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Artificial intelligence-aided intelligent
obstacle and trespasser detection based on
locomotive-mounted forward-facing camera
data

Huixiong Qin, Asim Zaman and Xiang Liu

Abstract
Most fatalities in the railroad industry are trespasser deaths. Additional obstacles such as fallen trees, construction materials,
and other debris also pose a danger to railroad operations. Understanding where, when, and how these events occur can help
railroads develop trespasser mitigation strategies and improve rail safety. However, obtaining information from forward-
facing footage requires immense manual effort.We developed a forward-facing trespassing and obstacle detection system that
utilizes artificial intelligence to recognize and understand unsafe events and logs them for later review and analysis. The system
dynamically identifies regions of interest, trespassers, and obstacles with a customized detection methodology which uses a
semantic segmentation model called DeepLab and an object detection model called YOLOv5. These models were trained by a
dataset containing over 10,000 images from various sources, including open-source datasets and videos provided by industry
collaborators. The novelties of this research are threefold: the development of an algorithm capable of detecting the railroad’s
restricted area around the track area, optimizing the trade-off between accuracy and latency to achieve real-time per-
formance, and proposing a universal obstacle detection algorithm. The final system was able to analyze 400-pixel x 400-pixel
videos at a rate of 14.5 frames per second (FPS) in an edge-computing device which identified trespassers and obstacles with
more than 92% accuracy. The system can adaptively detect both obstacles and trespassers in the train’s path, as well as the
railroad property area surrounding the tracks. This research offers the railroad industry tools which can provide precise
trespasser and obstacle information to improve railroad safety and operations.
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Introduction

Background

“Trespasser deaths on railway rights-of-way and other
railway property are the leading cause of fatalities attrib-
utable to railway operations in the United States. To address
this serious issue, the railway industry, governments
(Federal, State, and local), and other interested parties must
know more about the individuals who trespass.”1 This
statement by the Federal Railway Administration (FRA) on
the challenge of trespassing highlights a critical need in the
railway industry. According to the database of the FRA’s
office of safety analysis, between 2010 and 2020, 95
percent of railway fatalities occurred at highway rail grade
crossings or involved trespassers.2 Obstacles like fallen
trees, construction materials, and other debris pose an
additional danger to railroad operations. From 2012 to
2019, approximately 1800 accidents occurred due to such
obstacles.2 These accidents accounted for approximately
15% of all accidents on railway property and resulted in
property damage, injuries, and fatalities.

Trespassing and obstacles are only identified when an
accident occurs or when a train operator reports them.

However, there are manymore unrecorded events, as shown
in research by Zaman et al.,3 which indicate dangerous
situations that could result in damage. Therefore, recording,
reviewing, and understanding trespassing and obstacle
events is necessary to address key challenges in the railway
industry.

As these pervasive challenges continue in the rail in-
dustry, so too does widespread deployment of cameras in
the United States, following the Fixing America’s Surface
Transportation Act. 4 The FRA requires railroads to install
inward and outward-facing cameras in all controlling lo-
comotives of passenger trains. A survey conducted by Jones
et al.5 showed that out of 5450 transit vehicles in service,
approximately 68% have forward-facing cameras installed,
while 100% of light rail vehicles and 98% of street cars are
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equipped with forward-facing cameras. Railway video
systems are a massive source of video data. Therefore,
automating the information extraction from this data source
has become an immediate need.

As this video dataset grows, there is a parallel rapid
development in artificial intelligence (AI) algorithms and
computer vision techniques. State-of-the-art open-source
AI models with pre-trained weights, such as YOLO6–9 and
large-scale datasets such as RailSem1910 are being utilized
to solve challenges in many industries, especially roadway
transportation. While AI has not been widely adopted by the
railway industry, there are many applications to which this
technology could be applied. This research aims to combine
the challenges of trespassing and obstacles, big railway
video data, and rapid developments in computer vision AI
to improve railway safety. Specifically, this research aims to
develop a railway forward-facing trespasser and obstacle
detection system based on deep learning (DL) pattern
recognition models, trained with images from real world
operations.

Objectives of research

This research aims to accomplish the following goals.

· To detect trespassers in the restricted area.
· To detect both obstacles and trespassers in the

structure gauge area.
· To customize the model to tradeoff the latency and

accuracy for deploying in edge computing devices.
· To allow other studies to be compared with ours, we

provide performance benchmarks tested with public
annotated datasets and open-source videos.

Abbreviations & definitions

The following is a list of abbreviations for performance
metrics and definitions used in this research.

· TP: True Positive
· TN: True Negative
· FP: False Positive
· FN: False Negative
· P: Precision is the ability of a model to identify only

relevant objects. P ¼ TP
TPþFP.

· R: Recall is the ability of a model to find all relevant
cases. .

· U: Intersection over union measures the overlapping
area between the predicted bounding box, Bp, and the

ground-truth bounding box, Bgt: tIoU ¼ Bp \Bgt
Bp [Bgt

.

· mAP: The mean average precision (mAP) is a metric
used to measure the accuracy of object detectors for
all classes. Let c, r, l be decimal numbers and s be an
integer, mAP@c represents the mAP for detection
whose IoU is greater than c, and mAP@l:s:r is the
mean of mAps of r�l

s IoUs varying from l to r with
steps of s.

· mIoU: Mean intersection-over-union is a common
evaluation metric for semantic image segmentation
which first computes the IoU for each semantic class
and then computes the average for all classes.

· Track Area: Area between the two rails on which a
train travels.

· Structure Gauge Area: The area with potential risk of
hitting obstacles or trespassers. It is an extension of
the track area. The structure gauge can encompass
rails, railway ties, sub-grades, and any other user-
defined region of interest.

· Restricted Area: Property owned by transit compa-
nies or government transportation departments with
prohibited public access.

· Trespasser: Unauthorized person or vehicle in the
restricted area, including the structure gauge area.

· Obstacle: Fallen trees, construction materials, and
other debris that pose an additional danger to railroad
operations.

Literature Review

To ensure that this research is novel, a literature review,
focused on AI-based obstacle detection using forward
facing footage, was performed, as summarized in Table 1.

Ristić-Durrant et al.11 gave a comprehensive review of
vision-based on-board obstacle detection research, covering
both AI-based and conventional CV methods. In contrast,
our review covers mainly AI-based methods since recent
studies 11–13 have shown that AI-based methods outperform
conventional CV methods. Moreover, we focus on pre-
senting a performance comparison by listing metadata of
datasets, accuracies, and hardware specifications of related
works.

Contributions

The novelty of this study is to provide an implementable
and generalized solution for three challenges. First, since
internet access which allows streaming video data is not
always available on locomotives, it is necessary to perform
AI-based detections on the edge. However, popular se-
mantic segmentation is computationally expensive, which
makes it difficult to utilize AI on computationally lean edge-
computing devices with an acceptable frame rate. To
achieve a good tradeoff between latency and accuracy, we
reduce the resolution of inputs to the semantics segmen-
tation model and then restore the resolution of outputs using
a trained light-weight CNN.

Second, approaches from previous studies can only
detect trespassers in the track area. Both vehicles and pe-
destrians in the restricted area (for example, people standing
on the ballast area) are also trespassers. Therefore, we
combine the traffic object detection and the restricted area
prediction to search for trespassing in the restricted area.

Third, existing methodologies for obstacle detection rely
on a trained object detector to recognize objects of previ-
ously annotated types in training datasets. It is currently
unfeasible to gather images on all the types of obstacles that
a locomotive may encounter with enough variety to train a
reliable obstacle detector. We developed a novel universal
obstacle detection algorithm based on the difference be-
tween consecutive semantic predictions, aiming at detecting
obstacles when they do not belong to any predefined
classes.
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Methodologies

The AI-based solution to detect obstacles and trespassers in
forward-facing railroad footage presented in this research is
a three-step process:

1. Object Detection: Recognize vehicles, people, and
meaningful railway components, in the video frame
and differentiate between pedestrians and legal
occupiers.

2. Dynamic ROI: Determine what is railroad property
in the video using semantic segmentation.

3. Trespasser and Obstacle Detection: Determine if
people, vehicles, or other non-predefined objects,
such as trees and rocks, are in the region of interest to
identify obstacles and trespassers.

Object Detection

Object detection is a type of computer vision and pattern
recognition technique that detects instances of certain
classes according to their semantics (the visual meaning),
pose, and other features. Object detection models were
adopted in this research to find vehicles and pedestrians,
and to detect meaningful static railway components, such as
switches and signal lights. Specifically, YOLOv5 was
adapted because of its superior accuracy and performance.9

The YOLO models are special CNNs that infer locali-
zation and classification simultaneously. They divide the
input image into an S × S grid and predict B bounding-box
candidates for each grid cell. Each bounding box candidate
consists of six predictions: x, y,w, h, confidence c, and the
classification cls. The ðx, yÞ coordinates represent the
center; w and hour represent the width and height. If the
center of a ground-truth object falls into a grid cell, that grid
cell is responsible for detecting that object. The loss
function evaluates the distance between predicted bounding
box candidates and their corresponding ground-truths. As
the loss drops during the optimization, predicted bounding
box candidates approach the ground-truths. Non-maximum
suppression is used to select the best bounding box from
overlapped candidates, resulting in one object of interest per
bounding box. More detail can be found in.6–9

Dynamic region of interest

To detect trespassers and obstacles, an algorithm must
know which areas in the video frame are designated as the
track area, the structure gauge area, and the restricted
area. The structure gauge area varies from location to
location. For example, light rail track in the city does not
usually have railroad ties while rural freight track does.
So does the restricted area, which is normally bounded by
fences or vegetation but can often be unmarked. We
utilize DL-based semantic segmentation models as de-
scribed below.

Table 1. Summary of literature review.

Paper Dataset Methodology Result

12 3000 1080 × 1920 images recorded on the
two metro lines including sub-ground
tunnel footage, where training set:
Validation set: Test set is 25 : 2: 3

Modified ResNet50 to extract deep features
efficiently and used several layers of
convolution and deconvolution to upsample
the feature for generating pixel-wise track
area prediction

89% of MIoU and the inferencing
speed is 20 FPS in a PC with GTX
1080 as the GPU.

14 The dataset consisted of forward-facing
thermal Sequences

Use a modification of AlexNet to detect key
points along the rails

Put the largest weight on the area furthest
away from the train

—

15 20,000 of outdoor railway scenes, where
training set: Test set is 3 : 1.

Retrain faster RCNN for object (potential
obstacle) detection

94% of object detection precision

13 Videos were recorded on a locomotive
running on a line with the length of
120 km

Gather bounding boxes via YOLO. Then feed
them to a customized neural network to
estimate distances

Their reported average error of
distance measurement was
around 6%

16 7342 images of railway shunting scenes
recorded in different lighting and weather
conditions, where training set: Test set is
7 : 3

Modifies RON by adding feature transfer
blocks and receptive field enhancement
modules to merge the adjacent feature
maps, which helps improve the accuracy in
detecting small objects

89% precision and the inferencing
speed is 38 FPS in a PC with GTX
1080 Ti as the GPU.

17 1277 720 × 1280 images recorded on three
metro lines

Extract deep features using ResNet. They are
further fed to a RCNN to gather confidence
score and bounding boxes for possible
obstacles

91% of mAP@0.5 and the
inferencing speed is 26 FPS in a PC
with GTX 1080 Ti as the GPU.

18 3000 1333 × 800 images with 30,278
objects annotated. The ratio of training
set: Test set is 9 : 1

Adopt the context extraction module and the
content-aware reassembly of features
module to enhance, accelerate the deep
feature extraction

90.6% of mAP@0.5 and the
inferencing speed is 11 FPS in a PC
with RTX 2080 super as the GPU.

19 5617 images from 10 km of railway forward-
facing footage. The ratio of training set:
Test set is 4 : 1

Modify SegNet by adding dilated cascade
connection and cascade sampling to achieve
a trade-off between accuracy and latency.

98% MIoU
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Image semantic segmentation is the process of classi-
fying each pixel in an image as a certain class. Several state-
of-the-art semantic segmentation models were tested based
on the Railsem19 dataset. The best performing model was a
modified Deeplab20 which was modified to create a light-
weight semantic segmentation model. DeepLab is broadly
composed of two steps:

(1) Encoding: the aim of encoding is to extract essential
information from the image. This is done using a
pre-trained CNN whose convolutional layers look
for different features in an image. It moves through
essential information layer by layer and ultimately
forms a feature map.

(2) Decoding: the decoding phase takes care of com-
bining extracted features to predict local semantics
and reconstructing the output as the required
dimension.

Based on our experiments, the resolution of inputs and
the selection of the backbone model play important roles in
balancing performance and accuracy. DeepLab was cus-
tomized to optimally balance these two metrics.

MobileNet was selected as the backbone model and is
shown in Figure 1. In this model, inputs are resized to a low-
resolution image before being fed into DeepLab. The output
semantic predictions are restored to the original resolution
using a lightweight CNN. In practice, the inference can be
further enhanced by cropping the upper part of the images
(those areas are mostly sky in forward-facing footage and
therefore are not related to the semantics of interest).

Obstacle and trespassing detection

Finally, the YOLOv5 model and the customized DeepLab
algorithm were combined to detect objects in the track area
and the restricted area. This combined system initially
checks if vehicles and pedestrians are in the track area or the
restricted area. It then finds the train’s path among the
detected track areas and analyzes it to see if there are any
sudden changes that would indicate obstacles. We extend

the train’s own path area on both sides by the structure
gauge distance, that can be set by railway agencies. For
example, the NewYork Department of Transportation sets 4
feet as the structure gauge distance.21 Finally, based on
YOLO detections of switch positions, it determines which
track the train will follow when a turnout is present.

Trespasser detection framework. Figure 2 shows the system
framework for detecting trespassers in forward-facing
video. First, video frames are fed to the object detector.
These objects are then separated into trespassers and legal
occupiers, including staff with permission to enter the re-
stricted area such as track workers. Legal occupiers are
differentiated from trespassers based on an OpenCV-based
template matching algorithm to check if the person is
wearing personal protective equipment (PPE), namely a
retroreflective green or orange safety vest. Note that,
practically, it is very rare for normal people to wear railroad
PPE. For vehicles and pedestrians, the algorithm will check
if they are within the restricted or track area.

Obstacle detection framework. Figure 5 shows the obstacle
detection framework. This framework functions like the
trespasser detection framework but with several key
changes. Non-predefined objects such as rocks, trees, and
other debris are not inherently recognized by the object
detection model. However, this can be resolved by eval-
uating occlusions to the predicted semantics of the track
area.

Firstly, track areas are recognized via semantic seg-
mentation and the train’s current path is identified with the
addition of switch position recognition. Let I be the W ×H
semantic prediction matrix, C be a proper constant, and T be
a threshold defined experimentally. Ii, j represents the label
of the pixel in the i-th row and the j-th column starting from
the upper left corner, whose value is one if and only if the
label is track area; otherwise it is 0. Along the y-axis, if there
are more pixels predicted as track area in the upper zoom
than in the lower zoom, that is if ∃j0 s.t.
PW

i¼0
Ii, j0 �

PW

i¼0
Ii, j0þC > T , then there is a splitting track.

Figure 1. Semantics segmentation flow chart.
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Secondly, the switch’s position is recognized to deter-
mine which branched track a train will follow. The switch’s
position and train’s path can be determined visually;
therefore, we were able to detect switches and recognize
their positions via YOLO. An example of the train’s path
and switch detection is shown in Figure 3.

Thirdly, to algorithmically determine the structure gauge
area in our computer vision model, we extend the train’s
own path along the Y-axis given location-specific param-
eters — the structure distance dI in image and the slope of
the train’s own rails in images kI — we can extend the

train’s own path range from [lefty, righty] to
[lefty � ðdI þ kI ∙yÞ, righty þ ðdI þ kI ∙yÞ], where y is the
current index along the Y-axis.

Fourthly, a contour describing the track area is used to
identify non-predefined obstacles. Pixels of the obstacles are
less likely to be recognized as the track area. This will cause
sudden breaks and sharp changes in the detected tracks and
rails. If the reduction of pixels of the train’s own path exceeds
a certain threshold, then an obstacle is detected.

Below, Figure 4 shows the pseudo code describing the
non-predefined obstacle detection.

Figure 2. Trespasser detection framework.

Figure 3. Segmented track, restricted area, and train path with switch identification

Qin et al. 5



Figure 4. Non-predefined obstacle detection pseudo code

Figure 5. Obstacle detection framework
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Results and discussion

YOLO and the customized DeepLab were trained separately
before being combined. A few processed images are attached
(Figure 7, Figure 8) to demonstrate highlighted features of the
system. All experiments are executed on a Windows 10
operating system with a Nvidia GeForce GTX 1080 graphics
card and an Ubuntu 16.04 operating system on a Jetson TX2
(an edge computing device).

Model training data

The four models mentioned in the above section were re-
trained separately using different datasets because of their
varying objectives. First, the object detection training
dataset consists of 2782 images from Chicago Transit
Authority (CTA) forward-facing footage available on
YouTube and 8500 images from RailSem19. Objects of
interest were defined as pedestrian, vehicle, track sign,
signal light, and railway switch.

Secondly, the RailSem19 dataset was also used to train
the semantics segmentation model with pixel-wise semantic
annotation and revised classes of semantics. The Rail-
Sem19 semantic masks were downsampled to train the
super-resolution module while taking original masks as
ground truths.

Results

With the obtained data, we retrained the YOLOv5 model
and the customized DeepLab model to gather optimized
weights. The logs of training processes, performances, and
experiment results to tradeoff between latency and accuracy
are presented. Some processed results were visualized for
demonstration and discussion in Figure 7 andFigure 8.

Object detection model training results. The object detection
model was trained through transfer learning. This was

accomplished by initiating the model with a pretrained
weight, freezing initial weights of the backbone, and
only adjusting the rest of the weights to minimize the
loss. This transfer learning approach was used for two
reasons. First, although thousands of images were col-
lected from the subject dataset, this is insufficient to train
an accurate YOLO model from scratch. Hundreds of
thousands of images are commonly used in training
datasets to achieve sufficient accuracy. Second, training
a model from scratch takes time and is computationally
expensive. The transfer-learning approach requires
fewer resources than normal training and accelerates
training. The downside to this approach is that it may be
less accurate than a model trained with sufficient data
without freezing any layers.

The object detection retraining ran for 230 epochs until
the loss of the training set converged. The training was
completed for YOLOv5 after 230 epochs and reached 98%
of mAP@0.5.

Semantic model training results. The DeepLab semantic
segmentation model was trained on the Railsem19 dataset.
This was completed without freezing the backbone due to
fewer parameters as compared to YOLOv5 and the diversity
of the Railsem19 dataset. The model was optimized with
pre-trained weights and the super-resolution model was
trained from scratch.

Different combinations of input sizes and backbone
models were tested to achieve a balance between perfor-
mance and accuracy. MobileNetv3, proposed by Howard
et al.,22 is the backbone model with the best tradeoff be-
tween the inferencing FPS and accuracy under a fixed input
size based on cross validation. Meanwhile, Figure 6 shows
how the input size influences the inferencing FPS and
accuracy given MobileNetv3 as the backbone model. The
results indicate that the input size of 400 pixels x 400 pixels
is the resolution which best balances the inferencing FPS
and accuracy, given the backbone model.

Figure 6. Trade-off between performance and accuracy as a function of the input resolution

Qin et al. 7



Figure 8. Demonstrations in edge cases: (a) rainy daytime (original) ref, (b) rainy daytime (processed), (c) snowy nighttime (original) ref,
(d) snowy nighttime (processed), (e) tunnel (original) ref, (f) tunnel (processed), (g) night-vision (original) ref, (h) night-vision (processed).
Solid lines bound the trains’ own paths and dotted lines bound the restricted areas.

Figure 7. Demonstration for the main use cases: (a) detecting trespassing in the train’s own path, (b) detecting trespasser in the structure
gauge area, (c) detecting legal occupiers, (d) a track termination was detected as obstacle. Solid lines bound the trains’ own paths, dash lines
bound the track areas, and dotted lines bound the restricted areas.
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Trespassing and obstacle detection system. A software tool
was developed in this research to wrap the previously
described models and detect trespassers and obstacles. To
evaluate the system’s performance, all images of the
RailSem19 dataset were processed by this system. In these
images, the track area is identified and segmented into
different colors, and hyperparameters are tuned to ensure
maximum performance. Few instances of trespassers were
present in the image datasets. However, there were many
instances of track workers, and the detection of these people
was used as a benchmark for the system’s performance.
Table 2 is a summary of trespassing/obstacle detection ac-
curacy in the RailSem19 dataset. (Table 3 in the appendix
shows the annotations.) For videos recorded in the same
setup, we evaluate the range of detection by taking the
average of distances between the camera and the objects once
they were detected. The distances are measured over Google
Maps by referring to landmarks. The results show that the
anticipated ranges of detecting objects are approximately
30 m for CTA videos and 40m for Illinois Central videos.
Some obstacles and trespassers were missed because they
were too small in the footage, highly overlapped with other
objects, or were unclear because of insufficient illumination.
The recall in some videos is disproportionately low due to the
small total sample size.

In addition to customizing the model, we also built
YOLOv5 with TensorRT, which optimizes AI models for
running on Nvidia GPUs, and built Deeplab with Torch-
Script, which can serialize AI models implemented with the
PyTorch framework model to accelerate inferencing speed.
After optimizing, the overall system reaches 54 FPS in a
windows 10 operating system with a Nvidia GTX 1080
graphics card and 14.5 FPS in Jetson TX2 (a computa-
tionally lean edge-computing device).

Figure 7(a) and (b) show examples of pedestrians who are
identified in the track and in the foundling area, where they are
marked as trespassers. Figure 7(c) shows an example of a case
when trackworkerswere in the restricted area instead of the track
area. Trespassers in the restricted area could be detected in the
same way. Figure 7(d) shows the termination of a railroad track
with the system identifying the discontinuation as an obstacle.
Such detections can be sent as an alert to locomotive engineers.
This further demonstrates the system’s ability to detect obstacles
when there are no predetermined objects present in the video
frame. Original images are from the RailSem19 dataset.

Discussion The performance of our proposed system
is satisfactory based on a literature review

Compared to related studies in the prior literature using the same
metric, the mAP@0.5 of our object detector is 98% is higher
than others,17,18 which is reasonably good. The performance of
our semantic model is in compared to that was reported in,12 is
lower than,19 but hasmuch higher inferencing speed than both of
them. In addition, we tested the system on public videos and
released the annotations when trespassing events or obstacles
occurred in those videos, which could be of use to other re-
searchers in the future.

Edge cases

Results shown in the above subsections were mainly from
sunny daytime footage. We conducted tests under various
railway operating conditions, including inclement weather,
night/low lighting conditions, and operations inside tunnels
to determine the robustness of the system.

When it is rainy, as shown in Figure 8(a), the rail area (the
boundary of the track area) in the image can be distorted by rain
droplets on the windshield. Heavy snow can obscure the track
area, leaving only the rails visible, as shown in Figure 8(c).
Although these conditions cause inaccurate detection of the
restricted area, the system achieves more than 90%MIoU in the
track area detection with only slightly inaccurate expansions or
contractions, as shown in Figure 8(b) and (d). In practice,
obfuscations due to weather conditions are cleared by wind-
shield wipers and would not persist or cause false positives.

When the train is operating in an environment without
sufficient illumination, headlights or night-vision cameras are
required by the system to detect obstacles and trespassers.
Figure 8(g) is an image gathered by an infrared camera
wherein the bottom-right part of the rail is not visible. The
system can still precisely detect the visible rail and makes an
approximation of the non-visible part, as shown in Figure 8(h),
(d) and (f) show the track area detection in low light scenarios.

During inclement weather or low lighting conditions,
obstacle detection in the track area is robust if the rails are
still visible. On the contrary, it is more challenging to detect
restricted areas. The reason for this discrepancy is that the
track area is always bounded by clearly identifiable rails,
while the boundaries of restricted areas vary widely.
Therefore, trespassing detection within the restricted area is

Table 2. Video and image data for system validation.

Dataset Metadata

Trespasser Obstacle Legal occupiers

Actual AI Recall Actual AI Recall Actual AI Recall

Railsem1910 8417 images 1920 × 1080 34 32 94% 141 131 93% — — —

The Illinois Central Mainline 2h15min 1920 × 1080 30fps 16 15 93% 2 1 50% 3 3 100%
CTA Brown Line 1h20min 1280 × 720 30fps — — — 2 2 100% 50 46 92%
CTA Purple Line 1h55min 1280 × 720 30fps — — — 7 6 86% 4 4 100%
CTA Orange Line 1h5min 1280 × 720 30fps — — — 1 1 100% 6 6 100%
CTA Blue Line 1h30min 1280 × 720 30fps — — — 1 1 100% 1 1 100%
CTA Pink Line 1h16min 1280 × 720 30fps — — — 2 1 50% 1 1 100%
CTA Green Line 1h7min 1280 × 720 30fps — — — 1 1 100% 2 2 100%
Total 10h28min of videos and 8417 images 50 47 94% 157 144 92% 67 63 94%

Qin et al. 9
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only available under well-lit conditions. To improve the
accuracy in segmenting complicated semantics, expanding
the training set is needed.

Conclusions

This research presents a system to detect trespassers and ob-
stacles in forward-facing railroad video in real time using DL-
based computer vision techniques. These techniques include the
object detectionmodel YOLOv5 and the semantic segmentation
model DeepLab. Compared to prior research, we detect tres-
passing in the restricted area and propose a novel universal
obstacle detection algorithm in the track area. We also cus-
tomized a lightweight semantic segmentation model by con-
ducting a parameters grid search and optimized the semantic
segmentation model through input resolution reduction/
restoration before/after the semantic segmentation inference.
With the above improvements, the system detects trespassers
and obstacles with more than 92% accuracy and 54 FPS in a PC
with Nvidia GTX 1080 and 14.5 FPS in Jetson TX2. Fur-
thermore, obstacle detection in the track area is robust
during bad weather, at nighttime, or inside tunnels with
fair illumination due to the clearly identifiable boundaries
of the track area.

In the future, we hope to deploy the system to combine
recognition with operator warnings. The main reasons for
detection failures are that the objects are too small or far
away, and/or that the restricted area is inaccurately detected
due to illumination. Expanding the annotation of images
with small objects, under bad weather, and in night-vision
images would further improve accuracy, especially for
detecting the restricted area. In addition, the lack of data of
actual trespassers and obstacles prevents comprehensive
testing of the system. This could be mitigated by conducting
a large-scale railway visual data collection and by simu-
lating and recording trespassers in the field or AI generative
models such as Generative Adversarial Networks.
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Appendix

Table 3. Ground-truths of testing video (open-source).

Url Start time (hh:mm:ss) duration(s) Label

CTA Green Line 07:05 5 Legal occupier
CTA Green Line 01:07:25 9 Obstacle
CTA Pink Line 01:16:05 4 Legal occupier
CTA Pink Line 46:15:00 6 Obstacle
CTA Blue Line 05:20 5 Legal occupier
CTA Blue Line 01:26:00 20 Obstacle
CTA Orange Line 24:21 3 Legal occupier
CTA Orange Line 29.58 12 Obstacle
CTA Orange Line 30.37 23 Obstacle
CTA Orange Line 34:42 10 Legal occupier
CTA Orange Line 51:03 2 Legal occupier
CTA Orange Line 54:14 5 Legal occupier
CTA Purple Line 15:20 8 Legal occupier
CTA Purple Line 15:44 4 Legal occupier
CTA Purple Line 28:24 12 Obstacle
CTA Purple Line 48:08 14 Obstacle
CTA Purple Line 50:20 30 Obstacle
CTA Purple Line 57:56 14 Obstacle
CTA Purple Line 01:04:47 37 Obstacle
CTA Purple Line 01:06:30 20 Obstacle
CTA Purple Line 01:55:30 15 Obstacle
CTA Brown Line 11:09 2 Legal occupier
CTA Brown Line 12:00 9 Legal occupier
CTA Brown Line 12:26 7 Legal occupier
CTA Brown Line 13:00 7 Legal occupier
CTA Brown Line 13:30 4 Legal occupier
CTA Brown Line 16:22 5 Legal occupier
CTA Brown Line 16:40 9 Legal occupier
CTA Brown Line 16:55 4 Legal occupier
CTA Brown Line 17:52 8 Legal occupier
CTA Brown Line 18:08 5 Legal occupier
CTA Brown Line 23:45 5 Legal occupier
CTA Brown Line 25:55 20 Legal occupier
CTA Brown Line 31:06 4 Legal occupier
CTA Brown Line 31:22 2 Legal occupier
CTA Brown Line 46:09 5 Obstacle
CTA Brown Line 52:03 3 Legal occupier
CTA Brown Line 56:18 5 Legal occupier
CTA Brown Line 56:42 5 Legal occupier
CTA Brown Line 58:56 2 Legal occupier
CTA Brown Line 01:04:41 4 Legal occupier
CTA Brown Line 01:06:17 7 Legal occupier
CTA Brown Line 01:06:30 4 Legal occupier
CTA Brown Line 01:08:28 22 Legal occupier
CTA Brown Line 01:08:52 5 Legal occupier
CTA Brown Line 01:16:15 4 Legal occupier
CTA Brown Line 01:20:09 21 Obstacle
The Illinois Central Mainline 01:03 5 Trespasser
The Illinois Central Mainline 01:57 3 Legal occupier
The Illinois Central Mainline 17:47 3 Trespasser
The Illinois Central Mainline 18:05 3 Trespasser
The Illinois Central Mainline 32:47 4 Trespasser
The Illinois Central Mainline 33:45 4 Trespasser
The Illinois Central Mainline 46:58 9 Obstacle
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Table 3. (continued)

Url Start time (hh:mm:ss) duration(s) Label

The Illinois Central Mainline 57:22 3 Trespasser
The Illinois Central Mainline 01:03:47 3 Trespasser
The Illinois Central Mainline 01:04:21 3 Trespasser
The Illinois Central Mainline 01:10:00 2 Trespasser
The Illinois Central Mainline 01:12:40 3 Trespasser
The Illinois Central Mainline 01:12:47 3 Trespasser
The Illinois Central Mainline 01:13:14 5 Trespasser
The Illinois Central Mainline 01:15:51 4 Legal occupier
The Illinois Central Mainline 01:30:05 4 Trespasser
The Illinois Central Mainline 01:43:36 7 Trespasser
The Illinois Central Mainline 01:47:59 4 Trespasser
The Illinois Central Mainline 01:59:38 5 Obstacle
The Illinois Central Mainline 02:12:47 5 Trespasser
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