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ABSTRACT 
 

Broken rail is the most common cause for the mainline 

freight-train derailment in the United States. Rail defect 

detection and removal is critical for the risk reduction due 

to broken-rail-caused derailments. The current practice is 

to periodically inspect rails using non-destructive 

technologies, particularly ultrasonic inspection. 

Determining and prioritizing the frequency of rail defect 

inspection is an important decision in broken rail risk 

management. A generalized, risk-based mixed integer 

nonlinear programming (MINLP) model is developed 

which can optimize segment-specific rail defect inspection 

frequency to minimize route broken rail risk, especially 

under limited inspection resources.  A numerical example 

to optimize the inspection frequency is used to illustrate the 

application of the model. The result analysis states that the 

optimization approach can lead to a risk reduction of 

broken rail compared to an empirical heuristic that all 

segments on the same route are tested at an equal 

frequency. The optimization algorithm is being 

implemented into a computer-aided decision support tool 

called “Rail Risk Optimizer” that can automatically 

recommend an optimal segment-specific ultrasonic rail 

defect inspection frequency given risk factors such as rail 

age and traffic density. The research methodology and the 

practice-ready optimization tool can aid the railroad 

industry to mitigate broken rail risk in a cost-efficient 

manner.  

 

INTRODUCTION 

  Railway transportation plays an important role in the 

U.S. economy. While society derives substantial benefits 

from rail transportation, there are accompanying risks 

hidden behind that must be managed and reduced. Train 

accidents cause damage to infrastructure and rolling stock, 

disrupt services, and may cause casualties and harm the 

environment [1-3]. Although the U.S. freight-train accident rate 

has declined by over 80 percent since 1980 [2], accidents still 

present a major safety concern. For instance, all types of train 

accidents resulted in about 360 million dollars’ worth of 

reported damage costs and 853 casualties in 2015 [4]. 

    Derailment is the most frequent freight-train accident on 

mainlines in the U.S., accounting for approximately 72% of all 

types of accidents [1]. In light of continual growth in 

nationwide rail traffic, a further reduction in derailment risk is a 

high priority for both the railroad industry and the Federal 

Railroad Administration (FRA) [5]. There are different accident 

causes that can result in train derailment. The FRA categorizes 

over 400 accident causes into five major groups: track, 

equipment, human factors, signal, and miscellaneous. Each of 

these broad groupings contains respective subgroups with 

dozens of detailed causes. It is important to note that each 

accident cause has corresponding accident frequency [6]. 

Among all freight-train derailment causes, broken rails or welds 

are the most frequent (Figure 1a), making broken rail 

prevention and risk management a high-profile activity in the 

U.S. rail industry.  Transverse/compound fissures, detail 

fractures and vertical split head are the three main types of rail 

breaks among all types of rail defects classified by the FRA 

(Figure 1b). These three defects are caused by the fatigue 

growth of internal rail defects due to cyclic loading by passage 

of trains [7]. There are various approaches to preventing broken 

rails, including rail grinding [8], lubrication [9], rail 

replacement [10], and nondestructive rail defect inspection [11-

13]. This paper focuses on ultrasonic rail defect inspection, a 

primary rail defect detection technology used by American 

railroads since 1930s [14]. Ultrasonic rail defect inspection can 

provide a non-destructive detection of internal rail defects. The 
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detection information can be used for maintenance and 

operational actions to prevent a potential derailment. 

 
Figure 1(a). Frequency of accident cause, Class I 

mainline freight train derailments, all types of tracks, 

2001 to 2014 
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Figure 1(b). Distribution of Class I railroad mainline 

freight train derailments by broken-rail-related accident 

causes, 2001 to 2014 

realizing the knowledge about the relationship between 

the occurrence of broken rails and the inspection frequency 

can aid the rail industry to allocate and prioritize the 

inspection resources in a cost-efficient manner. Existing 

research has found that different track segments with 

different characteristics can have different broken rail risks. 

Increasing inspection frequencies on certain high-risk 

segments can significantly reduce the total risk [15-17]. 

This finding indicates that the prioritization of rail defect 

inspection may minimize the total risk given equal or even 

fewer mileages inspected. The empirical heuristic is to 

inspect all the segments of the same route with an equal 

annual frequency. An alternative strategy might be to 

inspect more frequently the segments that have higher risks. 

As we will discuss in later sections, this alternative 

approach requires more sophisticated risk modeling and 

optimization techniques.  

The objective of this paper is to develop a generalized 

methodological framework that can optimize segment-

specific rail defect inspection frequency given total miles 

of track to inspect. This model uses input information such 

as traffic density and rail age to estimate segment-specific 

broken rail risk, and use the risk information to optimize 

the frequency of ultrasonic rail testing. This paper is 

structured as follows. First, we review the relevant 

literature, identify knowledge gaps and elaborate on the 

scope of this research. Second, we present a generalized risk-

based optimization methodology to determine the optimal rail 

defect inspection scheduling by segment characteristics. Third, 

we illustrate the application of the model using scenario-based 

numerical analyses and draw new managerial insights on broken 

rail risk management. Finally, we summarize principal research 

findings and suggest possible future research directions. 

 

LITERATURE REVIEW AND OBJECTIVES OF THIS 

STUDY  

 

Literature Review 
This section reviews relevant studies in the areas of the 

occurrence of broken rails, broken rail prediction, and 

inspection frequency scheduling. 

1)  Occurrence of broken rails. Several types of defects 

might occur to the rail, such as longitudinal defects, transverse 

defects, base defects, and others [18]. Transverse defects related 

to metal fatigue are one of the most common severe defects 

leading to rail service failures and train derailments [15, 19]. 

Studies have found that rail design, rolling stock characteristics, 

inspection, and maintenance schedules all affect broken rail 

risk. The mechanism of rail crack formation and growth through 

theoretical modeling and laboratory testing has been extensively 

studied in the literature [11, 20-23]. Orringer et al. proposed a 

fracture mechanics model to estimate the defect growth in rail 

and predict the accumulative tonnage to grow a defect from a 

detectable size to a critical size [11]. Orringer et al. described a 

guide to calculate the inspection frequencies based on the 

observed defects or broken rail number between rail tests with 

the assumption of the detection probability model [12]. 

2) Broken rail prediction. In addition to the engineering 

analysis, the prior effort also predicted broken rail occurrence 

using statistical approaches. For example, Shry and Ben-Akiva 

[24] developed both a survival function and a hazard function to 

predict the rail condition. Dick [25] evaluated the factors 

affecting broken rail service failures and derailments using a 

multivariate analysis of predictor variables. Dick et al. [26] 

developed a broken rail prediction model to estimate broken rail 

risk given rail age, rail weight, degree of curvature, speed, and 

several other factors. Sourget and Riollet [27] developed two 

models for prediction of broken rails: logistic regression and 

decision trees. A general model to estimate the total number of 

broken rail between two successive rail defect inspections is 

developed by the Volpe National Transportation Systems Center 

[8, 15]. This model combines the defect formation, growth, 

detection process which are proposed by Orringer et al. [11,12]. 

Using the outputs of the Volpe model, Liu et al. [15] developed 

an exponential model to correlate broken rail rate with 

inspection frequency, and found that the higher the inspection 

frequency, the lower the broken rail risk, given all else being 

equal. In the United Kingdom, Zhao et al. [16, 17] also found 

that an exponential function can approximately describe the 

relationship between annual number of broken rails per track-

mile and inspection frequency.  
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3) Inspection frequency scheduling. Liu et al. [28] 

developed an optimal condition-based rail inspection 

frequency that incorporates the effect of the seasonal 

variation. Liu et al. [15] proposed an analytical model to 

optimize the inspection interval based on the risk category 

(low risk, medium risk, and high risk). Orringer et al. [29] 

studied a delayed action concept for prioritizing immediate 

repair of critical defects (those with a large surface area), 

while delaying repair of non-critical defects for a defined 

grace period. 

Knowledge Gaps  
While the knowledge of broken rail risk management 

continues to grow, there are several areas for further 

research. On the subject of rail defect inspection, the prior 

research either assumed that all segments are inspected at 

an equal frequency (empirical heuristic) [12, 30] or the 

segments whose broken rail risks are within the same risk 

category are inspected at an equal frequency (group-based 

inspection strategy) [7, 31]. To our knowledge, there is no 

published study that explicitly models segment-specific 

inspection frequency. This presents the most general and 

complex inspection scenario. For example, consider a 10-

segment route. Each segment might be inspected at a 

minimum of twice per year to a maximum of seven times 

per year (6 possible frequencies on each segment, ranging 

from two to seven). Using combinatorial mathematics, we 

can develop a total of 610 (60 million scenarios) across all 

10 segments. All the existing and emerging inspection 

schedules are within these scenarios. Given a large number 

of possible inspection schedules, which one would lead to 

the lowest number of broken rails under resource 

constraints? For instance, instead of inspecting all segments 

at four times per year, can we prioritize more inspections 

on certain segments that can minimize the route risk, 

without requiring additional miles of inspection? This 

research is developed to address these questions. 

 

Research Objectives and Scope 
To ensure a deep understanding of rail inspection 

issues within the content limit, this research focuses its 

effort on fatigue-related rail defects, including detail 

fractures, transverse defects, and vertical split head defects. 

Other types of rail defects or track geometry defects are 

beyond the scope of this paper, but shall be addressed in a 

separate detailed study. Also, this paper focuses on 

defective rails for freight railroads, without considering 

passenger or transit rails.  This research aims to address 

the following objectives:  

    • Develop a generalized risk-based optimization 

methodology that can prioritize the allocation of inspection 

resources to different track segments with heterogeneous 

risks. 

    • Implement the methodology into a computer-aided 

decision support tool for automatically computing location-

specific broken rail risk and recommending optimal inspection 

schedules.  

    • Provide new insights regarding the effects of rail age on 

rail inspection scheduling. 

METHODOLOGY 
 

The risk-based rail defect inspection frequency 

optimization methodology comprises of two modules, 1) the 

estimation of broken rails by inspection frequency and 2) the 

prioritization of segment-specific inspection frequency given 

the total miles to inspect.  

 

Estimation of Number of Broken Rails by Inspection 

Frequency  
A number of factors can affect the rate of broken rails, such 

as temperature differential, rail age, traffic density, curvature, 

roadbed condition, axle load, vehicle dynamics, rail wear, and 

others [24-27]. The Volpe National Transportation Systems 

Center has developed an engineering model that incorporates 

rail defect formation, growth, and detection processes [15]. 

According to the Volpe model, a rail defect is assumed to form 

at an increasing rate as the rail ages due to the accumulation of 

tonnage. The model for the rate of defect formation is derived 

based on a Weibull distribution. The Weibull distribution model 

was calibrated based on observations of defect occurrence at the 

Facility for Accelerated Service Testing (FAST) at the 

Transportation Test Center in Pueblo, Colorado and on several 

segments of revenue track studied by the Association of 

American Railroads. After a defect was formed, its size 

progression was calibrated from the original detail fracture 

growth test conducted at FAST and has been further verified 

and validated by tests conducted through a joint international 

research effort supported by the Union of International 

Railways/World Executive Council [32, 33]. Temperature 

differential, axle load, track modulus, rail wear, and other 

factors were found to affect defect size growth. The probability 

of detecting a rail defect depends on the equipment used and the 

size of the defect. Although larger defects are more likely to be 

detected, they still can be missed during the inspection process 

[34]. The Volpe model focuses on rail fatigue defects, such as 

detail fractures, transverse/compound fissures, and vertical split 

head defects. Note that the Volpe model was developed in the 

1990s based on the rail infrastructure conditions that 

correspond with that time period. We are unaware of recent 

updates to this model. This may introduce some level of 

uncertainty when applying this model to predict rail defects 

under today’s infrastructure conditions. A more detailed 

description of the Volpe model has been provided in Orringer 

[12], and thus not duplicated herein. 

The Volpe model is presented as follows. 
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Where: 

y(i-1,i) = number of broken rails per track-mile between the 

(i-1)th and ith inspection 

R   = 39-foot rail segments per track-mile, 273 

Xi   = interval (million gross tons (MGT)) between the (i-

1)th and ith inspection 

α    = Weibull shape factor, 3.1 [35] 

β    = Weibull scale factor, 2150 [35] 

λ    = slope of the number of rail breaks per detected rail 

defect (S/D) versus inspection interval curve, 0.014 [12] 

µ   = minimum rail inspection frequency, 10 MGT [12] 

Ni  = rail age (cumulative tonnage on the rail) at the ith 

inspection, Ni = Ni-1 + Xi 

 

    The parameters in Equation (1) are based on 

published statistics in the literature. As stated earlier, 

broken rail occurrence is subject to many engineering 

factors. In the absence of detailed information for all these 

factors, this paper uses the two focused factors, rail age and 

traffic density, in the Volpe model. The methodology can be 

adapted to other factors or an updated version of the Volpe 

model in future research. Figure 2 calculates annual 

number of broken rails per track-mile given different rail 

ages (when traffic density is 80 MGT per year) using the 

Volpe model. We assume that the inspection intervals 

between each two successive inspections are identical. 

Each data point represents the estimated number of broken 

rails given the number of ultrasonic rail defect inspections 

per year using the Volpe model. Through a nonlinear 

regression, the number of broken rails per track-mile can be 

estimated by an exponential function of annual inspection 

frequencies. For example, at 1000 MGT rail age and 80 

MGT annual traffic density, the relationship between the 

annual number of broken rails and inspection frequency is 

fitted as an exponential function y=5.7579exp(-0.525x), 

where y is the annual number of broken rails per track-

mile, and x is the annual inspection frequency. The 

coefficient of determination R2 is more than 0.98, 

indicating a reasonable goodness of fit. 

 
Figure 2. Relationship between number of broken rails 

and annual rail defect inspection frequency (assuming 

that annual traffic density is 80 MGT) 

 

Similarly, an exponential regression model is found to 

adequately fit the data given other rail ages and traffic densities. 

A general exponential model is presented as follows:  

exp( )y a bx                           (2) 

where: 

y  = the total number of broken rail per track-mile;  

x  = annual rail inspection frequency on the track segment;  

a and b are the model parameters which are dependent on 

the rail age and annual traffic density, and other factors. These 

model parameters can be obtained through linear regression 

method.  

For example, If rail age is 1000 MGT and annual traffic 

density is 80 MGT (a = 0.7579; b = -0.525) on a segment which 

is inspected four times annually (x=4), the approximate number 

of broken rails per track-mile is 0.7579×exp (-0.525×4) =0.093. 

If this segment is 10-miles long, the annual broken rail 

frequency on this segment would be 0.093×10 = 0.93.  

 

Rail Inspection Frequency Optimization    
Suppose that there are n track segments on the whole rail 

track with different rail ages and annual traffic densities.  

Define {1,2, , }N n as the set of track segments. The 

available inspection resource is B. In this paper, the inspection 

resource is specified in terms of the total miles inspected. Each 

track segment can have its own inspection frequency (denoted 

as xi). The theoretical premise is that inspecting high-risk track 

segments more frequently may lead to a minimization of total 

route risk, with the equal or even fewer miles inspected. This 

premise was shown to be valid in Liu and Dick [31] who 

classify segment-specific hazardous materials transportation 

risks into three categories (low, medium and high), and required 

all segments within each category to have the same inspection 

frequency. This paper significantly advances the study by Liu 

and Dick [31] by relaxing the requirement for group-specific 

inspection scheduling to segment-specific inspection 

scheduling. In essence, the work developed in Liu and Dick 

[31] is viewed as a special and simplified case of the 

generalized methodology developed here.  

    Because there are numerous possible inspection schedules 

to choose from, the enumeration approach is extremely time-

consuming and cumbersome in identifying the optimal solution. 

Therefore, this research uses a mathematical optimization 

technique, which is devised to achieve a predetermined 

objective under constraints. In the context of rail inspection 

frequency, a generalized model is presented below:  

MINIMIZE 

i i

i N

y l


                                 (3)                                                         

where i ib x

i iy a e   

Subject to 

i i

i N

x l B


                               (4)                                                 
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where  

yi  = total number of broken rails per year  

xi   = annual rail inspection frequency, non-negative 

integer; 

li    = the mileage of segment i;  

B  = the available inspection resource; 

other parameters are previously defined. 

The objective function is to minimize the total number 

of broken rails on the whole route given the total miles 

inspected.  The constraint (Equation 4) imposes the 

inspection resource availability restriction. The model 

parameters ai and bi can be determined based on the rail 

age and annual traffic density of each segment. Given the 

total miles inspected per year, the optimization model can 

be used to determine the minimum number of broken rails 

with an optimal allocation scheduling of inspection 

frequencies to each segment.  

    The optimization model represents a mixed integer 

nonlinear programming problem (MINLP). As one of the 

most challenging optimization models, the computational 

complexity of this problem increases dramatically when the 

number of track segments increases. For example, consider 

a route comprising of 100 segments. Each segment can be 

inspected at a frequency ranging from 2 to 7 inspections 

per year. Therefore, there are a total of 6100 (about 3700 

trillion) possible scenarios of rail inspection schedules for 

this route. Therefore, the enumeration method or most of 

the off-the-shelf software cannot solve such a complex 

model. In an extensive review of the operations research 

literature, the authors find that an advanced algorithm 

called the Outer Approximation (OA) [36-40] can be used 

to solve this type of complex optimization problem. The 

mathematical details of the OA algorithm can be found in 

[37]. 

 

Computer-Aided Decision Support Tool  
A computer-aided decision support tool is being 

developed at Rutgers University to implement the complex 

model formulation and solution algorithms into a practice-

ready tool that can automatically generate various rail 

defect inspection schedules, estimate their corresponding 

broken rail risks, and identify optimal scheduling, given 

any level of resource availability. The decision support tool 

contains four major modules as illustrated in Figure 3.  

Input Module: The user provides track-segment 

information such as rail age and annual traffic density. 

Also, the user specifies the maximum resources available 

(i.e. total miles inspected) and other constraints.  

Calibration Module: Based on segment-specific 

information, the calculation module firstly estimate the 

total number of broken rails per track-mile given the annual 

inspection frequency on each segment, using the Volpe 

model presented in subsection “Estimation of Number of 

Broken Rails by Inspection Frequency”. Based on the 

Volpe model output, a nonlinear regression model will be 

developed to approximate the number of broken rails by annual 

inspection frequency.  

Optimization Module: After an exponential regression 

function is calibrated to describe the relationship between the 

total number of broken rail per track-mile and the annual 

inspection frequency, a nonlinear integer programming model is 

developed to determine segment-specific inspection frequency. 

The objective is to minimize the total number of broken rails.  

    Output Module: The outputs include the minimum route 

risk that can be achieved by using the optimal inspection 

scheduling, and the corresponding segment-specific inspection 

frequency are recommended.     
Input Calibration Optimization Output

 
Figure 3. Schematic of segment-specific inspection 

frequency optimization model 

 

NUMERICAL EXAMPLE 
To illustrate the model application, several hypothetical 

scenarios are performed for a track with a total length 100 miles 

and 10 track segments. Each track segment has segment-

specific length and rail age. Through the scenario analysis, this 

study analyzes the impact of different track characteristics on 

rail inspection frequency optimization. 

 

Optimal Inspection Frequency under Resource 

Constraint  

Suppose that the whole track has the uniform annual traffic 

density of 80 MGT. Table 1 presents segment-specific rail ages 

and lengths.  
Table 1. Segment-specific information 

Segment A B C D E 

Rail Age 

(MGT) 
700 500 300 400 300 

Rail Length 

(Mile) 
11 12 16 6 8 

Segment F G H I J 

Rail Age 

(MGT) 
200 800 400 900 600 

Rail Length  

(Mile) 
15 5 13 4 10 

 

Each track segment can have an annual inspection 

frequency of 2, 3, 4, 5, 6, or 7. In total, there are 610 (600 

million) possible combinations of rail inspection frequency 

schedules on this route. The estimated numbers of broken rails 

caused by total mileage inspected for possible rail inspection 

schedules were quantified and plotted. With the same number of 

miles to be inspected for each inspection schedule, some 

inspection schedules resulted in lower broken-rail risk than 

others. The inspection schedules resulting in the lowest level of 
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the number of broken rail given a total mileage to inspect 

were denoted as “optimal” schedules. Other alternative 

inspection schedules were called “non-optimal” schedules. 

These “optimal” schedules constitute a Pareto frontier 

(Figure 4). The Pareto frontier demonstrates the optimal 

inspection scheduling given limited inspection resources. 

For example, given a total of 400 miles inspected, the 

optimal inspection frequency for each segment on this route 

is (6, 4, 3, 4, 3, 2, 6, 4, 7, 5), with the minimal broken rail 

as 14. One of alternative inspection schedules denoted by 

gray dots is (2, 2, 6, 3, 7, 7, 5, 2, 2, 2), with the total 

number of broken rails as 41. Therefore, the alternative 

inspection schedules might cause more broken rails given 

the same inspection resources than the optimal schedule. 

This means that the first segment should be inspected 6 

times per year, and the last segment should be inspected 2 

times per year. The minimum number of broken rails on 

this route is 14 per year. 

 
Figure 4. Pareto optimization of broken-rail risk in 

terms of total miles to inspect 

The analysis shows that given total miles inspected, 

there exists an optimal inspection frequency schedule that 

can lead to a minimum broken rail risk. On the Pareto-

frontier, the more miles to inspect, the lower broken rail 

risk under the optimal schedule. The Pareto-frontier 

demonstrates the necessity of the inspection scheduling 

optimization. The next subsection will illustrate the 

superiority of the optimization-based rail defect inspection 

frequency compared with the empirical approach. 

 

Comparison of Optimization-Based Rail Defect 

Inspection Frequency Versus the Empirical 

Approach   
    We assume that all the 10 segments on this route have 

80 MGT annual traffic density. See Table 1 for segment-

specific rail age and length information. For a given 

number of total miles inspected, the optimal inspection 

schedules could result in minimum expected broken rail 

risk. We consider four total miles for inspection 300, 400, 

500, 600, respectively. For example, “300” means that the 

railroad has resources to inspect a total of 300 miles per 

years on this route.  We compare two inspection frequency 

schedule approaches. The first approach is an empirical 

heuristic that all the segments are inspected at an equal 

frequency. This approach is treated as a baseline in the analysis 

and the predicted number of broken rails is called “base risk”. 

An alternative approach is to optimize segment-specific 

inspection frequency using the MINLP model described in this 

paper. Railroads often use a road–rail vehicle (aka. hi-rail 

vehicle) that can operate both on railway tracks and on 

conventional roadways to inspect rail defects. This type of 

inspection method allows for different inspection frequencies on 

different track segments. Skipping the inspection of certain 

lower-risk segments might enable more frequent inspections of 

higher-risk track segments, thus maximizing the magnitude of 

risk reduction. The minimum number of broken rails optimized 

by this model is regarded as “optimization risk”. Figure 5 

illustrates the inspection frequency scheduling for each track 

segment and the risk reduction of broken rail risk between the 

two approaches. 

A B C D E F G H I J

Mileposts of track-segments

Inspection frequency scheduling

Risk reduction

300 miles to 

be inspected

400 miles to 

be inspected

500 miles to 

be inspected

600 miles to 

be inspected

54 3 52 23 2 3 4

3

22.7%

66 4 73 24 3 4 5

4

26.3%

77 6 74 35 3 5 6

5

25.9%

77 7 75 46 6 6 7

6

20.5%

 
Figure 5. Schematic illustration of ultrasonic rail inspection 

frequency on each track-segment 

Remark: 

(Base risk Optimization risk)
 100%

Base risk
Risk reduction


     

There are risk reductions between the total numbers of broken 

rails obtained by the risk-based infrequency optimization model 

and the method in which all segments are inspected with the 

equal frequencies. For example, given 300 inspection mileages, 

if an empirical schedule calls for all track segments to be 

inspected three times per year; this schedule could be denoted 

as (3, 3, 3, 3, 3, 3, 3, 3, 3, 3). However, the optimal inspection 

schedule could be (4, 3, 2, 3, 2, 2, 5, 3, 5, 4). Compared with 

the empirical schedule (with an inspection of all track segments 

three times per year), the optimal inspection schedule would 

reduce the broken rail number by 22.7%. With 300 inspection 

miles per year, the annual inspection frequency for segment G 

and I increase to 5 from the average inspection frequency 3, 

while the annual inspection for segment C, E and F decreases to 

2. Other segments with larger rail ages than segment B also 

have an increase to some extent.   

    As for the empirical schedule, the inspected miles 

allocated on the segments with rail age 500 MGT or more 

account for 42 percent of the total amount of inspection 

resources. However, for the optimal schedule, the percentage 

has increased to 55 percent. This example indicates that more 

frequent inspection of higher-risk track segments (higher rail 

ages) would achieve the minimum broken rail risk. 
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RESEARCH CONTRIBUTION  

   • This research develops a new methodology to 

optimize the inspection frequency schedules for each 

segment while keeping in mind the problem of inspection 

resource allocation. The scenario simulation results show 

that effective scheduling of rail defect inspections could 

reduce the risk of broken rails in a cost-efficient manner.  

   • Using the methodology developed, a decision support 

tool entitled the “Rail-Risk Optimizer” is produced. This 

decision support tool can practically be used to prioritize 

resource allocation while improving the safety 

effectiveness of ultrasonic rail defect inspections at the 

same time. This would be done through determining more 

efficient inspection schedules in which higher-risk 

segments might be inspected more frequently than lower-

risk segments.  

   • Since optimal scheduling is practically feasible given 

that many railroads use bimodal road-rail inspection 

vehicles for the detection of broken rails, this practice-

ready optimization tool can lead to systematic 

improvements in track maintenance and inspection 

strategies. 

 

CONCLUSION  

    This research developed a risk-based segment-specific 

inspection frequency model to optimize the inspection 

schedules for each track segment given a certain amount of 

inspection resources available. The model was used on 

scenario simulations to demonstrate the safety effectiveness 

of optimizing rail inspection frequency schedules. The 

analysis showed that prioritizing more inspections on 

certain higher-risk segments will minimize the total route 

risk with minimal additional inspection resources. Also, rail 

age was found to be an important influencing factor. If the 

percentage differences of rail ages among track segments of 

the same route are small, inspecting all segments with equal 

frequencies will lead to a near-optimum inspection 

schedule. If this is not the case, there could be a reduction 

in broken rail risk if the optimization approach is used. The 

research here holistically provides a generalized 

methodology to quantify segment-specific broken rail risk 

in an effort to aid decision makers in arranging their most 

proper rail defect inspection frequency schedules. 

LIMITATIONS OF CURRENT RESEARCH & 

FUTURE RESEARCH 
 

This paper focused on how to determine the segment-

specific inspection frequency under a certain amount of 

inspection resources, thus minimizing broken rail risk. The 

current practice allows for adjacent segments to be inspected 

with different frequencies which might destroy the 

continuousness of the inspection. If the inspection vehicles (hi-

rail vehicles) get on and off the track too frequently, it will 

cause practical inconvenience. In future research, a “stretch 

constraint” should be added into the optimization model in 

order impose a restriction on the minimum mileage within 

which the inspection frequency is homogenous.  

This paper adopted the Volpe model developed in 1990, 

without update more than 25 years. It might bring about some 

uncertainty for predicting rail defects. In the future, an update 

for the Volpe model is needed based on more recent rail defect 

data. Additionally, future research can adapt this methodology 

to account for other types of rail defects. To understand the 

sensitivity of optimal inspection scheduling to a variety of track 

characteristics (segment length, traffic density and so on) better, 

more analyses involving varying scenarios will be developed. 
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