR model), 
along with improved severity prediction performance, can further 
deepen the understanding of derailments, and ultimately strengthen 
railroad safety based on better developed and allocated accident pre-
vention strategies. 

3. Topic modeling 

3.1. LDA 

LDA is a probabilistic document topic generation model and is a 
useful approach to uncover the latent topic structure and respective 
keywords for a corpus D [27]. This method can also be used to identify 
hidden subject information in a large-scale document collection. It 
contains a three-layer structure of words, topics, and documents, as 
shown in Fig. 1. The LDA model is a generative process for documents 
composed of topics with words. The general process of LDA is defined as 
follows [28]:  

(1) For each topic, k = {1,…,K}.  
(a) Draw a distribution over the vocabulary V,βk ∼ Dir(η).  

(2) For every document d.  
(a) Draw a distribution over topics, θd ∼ Dir(α)(i.e., per- 

document topic proportion).  
(b) For each word w within document d. 
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(i) draw a topic assignment, zd,n ∼ Multi(θd), where zd,n ∈

{1,…,K}(i.e., per-word topic assignment).  
(ii) draw a word wd,n ∼ Multi(βzd,n

), where wd,n ∈ {1,…,V}. 

Where βkis the word distribution for topic k, θd is the topic distri-
bution for document d, zd,n is the topic for the n-th word in document d, 
and wd,n is the n-th word in document d. 

Each topic βk is a multinomial distribution over the vocabulary V and 
comes from a Dirichlet distribution βk ∼ Dir(η). Furthermore, every 
document is represented as a distribution over K topics and comes from a 
Dirichlet distribution θd ∼ Dir(α). Additionally, α andηare Dirichlet 
distribution parameters. The smoothing of topics within documents is 
denoted by α and the smoothing of words within topics is denoted byη. 
The joint distribution of all the hidden variables,βK(topics), θD(per- 
document topic proportion),zD (word topic assignments), and observed 
variables wD (words in documents), is expressed below: 

Pr(βK ,θD,zD,wD|α,η)=
∏K

k=1
Pr(βk|η)

∏D

d=1
Pr(θd|α)

∏N

n=1
Pr

(
zd,n

⃒
⃒θd

)
Pr

(
wd,n

⃒
⃒zd,n,βd,k

)

(1) 

The LDA algorithm is a classic bag-of-words approach. If the docu-
ment set is an imbalanced dataset, in which the proportion of each topic 
is not equal and certain types of topics may constitute the majority, the 
output of the traditional LDA model will be repetitive and meaningless. 
To overcome this limitation, the term frequency–inverse documents 
frequency (TF-IDF) algorithm is combined with the classical LDA model 
to achieve an acceptable outcome in this study. 

3.2. TF-IDF 

The theoretical basis for the combination function of the TF-IDF al-
gorithm was first established by Robertson [29]. As an improved 
bag-of-words model, the basis for TF-IDF is that a query term occurring 
in many documents is not a good discriminator and should be given less 
weight than one that occurs in just a few documents. In this study, 
TF-IDF was combined with the traditional LDA algorithm to overcome 
the limitation of the classical LDA algorithm. Many terms that appear 
frequently in a large number of derailment accident records, such as 
“train” and “car,” are considered less important than some words which 
appear within rare records repeatedly, such as “wheel,” “track,” and 
“gallon”. With the TF-IDF algorithm, the dataset can be converted into a 
more reasonable representation of word vectors, which are the inputs for 
the LDA model. The TF-IDF equation is as follows: 

F − IDF =
nt

N
∗ log

K
Kn

(2)  

Here,nt is the occurrence of term t within a document; N is the number of 
terms in the document; K is the total number of documents; and Knis the 
number of documents that contain term t. In this study, a document 
indicates the narrative of one derailment in the database. 

4. Data 

4.1. Data source 

Accident information and records were obtained from the REA 
database, provided by the U.S. FRA. Railroads operating in the United 
States should submit a detailed accident record to the FRA if the damage 
cost of the accident to infrastructure and rolling stock exceeds a speci-
fied monetary threshold [11]. Considering the proportion of primary 
accident records that occurred on different tracks, this study only used 
accident data related to the main tracks [30]. 

In the FRA REA database, each recordable accident contains over 
141 variables recorded as either structured or unstructured data. 
Detailed information on recorded train accidents, such as the accident 
cause, number of derailed cars, total monetary damage, track class, train 
length, and train speed, are recorded in the structured data. Unstruc-
tured data include free text segments that indicate a combination of 15 
narrative fields [20]. These text fields provide brief descriptions of the 
accidents, written by the railroad authorities. Each field occupies a 
maximum of 100 bytes; therefore, each record occupies less than 1,500 
bytes. Class I railroad derailment accidents that occurred between 1996 
and 2019 were used in this research as the primary data source. 

In the collected dataset, factors that contribute to the occurrence of 
these historical train derailments are also assessed to present an over-
view of these freight train derailments. Rolling stock factors, track fac-
tors, signal and train control system factors, human factors, and 
miscellaneous factors (e.g., off-road environmental factors, circumfer-
ence intrusion factors) are taken into account in this analysis. In order to 
have an in-depth evaluation, these five categories of factors have been 
classified into ADL (Arthur D. Little) groupings,which are widely used in 
train accident analysis [31]. The top ten factors measured by severity 
and frequency have been selected and plotted in Fig. 2. Different shapes 
of markers represent the factors’ categories. For example, broken rails or 
welds, as a track factor-related factor with red circular markers, have the 
highest average severity. 

Fig. 1. Concept of LDA Algorithm.  
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4.2. Explanatory variables from structured data 

The objective of this study was to quantitatively investigate the 
impact of critical factors on derailment severity using estimation models 
by considering derailment narrative information. Law driven models (i. 
e., simulation models) and data-driven models (i.e., statistical analysis), 
as two main methods of derailment severity modeling, have revealed the 
factors which impact the consequences of train derailments [9]. Overall, 
train speed, train length and residual train length, train power distri-
bution, proportion of loaded rail cars in the train, loading factor, co-
efficients of frictions, and peak coupler forces were expected to affect the 
number of derailed cars in one derailment [17–20]. Due to the data 
limitation, this paper is not able to incorporate all of these potential 
factors. Instead, four key potential influencing factors identified from 
previous studies [6,9] were included in the derailment severity esti-
mation model, namely residual train length (RL), derailment speed (DS), 
train power distribution (DP), and proportion of loaded cars (LO) in the 
train. Narratives, as the unstructured data recorded for each train 
derailment, were also employed in the modeling and analysis. Overall, 
four structured factors and narratives take various aspects of train op-
erations into account, such as line factors, rolling stock factors, off road 
environmental factors, and circumference intrusion factors. It is also 
acknowledged that alternative variables that were not considered in this 
study can be evaluated in future studiesusing the methodological 
framework proposed in this study. 

4.2.1. Residual length 
RL is the number of railcars following the point of derailment (POD), 

where POD is the position of the first car derailed. Previous researchers 
have found that RL has a complex relationship with the number of 
derailed cars when all other factors remain the same [16,31]. 

4.2.2. Derailment speed 
DS is the train speed when a derailment accident occurs. Previous 

studies have shown that a higher DS results in more cars being derailed 
[8,16,28]. For example, Bagheri et al. [32] foundthat DS indicates the 
volume of kinetic energy during derailment, and a larger DS means more 
kinetic energy being produced, which results in a higher number of cars 
derailed. 

4.2.3. Train power distribution 
There are two common types of train power distribution, namely 

non-distributed power and distributed power (DP) [6]. In 
non-distributed power trains, only head locomotives are employed in 
freight trains and passenger trains. Instead, in DP trains, additional lo-
comotives that are not head-end locomotives exist in other positions 
(typically in the middle and/or in the rear). In order to support the 
explanatory data analysis and distribution hypothesis examination, a 
binary variable is generated to represent these two types of freight 
trains. Specifically, 0 represents a non-distributed-power train and 1 
represents a distributed-power train. Although DP is a binary variable in 
this study, mean values and standard deviations of DP are extracted in 
order to disclose additionalfeatures of their distributions. As shown in 
Table 1, the mean value of DP is 0.15, in which 1,160 derailed trains are 
distributed-power trains out of a total ofaround7,736 derailed trains. 
The standard deviation of DP (0.36) reflects that the distribution of DP in 
the studied freight trains is over-dispersive. 

4.2.4. Proportion of loaded cars 
LO is defined as the number of loaded cars normalized by the total 

number of cars (both empty and loaded) in the train [6]. Table 1a pre-
sents a summary and description of the above explanatory variables and 
Table 1b presents the Spearman correlation coefficients among these 
variables. Correlations between targets were also analyzed using the 
collected data (Table 1b). There is a significant correlation between DP 
and LO, in which the Spearman correlation coefficient is 0.278. This 
means that a derailed train with a higher LO usually has a higher like-
lihood of being equipped with DP. Due to the significant correlation 
between DP and LO, this study selected LO as the predictor variable and 
abandoned the variable of DP following previous research [6]. 

Fig. 2. Severity and frequency of the top ten derailment factors.  

Table 1a 
Description of variables for derailments of U.S. Class I Mainlines, 1996–2019. (a) 
Descriptive Statistics.  

Variable Mean Stand Deviation Minimum Maximum Type 

RL 51.19 35.32 1 223 Count 
DS 24.64 15.54 1 80 Continuous 
DP 0.15 0.36 0 1 Binary 
LO 0.70 0.33 0 1 Continuous  
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4.3. Preprocessing of unstructured data 

4.3.1. Text cleaning 
Narratives in the REA database usually contain numbers and punc-

tuation marks that are not useful during the LDA model training stage. 
Numerical elements, such as years, code of the train, and accident date 
need to be removed from the text data because even though they 
commonly possess a high occurrence frequency, they contain very little 
information. Furthermore, punctuation, such as commas, colons, semi-
colons, full stops, and question marks, should be deleted from the text to 
avoid generalization of the data. Negation is another issue that needs to 
be addressed in this step. For the LDA model, as a classical bag-of-words 
approach, it is vital to solve the negation problem because negation can 
affect the frequency of some words and ultimately influence the results 
of topic modeling. In this study, simple concatenation was used to solve 
this problem by generating relevant words. For example, “no injures” 
becomes “noinjures” after this step of preprocessing. 

4.3.2. Stop words removal 
Stop words are generally defined as the most frequent and common 

words in a language. Stop words of English can be divided into three 
categories, namely pronouns (e.g., I, you, we, they, he, she, and it), ar-
ticles (a, an, and the), and other stop words (e.g., am, is, are, were, was, 
be, been, being, have, has, had, having, do, does, and doing). Stop words 
have a high occurrence frequency but low semantic relevance in the FRA 
REA database. Thus, it is essential to remove all English stop words in 
this step to ensure the accuracy of topic modeling. 

4.3.3. Tokenization 
There are three different concepts in NLP, namely token, type, and 

term. Token is an instance of a character sequence in some documents 
grouped as useful semantic units for processing. Type is the class of all 
tokens containing the same character sequence. Term is a normalized 
type included in the information retrieval (IR) system’s dictionary. Each 
narrative needs to be tokenized to obtain a unique word, and repeated 
words are only recorded once. Tokenization is a vital preprocessing 
procedure. In this study, the tokenization algorithm was provided by 
Natural language toolkit (NLTK). A simple example of tokenization is 
presented in the following. The original sentence is “the employee was 
standing by the switch.” After tokenization, this sentence will be con-
verted into a series of single words (tokens): “the”, “employee”, “was”, 
“standing”, “by”, “the”, and “switch”. 

4.3.4. Stemming 
Stemming is the process of reducing each word to its word family 

root.The objective of stemming is to standardize different variations and 
inflections of words. The output of stemming is not necessarily a word 
that normally exists in English (e.g., “fly”and “flies” can be standardized 
into “fli”). For example, “seriously derailed” and “serious derailment” 
are both converted into “serious derail.”After the above steps, a dictio-
nary to be used in topic modeling was prepared. Table 2 presents an 
example to demonstrate the effects of preprocessing. After the pre-
processing, the number, stop words, and punctuation marks in the raw 
narrative are removed. Every letter is turned to its lowercase and the 
whole sentence is divided into tokens that are standardized by 

stemming. 

4.3.5. Dictionary construction 
The purpose of the above steps was to reduce a wide set of words into 

a smaller set of relevant words that would be catalogued in a dictionary. 
Each word in this dictionary would therefore correspond to an index in 
the bag-of-words representation. Using this dictionary, the LDA model 
results could be obtained easily. 

5. ZTNB model 

Diverse count data regression methods have been used in accident 
analysis, according to previous research [33]. Among these, Poisson 
regression and negative binomial (NB) regression are two commonly 
used methods in accident analysis [34–35]. The Poisson model is suit-
able for data where the mean is equal to the variance, and the NB model 
assumes that the Poisson mean follows a gamma distribution. Some 
previous studies also used the NB model to analyze data whose variance 
was greater than the mean. Therefore, the NB model was more appro-
priate for estimating derailment severity in this study. However, because 
both the Poisson and NB distributions include zeros, they cannot be 
precisely used to analyze variables excluding zeros, such as the number 
of derailed cars. Koenker et al. [39] discussed methodologies for 
analyzing zero-truncated count data. Bayes’ theorem was used to 
calculate the probability of the response variable based on positive 
count data, which modified the previous research. The probability mass 
function (Eq. (3)), mean (Eq. (4)), variance (Eq. (5)), and likelihood 
function (Eq. (6)) of the ZTNB model are shown below. More detailed 
discussions of the ZTNB model can be found [36]. 

Pr(yi|yi > 0) =
Γ
(
yi +

1
α

)

yi!Γ
(

1
α

)
[

1 −
(

1
1+αμi

)1
α
]

(
αμi

1 + αμi

)yi( 1
1 + αμi

)1
α

(3)  

E(yi|yi > 0) =
μi

Pr(yi > 0)
=

μi

1 −
(

1
1+αμi

)1
α

(4)  

Var(yi|yi > 0) =
E(yi|yi > 0)
Pr(yi > 0)α

[
1 − Pr(yi = 0)1+α E(yi|yi > 0)

]
(5)  

L =
∏N

i=1
Pr(yi|yi > 0) =

∏N

i=1

Γ
(
yi +

1
α

)

yi!Γ
(

1
α

)
[

1 −
(

1
1+αμi

)1
α
]

(
αμi

1 + αμi

)yi
(

1
1 + αμi

)1
α

(6)  

where α is the over-dispersion parameter; μi is the predicted derailment 
severity (number of derailed cars) for the ith observation; and yi is the 
observed derailment severity for the ith observation. Then the response 
surface of the ZTNB model is given as 

log(μk) = β0 + β1X1k + … + βiXik (7)  

whereβk is the parameter coefficient of the kth predictor variable (k =

Table 1b 
Description of variables for derailments of U.S. Class I Mainlines, 1996–2019. (b) 
Spearman correlation coefficients.   

DS DP LO 

RL 0.007 0.09* –0.04 
DS —— 0.07* 0.007 
DP —— —— 0.28**  

* Spearman correlation coefficient between 0.05 and 0.20. 
** Spearman correlation coefficient greater than 0.20. 

Table 2 
Effect of preprocessing for narrative  

Raw narrative Narrative after preprocessing 

CREW WAS SWITCHING TRACK 8 AND 
CAR WAS KICKED DOWN THE LEAD 
TOWARD TRACK 8. EMPLOYEE WAS 
STANDING BY THE #8 SWITCH. CAR 
TIED ONTO A CAR ALREADY ON THE 
TRACK, CAUSING CONTENTS 
(SODIUM HYDROXIDE) TO SPLASH 
OUT OF CAR ONTO EMPLOYEE’’S 
CHEST AND ARM 

‘crew’, ‘switch’, ‘track’, ‘car’, ‘kick’, 
‘lead’, ‘track’, ‘employe’, ‘stand’, 
‘switch’, ’car’, ‘ti’, ‘car’, ‘track’, ‘caus’, 
‘content’, ‘sodium’, ‘hydroxid’, ‘splash’, 
‘car’, ‘employe’, ‘chest’, ‘arm’  
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0 for the intercept) and Xik is the value of the kth predictor variable for 
the ith observation. In this study, the RL, DS, LO, and topics obtained 
through LDA were utilized as the predictor variables. 

The response variable in this study was the number of derailed cars. 
The dataset used was comprised of 7,736 freight train derailment re-
cords on Class I mainlines during the period 1996–2019, collected from 
the FRA REA database. This dataset was split into two datasets:a training 
set and a test set.The training set is made up of 75% of the collected data, 
which was used to fit the ZTNB model. The remaining 25% of the 
collected data formed the test set, which was used to examine the esti-
mation performance of the fitted model. The established model 
considered the main effect, higher-order components, and interaction 
terms of the explanatory variables. 

5.1. ZTNB Model without accident narrative information 

To explore how narrative information can contribute to an enhanced 
derailment severity estimation model, a ZTNB model without the acci-
dent narrative information needed to be fitted as a benchmark for the 
modified model. Accordingly, this study first developed a ZTNB 
regression model without text information and chose variables within a 
95% confidence interval (Table 3). 

Consequently, the ZTNB model of train derailment severity with 
structured variables updated only with variable selection is presented 
below: 

Z = exp
[
0.525 + 0.016RL + 0.006DS − 0.083LO − 0.0001(RL)2

+ 0.78(LO)
2
+ 0.0002RL×DS + 0.01DS×LO

] (8)  

whereZ is the predicted number of derailed cars in train derailments on 
Class I mainlines. 

5.2. ZTNB Model with accident narrative information 

Based on the pre-processed unstructured accident narratives, as 
explained in Section 4.3, this section establishes a ZTNB model consid-
ering the accident narrative information. A comparison between the 
previous model and the modified model was also performed to interpret 
the contribution of the narrative information to estimating and under-
standing the consequences of train derailments. 

5.2.1. LDA training and topic assignment 
As mentioned in Section 3, there were three hyperparameters that 

needed to be defined and assigned before the training of the LDA model, 
namely K, α, and η. The latter two were vectors of dimensions K and W, 
respectively. The general practice commonly presumes that each 
element has the same value, often 1/ K for both elements. The hyper-
parameter K represents the number of different topics that are expected 
to be obtained. In this study, to draw the top 10 topics from the 
derailment narratives, the LDA model with K = 10, α = 1/10, and η = 1/ 
10 was developed to assess the contributing roles in the derailment 
consequences. Table 4 presents a list of all 10 topics obtained from the 
historical derailment accident data with the developed LDA model. 

5.2.2. Unique words and normalization 
Once a topic assignment consequence was obtained, it would be a 

challenge to address the following two questions: (1) Do the narrative 
topics contain information that can be used as new variables in derail-
ment severity estimation? and (2) How can the text be converted into a 
numerical feature as a new independent variable in the derailment 
prediction model. To address these questions, each topic, composed of 
unique words, should first be cleaned and normalized [16]. Table 5 
shows the results for 10 topics after deleting repetitive words. From the 
pure words, preliminary insights can be collected as additional infor-
mation on the topics. For example, Topic 6 is related to crossing acci-
dents; Topic 8 concerns broken-rail or wheel-related derailments; and 
Topic 9 covers hazardous material leakage. 

Second, the normalization procedure was used to convert extracted 
topics into numerical features by computing the proportion of topic 
words contained in the narratives. The range of normalization scores 
was from 0 to 1 [17]. For example, if an accident narrative m contained 
all the words in Topic n, the score Smn for this accident and topic would 
be 1.0. If only 30% of the words of Topic n appeared in accident 
narrative m, Smn would be equal to 0.3. Table 6 presents the descriptive 
statistics after the normalization procedure. As introduced in Section 3, 
LDA is an unsupervised learning algorithm, based on statistical princi-
ples and word frequency. Several topics obtained from the LDA need to 
be treated as irrelevant and need to be abandoned. However, instead of 
focusing on finding the best topic assignment of all the derailment 
narratives, the purpose of this study was to investigate how a narrative 
could improve the understanding of derailment severity. The topic 

Table 3 
ZTNB model results for derailments of Class I mainlines, 1996–2019.  

Variable Coefficient Standard error P-Value 

Intercept 0.525 0.090 <10− 3 

RL 0.016 0.002 <10− 3 

DS 0.006 0.003 <10− 3 

LO 0.083 0.210 0.020 
(RL)2 1 × 10− 4 1 × 10− 5 <10− 3 

(LO)2 0.78 0.172 <10− 3 

RL*DS 2 × 10− 4 3 × 10− 5 <10− 3 

DS*LO 0.010 3 × 10− 3 <10− 3  

Table 4 
Ten topics obtained from train derailments from 1996 to 2019 with LDA.  

Topic #0: 0.013*go + 0.013*caus + 0.012*travel + 0.012*main + 0.012*emerg +
0.011*journal + 0.011*track + 0.011*wind + 0.010*rail + 0.010*eastbound 

Topic #1: 0.014*switch + 0.014*travel + 0.013*main + 0.013*break +
0.013*engine + 0.012*caus + 0.012*track + 0.012*emerg + 0.012*go 

Topic #2: 0.015*track + 0.015*rail + 0.014*break + 0.013*main + 0.012*wheel +
0.011*damag + 0.011*caus + 0.010*unit + 0.010*stop + 0.010*inspect 

Topic #3: 0.016*switch + 0.014*stop + 0.014*bnsf + 0.013*track + 0.012*crew +
0.012*travel + 0.011*emerg + 0.011*go + 0.011*drag + 0.011*inspect 

Topic #4: 0.011*crew + 0.011*rear +0.011*caus + 0.010*rail + 0.010*curv +
0.010*track + 0.010*switch + 0.010*main + 0.010*engine + 0.010*load 

Topic #5: 0.022*load + 0.019*unit + 0.019*empti + 0.018*ton + 0.016*head +
0.015*break + 0.015*journal + 0.014*rail + 0.013*caus + 0.013*south 

Topic #6: 0.016*main + 0.014*emerg + 0.014*break + 0.014*go + 0.013*track +
0.013*rail + 0.013*cross + 0.012*line + 0.011*travel + 0.011*gallon 

Topic #7: 0.018*east + 0.017*main + 0.017*travel + 0.016*head + 0.015*rail +
0.014*break + 0.014*track + 0.012*load + 0.011*pull + 0.011*emerg 

Topic #8: 0.017*wheel + 0.013*caus + 0.012*tread + 0.011*truck + 0.011*switch 
+ 0.011*clearanc + 0.011*main + 0.010*track + 0.010*build + 0.010*axl 

Topic #9: 0.029*railcar + 0.025*track + 0.022*materi + 0.021*hazard +
0.021*release + 0.020*travers + 0.019*break + 0.017*singl + 0.017*main +
0.013*rail  

Table 5 
Unique words in the 10 topics from derailment accident narratives.  

Topic #0 Topic #1 Topic #2 Topic #3 Topic #4 

Caus 
wind 
eastbound 

Engin 
side 

rail 
damag 

switch 
stop 
inspect 
crew 
drag 

rear 
curve  

Topic #5 Topic #6 Topic #7 Topic #8 Topic #9 

journal 
unit 
load 
empti 
ton 
south 

Go 
emerg 
cross 
line 
gallon 

travel 
main 
head 
east 
pull 

wheel 
tread 
truck 
clearance 
build 
axl 
track 
break 

materihazard 
releas 
travers 
singl  
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selection process is detailed in the development of estimation models. 

5.2.3. ZTNB model with added narrative information 
Following the aforementioned process, the first step was to choose 

the topics employed as new factors in the ZTNB model. The guideline 
was that only a topic whose P-value was less than 0.05 could be seen as a 
new variable. Ultimately, Topics 0, 2, 3, 6, and 8 were adopted as final 
model variables. The identical training set and test set used in Section 
5.1 were also employed to develop the ZTNB regression model with 
narrative information and to examine the prediction performance. The 
final results of the modified ZTNB model are listed in Table 7. 

Spearman correlation coefficients are calculated among Topics and 
Structured Data to validate that predictor variables are independent. 
The calculation results are presented in Fig. 3. Since all spearman cor-
relation coefficients are less than 0.3, it is reasonable to conclude that 
topics and structured data are independent of each other. 

The mean square error (MSE), root mean square error (RMSE), and 
mean absolute percentage error (MAPE) were selected as performance 
evaluation metrics. Eqs. (9)–(11) present how these metrics are 
calculated. 

MSE =
1
n
∑n

i=1
(ŷi − yi)

2 (9)  

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
1
n
∑n

i=1
(ŷi − yi)

2

√

(10)  

APE =
100%

n

∑n

i=1

⃒
⃒
⃒
⃒
ŷi − yi

yi

⃒
⃒
⃒
⃒ (11)  

Where ŷi = {ŷ1, ŷ2,…….ŷn}represents a prediction value, and yi = {y1,

y2,……yn} represents the observed values in derailment severity. 
A comparison of the prediction accuracy between the two models is 

presented in Fig. 4, which reveals a clear contribution of narrative in-
formation to model performance. As shown in Fig. 4, adding narrative 
information to the ZTNB model can reduce the model’s prediction er-
rors. The MSE, MAPE, and RMSE decreased by 27.25%, 7.65%, and 
12.81%, respectively. The value of MSE is considerably greater than 

MAPE and RMSE since MSE measures squared value of derailment 
severity, while MAPE and RMSE are the evaluations of order of derailed 
cars in one accident. Thus, the comparison demonstrates that a statis-
tical model with narrative information could significantly improve 
derailment severity estimation and improve the performance of the built 
model. In addition, regardless of whether the text information is 
considered in the ZTNB models, the computation times of fitting two 
regression models have minimal dissimilarity. 

5.2.4. Discussion 
The performance comparison of the ZTNB model with only struc-

tured data and the ZTNB model with topics revealed that narrative 
topics contained information that could be used as new variables to 
enhance the estimation of derailment consequences. It is vital to un-
derstand how the performance of the estimation model can be improved 
by integrating the narrative information and what additional insights 
about derailment severity can be provided. 

Enhanced estimation performance with additional information from 
narratives: Previous researchers have concluded that derailment causes 
are an important factor in accident severity [4]. With the same physical 
conditions (e.g., derailment speed or loading proportion), different ac-
cident causes will lead to differences in the number of derailed cars. For 
instance, the average number of cars derailed per derailment caused by 
joint bar defects and track geometry (excluding wide gauge) were 15.8 
and 6.5, respectively [4]. Therefore, there is a need to leverage the value 
of accident causes in the accident database to achieve an acceptable 
prediction accuracy for derailment severity. 

Accident cause information was recorded in both structured and 
unstructured data in the REA database. In terms of the structured data, 
one field named “CAUSE” contained the primary accident cause code 
classified by the FRA. However, to the authors’ knowledge, previous 
studies and practices have demonstrated a lack of consideration of 
additional accident causes extracted from accident narratives. In addi-
tion, several previous studies have attempted to utilize NLP to classify 
narratives according to the cause [6,17]. Topic modeling algorithms, 
such as LDA, can be utilized to extract keywords and assign topics from a 
document dataset. Once the keywords are converted into numerical 
features, additional information related to the cause of one train 
derailment can be absorbed by the prediction model and eventually help 
assess the derailment consequence with enhanced derailment severity 
estimation performance. 

The FRA database records more than 300 accident-cause codes. For 
example, the keyword “switch” in Topic 3 can also be found in accidents 
with several FRA causecodes. If narratives contain the word “switch,” 
the causes of derailments correspond to the above cause codes. When the 
text information is converted into numerical features, the estimation 
model will also be revised accordingly to obtain better accuracy. 
Narrative 1 gives an example containing “switch.” 

Narrative 1: Subgrade failed at mo 439.7 causing lead axle of the 
bnsf 8854 to derail axle, partially suspended by right hand shock and 
left/right chains. During eastward movvement, derailed axle struck the 
switch at mp 437.5 at which time, wheels were rerailed. Tie clips were 
intermittently destroyed between mp 439.7 and 437.5. 

Moreover, not every term extracted by the LDA algorithm was 
directly related to the cause of the derailment. Even though some 

Table 6 
Descriptive statistics of the normalization procedure.   

Topic #0 Topic #1 Topic #2 Topic #3 Topic #4 Topic #5 Topic #6 Topic #7 Topic #8 Topic #9 

Mean 0.337 0.153 0.301 0.549 0.135 0.480 0.635 0.839 0.288 0.965 
Std 0.513 0.377 0.502 0.819 0.360 0.857 0.768 0.912 0.584 1.261 
Min 0 0 0 0 0 0 0 0 0 0 
25% 0 0 0 0 0 0 0 0 0 0 
50% 0 0 0 0 0 0 0 1.000 0 1.000 
75% 1.000 0 1.000 1.000 0 1.000 1.000 1.000 1.000 1.000 
Max 3.000 2.000 2.000 5.000 2.000 5.000 5.000 5.000 6.000 5.000  

Table 7 
ZTNB model results for derailments with narrative information.  

Variable Coefficient Standard error P-value 

Intercept 0.785 0.088 <10− 3 

RL 0.018 0.002 <10− 3 

DS 0.005 0.003 0.039 
LO –0.913 0.198 <10− 3 

(RL)2 1 × 10− 4 1 × 10− 5 <10− 3 

(LO)2 0.812 0.163 <10− 3 

RL*DS 1 × 10− 4 3 × 10− 5 <10− 3 

DS*LO 0.012 0.003 <10− 3 

Rate 0 0.277 0.090 0.002 
Rate 2 0.146 0.061 0.016 
Rate 3 –0.686 0.096 <10− 3 

Rate 6 0.491 0.099 <10− 3 

Rate 8 –0.230 0.139 <10− 3  
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Fig. 3. Spearman correlation coefficients matrix.  

Fig. 4. Comparison of prediction accuracy between two models.  
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keywords could not be directly found in the FRA cause codes, these 
words still contained some important information associated with 
derailment severity to a certain extent. For instance, the occurrence of 
the keyword “gallon” from Topic 6 usually meant that the train involved 
in this derailment transported hazardous materials, in which case a large 
amount of leaked liquid cargo could have potentially more serious 
consequences. Overall, some keywords obtained from the LDA algo-
rithm act like a banner or a sign symbolizing that this derailment may 
have more or less severe consequences. When this information is the 
additional input for the model, the estimation of derailment severity can 
be adjusted to achieve a slightly better performance. 

Supplementary insights and understanding of derailments: The ultimate 
objective in exploring whether unstructured data (e.g., derailment 
narratives) can contribute to modeling derailment consequences was to 
utilize text mining of derailment narratives to gain an in-depth under-
standing of the severity of derailments and improve railroad safety. This 
section qualitatively describes how this study could help deepen and 
strengthen the understanding of derailments with accident narratives. 

For example, there was one word “wind” in Topic 0. Clearly, if there 
was a strong wind or similar extreme weather at the time of derailment, 
the consequence of the derailment would typically be very severe. 
However, there were fewer than 100 derailments from 1996 to 2019 
that contained the word “wind.” Its irregularity and low frequency made 
it very inconvenient to analyze this type of accident. With a text analysis 
of the derailment narratives, although the frequency of derailments that 
happened in extreme weather is very small, the occurrence of extreme- 
weather-related topics should receive more attention from railroad 
companies and administrations.The relationship between the insights 
provided by the narrative text and the understanding of the derailments 
were also highlighted by Brown [20]. In fact, railroads operating in 
areas with a high incidence of extreme weather conditions (e.g., extreme 
wind) should be more cautious and sensitive to extreme weather con-
ditions. In addition, the discussion about the word “wind” also indicates 
that the LDA algorithm improved by TF-IDF could extract the events that 
had low frequency but severe consequence. Narrative 2 with the 
keyword “wind” is given below: 

Narrative 2: ZSEME-22 went into emergency. The conductor found 
that the container had been blown off the car due to 60 plus mph winds 
causing ttex 353,239 to derail. 30. Method of operations: o. Other =
RADIO. 

Exclusions of several topics utilized in ZTNB regression model: Only five 
topics (topics 0, 2, 3, 6, and 8) were utilized in the final ZTNB model 
with narrative information based on two criteria. First, as an unsuper-
vised learning approach, LDA is based on statistical principles and word 
frequency. The frequency of words in a narrative largely determines 
whether a word will be selected. Topics 1, 4, and 5 were obtained based 
on the LDA algorithm; however, they contradict people’s understanding 
of the topic distribution. In other words, these were some unsatisfactory 
results because the extracted words had a high frequency of appearance 
in derailment records, but do not contain important information. Even 
though the error caused by the LDA algorithm was almost impossible to 
eliminate, an increasing number of topics that could be used as new 
variables for the ZTNB model would be extracted.This would reduce the 
error of LDA and continue to improve the estimation model performance 
[17]. 

The second reason is associated with the evaluation metric of 
derailment severity. Specifically, Topic 9 denotes derailments with 
hazardous material. Evidently, a train carrying hazardous materials 
would cause more monetary loss. This study selected the number of 
derailed cars, instead of monetary loss, as an indicator of the severity of 
the derailment. A previous study disclosed that the hazardous materials 
such as petroleum, alcohol, or cheap ordinary goodswould not affect the 
number of derailed cars. However, in a study with monetary loss as an 
evaluation metric, Topic 9 may be a new factor in the estimation model. 

5.3. Limitation of ZTNB model 

The ZTNB model is appropriate for investigating datasets without 
zeros in the dependent variable. However, the ZTNB model can only 
analyze the mean response variable [6,11]; it still has several limitations 
as a classic count data model.The ZTNB model was used to predict the 
mean value, which means that it could not entirely represent the dis-
tribution of the data. Fig. 5 shows thedistribution of the cumulative 
percentages of the observed and prediction data. As shown in Fig. 5, the 
ZTNB model produced large errors at the beginning of the dataset. In 
addition, the mean value of the number of derailed cars was 8.673. If the 
prediction model solely considered the mean value, it might over-
estimate the derailment severity in accidents with only one or two cars 
derailed, or even underestimate the consequences of severe derailments 
[37]. To achieve additional statistical information and comprehensively 
consider other distributions, a QR model was established and the results 
were analyzed with the targeted dataset and objectives in this study. 

6. Quantile model with unstructured data 

To obtain additional statistical distributions of the number of cars 
derailed and comprehensively evaluate the derailment severity, a QR 
model considering derailment narrative information was developed, and 
will be discussed in the remainder of this section to gain more insights 
about derailment [38]. 

Mathematically, quantiles are obtained from the cumulative distri-
bution function (CDF) of a random variable. For a random variable Y 
with a probability distribution function FY(y), 

FY(y) = Pr(Y ≤ y) (12) 

Then the τth quantile of Y is defined as QY(τ): 

QY(τ) = F− 1
Y (τ) = inf {y : FY(y) ≥ τ} (13) 

In particular, τ varies between 0 and 1, and the median is Q(1/2). The 
QR model could provide a supplementary understanding of accident 
severity. More details about the QR model and how to establish the same 
can be found in Koenker et al. [39]. 

6.1. QR Model with accident narrative information 

Owing to the limitations of the ZTNB model, it was essential to 
establish different QR models with the number of cars derailed as the 
dependent variable to obtain different quantiles of derailment severity. 
The intention of performing QR in this study was to explore more un-
derstanding provided by narrative information of derailment severity 
from another perspective and to support the establishment of the ZTNB 
model. Therefore, the dataset and selected independent variables in the 
QR model must be consistent with the factors in the ZTNB model to 
ensure that the following discussion is meaningful. Table 8 summarizes 
the QR estimates for the selected quantiles and the associated standard 
errors. As can be seen from the table, this study chose quantiles 0.2, 0.3, 
0.4, 0.6, 0.8, and 0.9, along with the 0.5 quantile as the median value. 
Fig. 6 shows the variation trend of different independent variables with 
the growth of the quantiles. 

6.2. Discussion on QR model-based analytical results 

The statistical distributions of derailment severity with QR models 
revealed additional insights into the influence of narrative-based topics 
in different quantiles. It is also acknowledged that the robustness of the 
QR model resolved issues against outliers in the dataset. Even though a 
few outliers may have significantly affected the mean and variance, their 
effects on certain quantiles were lesser. Consequently, QR might still be 
practical in analyzing derailment severity using structured and un-
structured data with a limited number of outliers. 
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The purpose of establishing the QR model was to investigate the 
different quantiles of derailment severity with narrative information and 
to support the establishment of the ZTNB model. More specifically, two 
preliminary inferences could be drawn from the signs and magnitudes of 
the coefficients to support the correctness of the ZTNB model. First, the 
explanatory variables kept the sign of the coefficients the same in 
different quantiles. Even though they may have different magnitudes in 
different quantile models, the same signs indicated that the influence of 
an explanatory variable on derailment severity was consistent. Second, 
the magnitudes of the parameter in the ZTNB model were between the 
0.2 and 0.6 quantiles, which is reasonable because the mean was also a 
special quantile value. The two inferences based on the results of the QR 
models were similar to the conclusions from a previous study [6]. 

Moreover, several new insights were also obtained with the QR 
model-based analytical results that can potentially improve under-
standing of derailment severity. First, the P-values of several topics 
varied between different quantiles. This indicates that certain topics 
significantly affected the derailment severity only when it met a specific 
condition. For instance, the P-values of Topic 0 in 0.2, 0.3, 0.4, and 0.5 

quantiles were greater than 0.1, which meant that Topic 0 played an 
insignificant role in the derailments (with less severe consequences). 
The P-value of Topic 0 decreased significantly in 0.8 and 0.9 quantiles. 

A higher quantile indicates more severe derailment. Therefore, it can 
be speculated that derailments with narratives classified as Topic 0 may 
occur occasionally, but with serious consequences. As mentioned in 
Section 5.2.4, Topic 0 represents a derailment caused by extreme 
weather (e.g., wind). Even though derailments caused by extreme winds 
are not frequent, these derailments may result in very severe conse-
quences in general. In addition, the magnitude of several topics 
appeared to be changing with an increase in the quantiles. For example, 
the magnitude of the coefficients in Topics 3 and 8 declined with an 
increase in the quantiles. This suggests that even though two topics have 
an influence on derailment severity, they could play a more vital role in 
derailments with less severity. Based on the ZTNB model and QR model, 
additional insights provided by derailment narratives about derailment 
severity can eventually help reduce the severity of derailment and 
improve the safety performance of railroad systems. 

Fig. 5. Distribution of observed and prediction data.  

Table 8 
QR model results for derailments on Class I Mainlines, 1996–2019.  

Variable 0.2 quantile 0.3 quantile 0.4 quantile Mean 0.6 quantile 0.8 quantile 0.9 quantile 
Coeff 
* 

P-value Coeff P-value Coeff P- 
value 

Coeff P-value Coeff P- 
value 

Coeff P- 
value 

Coeff P- 
value 

Intercept 1 3 ×
10− 5 

2.298 0 3.222 0 3.933 0 4.229 0 5.601 0 6.424 0 

RL 0 1 0.025 0 0.027 0 0.023 2 ×
10− 4 

0.031 0 0.058 0 0.091 0 

DS 0 1 –0.005 0.511 –0.037 0 –0.068 0 -0.077 0 –0.049 0.018 –0.024 0.373 
LO 0 1 –2.252 3 ×

10− 4 
–3.085 0 –2.783 1 ×

10− 4 
–2.423 0.004 –3.541 0.023 –1.932 0.314 

(RL)2 0 1 –2 ×
10− 4 

0 –3 ×
10− 4 

0 –3 ×
10− 4 

0 –5 ×
10− 4 

0 –7 ×
10− 4 

0 –9 ×
10− 4 

0 

(LO)2 0 1 2.856 0 3.327 0 2.707 0 2.189 0.002 2.739 0.022 1.096 0.490 
RL*DS 0 1 2 × 10− 4 0.118 0.002 0 0.004 0 0.005 0 0.006 0 0.006 0 
DS*LO 0 1 0.002 0.890 0.064 0 0.116 0 0.152 0 0.175 0 0.177 0 
Rate 0 0 1 0.606 0.041 0.179 0.566 0.133 0.739 –0.045 0.927 0.813 0.222 1.775 0.041 
Rate 2 0 1 0.598 0.008 1.034 0 1.183 0 0.988 0 0.310 0.435 0.716 0.267 
Rate 3 0 1 –2.308 0 –3.312 0 –3.889 0 –3.769 0 –3.263 0 –1.557 0.077 
Rate 6 0 1 2.830 0 3.193 0 2.913 0 2.761 0 2.744 0 1.873 0.043 
Rate 8 0 1 –7.360 0 –10.758 0 -11.525 0 –11.228 0 –10.36 0 –10.746 0  

* Coeff means coefficient. 
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7. Conclusions and future work 

To explore derailment severity using narrative information, this 
study developed statistical modelsbased on historical train derailment 
accidents involving both structured data and unstructured data. 
Derailment severity was investigated with the ZTNB model with narra-
tive information that was further compiled into the top five topics via 
Latent Dirichlet Allocation. The model yielded significant improvements 
(i.e., 27.25% in MSE, 7.65% in MAPE, and 12.81% in RMSE) in the 
accuracy of derailment severity estimation as compared with the model 
without narrative information. Additional distribution and quantile 
values of derailment severity were estimated using QR, involving 
derailment narrative information. The case-specific analysis showed 
that the model built with unstructured data could provide new insights 
on derailment severity, including extensive cause information, global 
features in the environments, and far-reaching characteristics of train-
sThe combination of the narrative information in the FRA REA database 
and the statistical model of derailment severity can facilitate a better 
understanding of derailment severity distribution and influencing fac-
tors, thus ultimately contributing to more comprehensive strategies for 
train accident risk mitigation. 

Several studies can be conducted in the future to further improve the 
assessment of train derailment severity. First, alternative approaches 
can be developed to convert narratives into more exhaustive numerical 
features. Deep learning algorithms (e.g., Bi-LSTM and Text-CNN) can be 
used to extract unstructured information. More advanced natural lan-
guage processing algorithms should be involved to mitigate the errors 
caused by polysemy in future studies. Additionally, the interaction terms 
between topics and variables from structured data can be considered in 
the future and may provide more insights about the severity of 
derailment. 
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