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Maximizing Lifetime of Railway Infrastructure
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Abstract—A wireless monitoring network is an effective5
way to monitor and transmit information about railway in-6
frastructure conditions. Its lifetime is significantly affected7
by the energy usage among all sensors. This paper pro-8
poses a novel cluster-based valid lifetime maximization pro-9
tocol (CVLMP) to extend the lifetime of the network. In the10
CVLMP, the cluster heads (CHs) are selected and rotated11
with the selection probability and energy information. Then,12
the clusters are determined around the CHs based on the13
multi-objective optimization model, which minimizes the14
total energy consumption and balances the consumption15
among all CHs. Finally, the multi-objective model is solved16
by an improved nondominated sorting genetic algorithm II.17
The simulation results show that, compared with two other18
strategies in the prior literature, our proposed CVLMP can19
effectively extend the valid lifetime of the network as well20
as increase the inspected data packets received at the sink21
node.22

Index Terms—Cluster, energy-efficiency, K-means++,23
lifetime, nondominated sorting genetic algorithm (NSGA) II,24
railway monitoring network.25

I. INTRODUCTION26

W ITH the rapid increase of operating speed and mileage,27

operational safety of railways has attracted wide at-28

tention from both academia and industry. A large portion of29

railway accidents is caused by infrastructure failures. Thus, rail30
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infrastructure inspections are an indispensable solution to ob- 31

taining related information regarding infrastructure conditions 32

(e.g., rail defects, track geometry failure) to ensure railway 33

safety [1], [2]. The track inspection vehicle has been a prevalent 34

technology for railway infrastructure inspection. However, track 35

inspection vehicles are usually used to periodically inspect rail- 36

way infrastructure and can hardly provide real-time information 37

regarding railway conditions [3] by detecting emergency condi- 38

tions. Moreover, frequent inspection requires intensive human 39

resources and high capital cost. As a supplementary approach 40

for periodic track inspection, industrial wireless sensor networks 41

(IWSNs) emerge as a preferable technology to inspect the opera- 42

tional condition of the railway infrastructure [4]–[6]. In addition, 43

in order to identify infrastructure defects quickly by means of 44

monitoring the system in real time, IWSNs appear to be an effi- 45

cient method for monitoring railway infrastructures, especially 46

for complex, extensive railway transportation systems, such as 47

the high-speed rail networks. 48

In IWSNs, a large quantity of sensors is installed on rail- 49

way infrastructures (e.g., rails, roadbeds, and bridges) to mon- 50

itor and transmit condition information [7]. The efficiency of 51

IWSNs greatly depends on the availability and reliability of 52

these sensor nodes. However, the processing ability, communi- 53

cation bandwidth, and energy storage of these sensor nodes are 54

often limited. Therefore, an effective communication protocol 55

is needed to utilize the limited sensing resources. Previous liter- 56

ature demonstrated that the cluster-based routing protocol is one 57

of the energy-saving strategies [8]–[20] that minimizes the total 58

energy consumption and/or balances the energy consumption 59

among all sensors. 60

To optimally utilize IWSNs, this paper proposes a novel 61

cluster-based valid lifetime maximization protocol (CVLMP), 62

which generates the optimal global clusters dynamically in each 63

transmission round. In the CVLMP, the K-means++ algorithm 64

is used to generate initial clusters based on the deployment 65

of the sensors, and then, the initialized clusters are optimized 66

dynamically in the following rounds. During the optimization 67

process, the cluster heads (CHs) are dynamically selected and 68

rotated from all sensors in the monitoring area to balance their 69

energy consumption. To achieve the target, each CH’s rotation 70

is performed based on the probability of CH candidacy, the ra- 71

tio of residual energy, and predicted energy consumption. Then, 72

the genetic algorithm (GA) is used to optimize clusters with 73

the objective of minimizing the total energy consumption and 74
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balancing the consumption of each sensor. Experimental simu-75

lations are designed to test the performance of the proposed76

CVLMP. The experimental results show that the CVLMP77

outperforms the typically used approaches, including the78

energy-balanced routing method based on forward-aware factor79

(FAF-EBRM) and multi-objective fuzzy clustering algorithm80

(MOFCA) [10], [11].81

The rest of the paper is organized as follows. Section II re-82

views the related literature and formulates the problem. The83

overall scheme of the energy-saving protocol is described in84

Section III. The novel CVLMP is presented in Section IV. Ex-85

perimental simulations are analyzed in detail in Section V, and86

Section VI presents the key conclusions.87

II. RELATED PRIOR WORK AND PROBLEM FORMULATION88

As previously mentioned, IWSNs have been widely applied89

in railway transportation systems, especially in infrastructure90

condition monitoring, to improve operational safety. IWSNs91

transmit real-time monitoring information for remote fault di-92

agnosis of critical parts of bridges, tunnels, trains, and rails [4],93

[5]. However, most existing studies focus on the technological94

applications of IWSNs in railway systems, whereas the reliabil-95

ity and availability of IWSN information transmission have not96

received adequate attention. To address this problem, Shafiullah97

optimized the energy consumption among the sensors installed98

in the rail cars [6], given a relatively small sensor network. The99

energy efficiency optimization in a large network with many100

sensors in railway monitoring systems has rarely been studied,101

while the number of sensors continues to increase, owing to102

their wide application in railway inspection.103

Some studies focus on improving the energy efficiency of104

IWSNs using optimization methods. For example, transmis-105

sion power adjustment technologies help to avoid the interfer-106

ence by controlling the signal coverage area and thus reduce107

the energy consumption [12]–[14]. Optimizing the deployment108

of the sensor nodes is useful to reduce the energy consump-109

tion as well [15], [17]. The consumption of limited energy is110

reduced by optimizing the transmitted data packets size [18].111

Besides, hierarchization (clustering) is an ideal solution to re-112

ducing and balancing the energy consumption. To this end, CH113

selection/rotation and cluster generation/optimization schemes114

are two major procedures to establish such a protocol.115

For the CH selection and rotation scheme, some existing116

methods prescribe that those nodes that have not been regarded117

as CHs in previous rounds might have a higher probability to118

be selected as CHs [8], [9]. Zhang proposed an FAF-EBRM119

algorithm for CH selection and rotation scheme using a mul-120

tihop strategy to balance the energy consumption [10]. In this121

strategy, the next-hop node is determined by the link weight122

and forward energy density. This method aims to minimize123

wasted energy caused by the backward transmission of in-124

formation. The position of the sensors is considered in the125

MOFCA [11]. Similarly, the residual energy and distances be-126

tween sensor nodes are considered in CH selection in predictive127

energy consumption efficiency, energy-balanced routing proto-128

col (EBRP), and hybrid, energy-efficient, distributed clustering129

approach [18]–[20]. Kuila applied the particle swarm optimiza- 130

tion heuristic algorithm to solve similar problems [21]. How- 131

ever, in these approaches, CH selection and rotation are achieved 132

within each local cluster, which is determined in the initial stage. 133

This may result in a local optimization rather than the global 134

optimization for CH selection and rotation. 135

For cluster generation, Heinzelman proposed two clustering 136

strategies, LEACH and LEACH-centralized [8], [9], which di- 137

vide all sensor nodes evenly into k-clusters. Cenedese proposed 138

a distributed clustering strategy to generate the clusters [22]. 139

Khan used the K-means method to classify the sensor nodes 140

according to their relative positions [23]. However, these meth- 141

ods did not consider the impact of cluster size on CH energy 142

consumption. Thus, some improved clustering methods are de- 143

veloped by determining the size of each cluster based on the 144

distances from the sensor nodes to the sink node [24], [25]. 145

However, in those studies, the cluster size remains constant 146

once the clusters are determined, and thus may result in unbal- 147

anced sensor node energy consumption in a dynamic operational 148

environment. 149

To solve the above-mentioned problems, an optimal cluster- 150

based protocol is proposed in this paper for the RIWMS. The 151

lifetime of the system is maximized by minimizing the total 152

energy consumption and balancing the consumption among all 153

sensors simultaneously. The intended contributions of this study 154

can be summarized as follows. 155

1) The impact factors are comprehensively considered in 156

the modeling of CHs selection and rotation, including the 157

predicted energy consumption of the tentative CHs, the 158

candidacy probability, together with the residual energy 159

of sensors. This addresses the limited consideration of 160

energy consumption after CHs selection in existing stud- 161

ies, which can effectively reduce the selected probability 162

as CHs for incompetent sensors. 163

2) The cluster scales and the CH-to-members correspon- 164

dence are dynamically optimized at the beginning of each 165

transmission round, simultaneously considering both the 166

energy consumption minimization and balance, which 167

expands the single focus in previous studies. 168

3) A hybrid algorithm by blending K-means++ with a 169

nondominated sorting genetic algorithm II (NSGA-II) 170

is developed to achieve the multi-objective optimization 171

model. Using K-means++ can improve the population 172

initialization of NSGA-II so as to accelerate the optimiza- 173

tion progress and enhance the quality of the solutions. 174

4) The proposed CVLMP model enhances the utilization 175

efficiency of the limited energy, which satisfies the real- 176

time and consecutive inspection requirements of the rail- 177

way wireless monitoring system. This will promote its 178

application in the railway monitoring system and increase 179

the safety of the railway operation. 180

III. OVERALL SCHEME OF THE ENERGY-EFFICIENCY 181

PROTOCOL 182

A. Overall Structure 183

In RIWMS, the information transmission network is com- 184

posed of three layers, as shown in Fig. 1, sensor layer 185
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Fig. 1. Schematic structure of the RIWMS.

(infrastructure condition monitoring), communication layer (in-186

formation transmission), and data processing layer (fault diag-187

nosis and prediction). Since the base station (BS) is located at188

one end of the monitoring region, it is hard for the sensors to189

send information to the BS directly. To address this problem,190

the monitoring region is divided into several small regions, and191

the sink node is equipped to collect the information from each192

small region locally. The information transmission progress is193

shown as follows. First, the information inspected by the sensors194

is sent to CHs and then forwarded and collected at the local sink195

nodes. Then, the collected information is transmitted among the196

sink nodes and forwarded to the BS. Finally, the infrastructure197

information arrives at the data center from BS via internet. The198

sink nodes, whose energy storage, computing, and communica-199

tion ability are all superior to the sensors, act as the local BS in200

RIWMS to collect the information from the nearby sensors.201

B. Overall Framework202

We adopt and optimize a cluster-based protocol to reduce the203

energy consumption in the information transmission between204

the sensors and sink nodes in the small monitoring region. In205

this protocol, all the sensors in the small monitoring region are206

divided into several clusters. One of the sensors in each cluster207

is selected as the CH to receive the information from other non-208

CH sensors. Due to the small scale of the monitoring region and209

high real-time demands, the single-hop protocol is adopted in210

the communication between the sensors and the corresponding211

sink node.212

As shown in Fig. 2, the scheme is composed of three layers:213

the input information layer, cluster optimization strategy layer,214

and output information layer.215

In the input layer, the input information, including the en-216

ergy and location information, is centered around the sensors217

deployed in the monitoring region.218

In the strategy layer, the CHs and clusters are generated with219

the objective of minimizing the total energy consumption and220

balancing the consumption among all sensors, and the approach221

will ultimately extend the RIWMS lifetime. First, the number222

of the clusters, which is essential to the K-means++, is calcu-223

lated in advance. Then, the K-means++ algorithm is adopted to224

initialize the clusters and CHs. The basic idea of this approach225

Fig. 2. Overall scheme of RIWMS sensor cluster optimization.

is to cluster the sensors that are close to each other in order 226

to reduce the energy consumption. However, for the complex 227

RIWMS, the CHs and clusters generated by the K-means++ 228

are not necessarily the optimal solutions, and thus, we develop a 229

more effective method in which clusters and CHs are optimized 230

in the following steps. In each optimization round, the CHs are 231

rotated and selected at first, and then, clusters are generated 232

around them. The candidacy probability, residual energy, and 233

predicted energy consumption of all sensors are all considered 234

to determine the CHs. Furthermore, the clusters are obtained by 235

solving a multi-objective optimization model using the GA. 236

In the output layer, the sensors are allocated to the clusters 237

according to the optimal solutions. The transmission of the in- 238

spected information based on the optimal solutions is expected 239

to extend the lifetime of the RIWMS significantly. 240

IV. PROPOSED CLUSTER-BASED VALID LIFETIME 241

MAXIMIZATION PROTOCOL 242

The CVLMP is proposed and introduced in detail in this sec- 243

tion, including cluster initialization, CH rotation and selection, 244

and cluster optimization by solving a multi-objective model 245
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Fig. 3. Structure of the communication round of the proposed CVLMP.

using the NSGA-II. The operational process of the proposed246

CVLMP is shown in Fig. 3.247

The protocol is executed by several communication rounds,248

including one initialization clustering round and several trans-249

mission rounds. In the initialization round, all sensor nodes are250

divided into several clusters using K-means++. In the trans-251

mission rounds, three phases (CH selection and rotation, cluster252

generation and optimization, and steady transmission) are exe-253

cuted repeatedly.254

A. Clusters Initialization by the K-Means++ Algorithm255

In the cluster-based protocol, the energy consumption of non-256

CHs is determined by the distance to the CH and the size of data257

packets. In this section, the K-means++ algorithm is adopted258

to initialize the clusters, and they will accelerate the cluster259

optimization in the following stages.260

1) Optimal Number of Clusters: For the K-means++ algo-261

rithm, the number of the clusters k should be determined in262

advance, as it will affect the total energy consumption of all the263

N sensors in the small monitoring region. Take a short section of264

the rail and the corresponding infrastructure as monitoring ob-265

jects; the monitoring field could be considered as a rectangular266

region. Then, the rectangular region is divided into several small267

square regions, as mentioned above. The coordinates of the small268

region are (x ∈ [−M/2,M/2],y ∈ [−(1 + α)M,−αM ]). α is269

the distance coefficient, which is used to adjust the vertical dis-270

tance between the square region to the sink node. The sink node271

is located at the origin SK(0, 0). The joint probability density272

of the sensor nodes coordinates is ρ(x, y) = 1/M 2.273

The total energy consumption of all the sensor nodes in one274

transmission round is calculated as275

Etotal =
k∑

i=1

⎛

⎝Ei
CH +

n−1∑

j=1

Eji
Non−CH

⎞

⎠ (1)

where Ei
CH is the energy consumed by the ith CHs, Eji

Non−CH276

represents the energy consumption of the jth sensor node in ith277

cluster, and n is the number of the sensors in each cluster. We278

assume that all the N sensors are divided into k clusters equally.279

Hence, there are n = N/k sensors in each cluster, including one280

CH sensor and n − 1 non-CH sensors.281

The energy of the CH sensors is consumed in three phases: 282

data packet reception (Ei
CH−Rx ), aggregation (Ei

CH−Dx ), and 283

transmission (Ei
CH−Sx ). The energy consumption of the CHs 284

can be written as 285

Ei
CH = Ei

CH−Rx + Ei
CH−Dx + Ei

CH−Sx

= (n − 1) × l × Eele + n × l × EDA

+ (l × Eele + l × ξmp × d4
toSKi)

= l × (n × Eele + n × EDA + ξmp × d4
toSKi) (2)

where Eele denotes the electronics energy coefficient, ξmp is the 286

amplifier energy coefficients for the multipath fading model, l 287

is the size of data packet, and dtoSKi is the distance from the ith 288

CH sensor to the sink node. It is calculated as 289

dtoSKi =
√

x(i)2 + y(i)2. (3)

The non-CHs just transmit their data packets to the corre- 290

sponding CHs, and the energy consumption is calculated as 291

Eji
Non−CH = l ∗ Eele + l ∗ ξfs ∗ d2

toCHj i (4)

where ξfs is the amplifier energy coefficients for the free space 292

model, and dtoCHj i represents the distance from the jth sensor 293

to the CH in the ith cluster, which is calculated as 294

dtoCHj i =
√

(x(j) − x(i))2 + (y(j) − y(i))2. (5)

Statistically, the opportunity of each sensor to be the CH is 295

equal. The expected total energy consumption, as shown in (1), 296

can be rewritten as 297

E[Etotal ] ≈ k ∗ E(Ei
CH) + N ∗ E[Eji

Non−CH]

= l ∗ (2N ∗ Eele + N ∗ EDA + k ∗ ξmp ∗ E[d4
toSKi ]

+ N ∗ ξfs ∗ E[d2
toCHj i ]). (6)
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The expected fourth (4th) power of d4
toSKi is calculated as298

E[d4
toSKi ] =

∫ −αM

−(α+1)M

∫ M/2

−M/2
(
√

x2 + y2)
4
ρ(x, y)dxdy

=
∫ −αM

−(α+1)M

∫ M/2

−M/2
(x2 + y2)

2
ρ(x, y)dxdy

=

(
0.0125 +

(α+1)3−α3

18
+

(α+1)5−α5

5

)
∗ M 4.

(7)

The expected of d2
toCHj i is expressed as299

E[d2
toCHj i ] =

1
2

∫ −αM

−(α+1)M

∫ M/2

−M/2

∫ −αM

−(α+1)M

∫ M/2

−M/2

×
(√

(xj − xi)
2 + (yj − yi)

2
)2

× ρ(xj , xi, yj , yi)dxjdxidyjdyi

=
M 2

6k
. (8)

The initial optimal number of clusters is calculated by setting300

the derivative of E[Etotal ] in (6), with respect to k, to zero, as301

kopt =

√
ξfs ∗ N ∗ M 2

6ξmp ∗ d4
toSKi

. (9)

The optimal number of clusters kopt is calculated by (9) when302

the energy of sensors is sufficient to act as CHs. However, the303

residual energy of the sensors will decrease as the communica-304

tion travels. Once the residual energy is not enough to transmit305

all the information to the sink node as a CH in the current cluster306

scale, the number of clusters will increase to reduce the sensors307

in one cluster and decrease the load on the CHs. In this manner,308

the energy consumption of each CH will be reduced, and the in-309

formation transmission will be resumed. The strategy is helpful310

to extend the system lifetime.311

2) Initialize Clusters Based on K-Means++: After the num-312

ber of clusters k is determined, the K-means++ is performed313

to initialize the clusters. In this algorithm, the selected initial314

cluster centers are spread out as much as possible [27], ensur-315

ing the dispersion of the clusters. The algorithmic details of the316

K-means++ are shown in Table I.317

In step 4, the sensors far from the selected cluster centers will318

be selected as the new cluster center with high probability. In319

step 5, all the sensors will be divided into the kopt clusters based320

on the selected cluster centers.321

3) Initialize CHs Based on K-Means++: As shown in Fig. 4,322

the initial CHs are selected from the k clusters. The virtual CHs323

(the center points of clusters) are calculated by (10). Then, the324

sensors nearest to each virtual CH are selected as the initial CHs325

as follows:326

Virtual CHs (X(k), Y (k)) =
(∑nk

i=1 x(i)
nk

,

∑nk

i=1 y(i)
nk

)

(10)

TABLE I
CLUSTER INITIALIZATION BASED ON K-MEANS++

K-means++ Algorithm Cluster Initialization

Input: The N sensors deployed in a square monitoring region;
Output: The N sensors are divided into kopt clusters;

1: Step 1: determine the number of the clusters kopt based on (13).
2: Step 2: select one sensor as the first cluster center (CC1).
3: Step 3: calculate the distance between sensors and selected cluster centers;
4: repeat
5: for i = 1, 2, . . . , k; cluster centers
6: for j = 1, 2, . . . , N − k; cluster members

7: dtoCC j i =
√

(x(j)− x(i))2+(y(j)−y(i))2; calculate distance
8: until all the distances are calculated.
9: Step 4: select the kth cluster center (CCk , 1 ≤ k ≤ kopt )

10: repeat
11: for j = 1, 2, . . . , N − k
12: for i = 1, 2, . . . , k
13: dtoCC j = min(dtoCC j i ); select the minimum distance;

14: sum(d(xtoCHj )) =
N −k∑
j= 1

dtoCC j

15: pj = d(xtoCH j )/sum(d(xtoCH j )); define the selection
16: probability of the cluster centers
17: until all the kopt cluster centers are selected.
18: Step 5: Generate the initial clusters based on the kopt CHs.
19: repeat
20: for i = 1, 2, . . . , kopt
21: for j = 1, 2, . . . , N − kopt

22: dtoCC j i =
√

(x(j) − x(i))2 + (y(j) − y(i))2

23: for j = 1, 2, . . . , N − kopt
24: for i = 1, 2, . . . , kopt
25: dtoCC j = min(dtoCC j i )
26: dividing the jth sensor into the ith cluster;
27: until all the sensors are grouped into the corresponding clusters.

Fig. 4. Cluster initialization based on K-means++.

where nk is the number of sensors in the kth cluster. 327

The initial clusters and CHs obtained by K-means guarantee 328

that the sensors close to each other are divided into the same 329

cluster, which can reduce the energy consumption of non-CHs. 330

However, the size of the clusters is unpredictable, which is 331

related to the balance of CHs energy consumption. To prolong 332

the lifetime of the RIWMS, the initial CHs and clusters should 333

be further optimized. The K-means++ method obtaining the 334

initial CHs and clusters is not necessarily able to fully utilize 335
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the limited energy. They will be used as the initial clusters in336

the following cluster optimization.337

B. CH Selection and Rotation Probability Model338

In the cluster-based protocol, the energy consumption of CH339

is much more than that of non-CH sensors. Selecting and ro-340

tating the CHs before each transmission round starts will help341

to balance the energy among all sensors. In the CH selection342

and rotation, in addition to the candidacy probability and the343

sensors residual energy, the predicted energy consumption after344

the election is considered. This model could reduce the CH’s345

selected probability of incompetent sensors.346

1) Probability of CHs Candidacy: As described above, to347

balance the energy consumption among all sensors, each sensor348

should have a completely equal opportunity to operate as CH.349

This means that the N/k sensors in each cluster will have one350

chance to act as the CH in the following N/k rounds [8], [9].351

The probability of CH candidacy considers whether the sensor352

is selected as CH in the last r − 1 rounds. The probability is353

defined as [8]354

p1i(r) =

{
k

N −k∗r , Ci(r) = 1

0, Ci(r) = 0
(11)

where r ∈ [1, �N/k�] means that when all sensor nodes have355

rotated as CHs in previous rounds, r will be reset to 1 and356

increase to [N/k] in each subsequent round. �N/k� means that357

r will always round down to the nearest integer. Ci(r) represents358

the condition of the node i. If the node has been the CH in the359

previous r rounds, we set Ci(r) = 0 and vice versa.360

2) Ratio of Residual Energy: The residual energy of the sen-361

sors will vary after several transmission rounds, since362

1) the energy consumptions of CHs and non-CHs are363

different;364

2) the energy consumption of different CHs varies due to the365

different cluster scales and transmission distances; and366

3) the different distances from non-CHs to the CHs will also367

lead to the different energy consumptions of non-CHs.368

Therefore, in the CH selection and rotation phases, a higher369

ratio of residual energy yields a greater probability of CH selec-370

tion. The ratio of the residual energy is defined as371

p2i(r) =

∣∣Ei
Re(r) − Emin

Re (r)
∣∣

∑n
i=1

∣∣Ei
Re(r) − Emin

Re (r)
∣∣ (12)

where Ei
Re(r) represents the residual energy of the ith sensor372

before the rth round, and Emin
Re (r) is the minimum residual373

energy of all sensors in the cluster. Furthermore, the residual374

energy of the ith sensor before the rth round is computed as375

Ei
Re(r) = Ei

Re(r − 1) − Ei
Co(r − 1) (13)

where Ei
Co(r − 1) is the energy consumed by the ith sensor in376

the r − 1th round. If the sensor is CH in the r − 1th round, it is377

computed according to 378

ECo−CH(r − 1) = ERx(r − 1) + EDx(r − 1) + ET x(r − 1),
(14)

ERx(r − 1) = (nk − 1) ∗ l ∗ Eele , (15)

EDx(r − 1) = nk ∗ l ∗ EDA , (16)

ET x(r − 1) = l ∗ Eele + l ∗ ξmp ∗ d4
toSK(r − 1). (17)

If the sensor is non-CH in the r − 1th round, it is 379

computed by 380

ECo−NCH(r − 1) = l ∗ Eele + l ∗ ξfs ∗ d2
toCH(r). (18)

3) Ratio of the Predicted Energy Consumption: The pre- 381

dicted energy consumption of the CHs after the election is an- 382

other essential factor. The sensors with less energy consumption 383

as CHs will be selected in the following transmission round with 384

high probability. The ratio of the predicted energy consumption 385

in the following r + 1th round is defined as 386

p3i(r) =

∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣

∑nk

i=1

∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣ (19)

where Ei
Co(r + 1) represents the predicted energy consump- 387

tion of the ith sensor in the following r + 1th round while it is 388

selected as CH. Emax
Co (r + 1) is the maximum predicted con- 389

sumption of the sensors in the cluster. The predicted energy 390

consumption can be calculated by (14)–(17). 391

The above-mentioned three factors are all considered in the 392

CH selection and rotation probability model. The probability is 393

defined as 394

pi(r) = ω1p1i(r) + ω2p2i(r) + ω3p3i(r)

S.T.

3∑

i=1

ωi = 1

0 ≤ p1i(r), p2i(r), p3i(r) ≤ 1 (20)

where ωi, i = 1, 2, 3 are the weighting coefficients, and they are 395

used to adjust the importance of each factor to the model. 396

The most appropriate CHs are selected and rotated based on 397

this model before each transmission round starts. They can be 398

used to support the cluster generation and optimization in the 399

following phases. 400

C. Cluster Generation and Optimization 401

Probability Model 402

After the CHs are determined, the clusters will be updated 403

accordingly to optimize the communication protocol and extend 404

the system lifetime. 405

For the RIWMS, the death of any sensor may potentially lead 406

to system instability or inspection failures. In this paper, the 407

valid lifetime of the system is defined as the time when more 408

than 90% of the sensors are alive. Hence, the optimal clusters 409

should guarantee all sensors remain alive as long as possible. 410

The optimal clusters are generated based on the following 411

two schemes. 1) Adjust the clusters scales to balance the energy 412

consumption among CHs. 2) Optimize the correspondence 413
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among the CHs and non-CHs to minimize the total energy con-414

sumption.415

1) Scale of Clusters: As mentioned before, the energy con-416

sumption of the CHs is related to dtoSK and the scale of clusters417

(number of non-CHs). dtoSK changes as the CHs rotate, and418

hence, the scales of clusters should vary correspondingly to bal-419

ance the energy consumption among the CHs. The optimization420

model is defined as421

f1(ECHi(ni)) = min
∑k

i=1 (ECHi(ni) − ECH)
2

k
(21)

where f1(ECHi(ni)) aims to minimize the variance of the CHs422

energy consumption, which represents the energy consumption423

balance degree among all CHs. ECHi represents the energy424

consumption of the CH in the ith cluster; ECH represents the425

average energy consumption for all CHs; and k is the number426

of clusters.427

The energy consumed by the CH in the ith cluster is calculated428

based on (1), as429

ECHi(ni) = l ∗ (ni ∗ Eele + ni ∗ EDA + ξmp ∗ d4
toSKi)

S.T.

k∑

i=1

ni ≤ N (22)

where ni(i = 1, 2, . . . , k) is the number of sensors in the ith430

cluster. The constraint implies that only the living sensors par-431

ticipate in the clusters generation and optimization.432

The average energy consumption of all the CHs is433

calculated as434

ĒCH =
∑k

i=1 ECHi(ni)
k

. (23)

2) CHs to Non-CHs Correspondence: Based on the435

above-mentioned model, the CHs have almost identical energy436

consumptions, while the energy consumption of each non-CHs437

sensor would vary while divided into different clusters. In the438

following model, the correspondences between the CHs and439

non-CHs will be optimized to minimize the energy consumption440

of non-CHs. The total energy consumption optimization model441

is given by442

f2(ENCHi , ECHj ) = min

⎛

⎝
N −k∑

i=1

ENCHi +
k∑

j=1

ECHi

⎞

⎠ , (24)

ENCHi = l ∗ Eele + l ∗ ξfs ∗
∑

j

rij∗d2
t o C H j

, (25)

rij =
{

1, sensor i is allocated to cluster j
0, otherwise

(26)

where f2(ENCHi , ECHj ) aims to minimize the total energy443

consumption of all sensors. ENCHi is the energy consumption444

of the ith non-CH sensor and ECHj is the energy consumption445

of the CH in the jth cluster. rij is the decision variable.446

The scales of the clusters are optimized to balance the energy447

consumption among the CHs, while the total energy consump-448

tion is minimized by optimizing the correspondence between449

Fig. 5. Flowchart for cluster optimization using NSGA-II.

the CHs and non-CHs members. The optimization of the corre- 450

spondence between the CHs and non-CHs will reversely affect 451

the cluster scales. It is obvious that the cluster generation is a 452

multi-objective optimization problem. It can be formulated as 453

min f(E) = (f1(ECHi), f2(ECHi , ENCHi)). (27)

The following two constraints should be considered: 1) there 454

are at least two nodes in each cluster, i.e., 2 ≤ ni ≤ N ; and 2) 455

the energy-exhausted, “dead” sensors should be excluded from 456

cluster generation, i.e.,
∑k

i=1 ni ≤ N . 457

The cluster generation and optimization is an NP-hard prob- 458

lem. Exact analytical methods face difficulty in obtaining the 459

optimal solutions when the scale of the problem is large. Heuris- Q1460

tic methods such as the GA are effective to solve such multi- 461

objective optimization problems in practice. 462

D. Cluster Optimization Based on the NSGA-II 463

The multi-objective optimization algorithm is adopted to op- 464

timize the clusters to minimize total energy consumption and 465

balance the consumption among all CHs. The NSGA-II is one 466

of the effective GA methods to solve multiple objective opti- 467

mization problems [26]. The optimization process is described 468

in Fig. 5. The optimal clusters can be obtained by the NSGA-II. 469

1) Population Initialization: The optimization process based 470

on the NSGA-II is intended to obtain the best solution (chromo- 471

somes) based on the initial population. The population consists 472

of m chromosomes. Each of them is composed of M genes, and 473

their positions and contents denote the sensor index and cluster 474

number [see Fig. 6(a)]. The sensor index [1, 2, . . . , N ] will be 475

assigned to sensors when they are deployed in the monitoring 476

region. The cluster number [1, 2, . . . , k] represents which cluster 477

the sensors belong to. 478



IEE
E P

ro
of

8 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 6. Representation and mutation: (a) Chromosomal representation;
and (b) shift mutation.

The initialization of the population would have a substantial479

influence on the cluster optimization speed and results, because480

all the chromosomes are generated based on the initial ones481

in the parent population. The initialized clusters based on K-482

means++ in this paper can provide better first chromosome in483

the initial parent population P . In the existing studies, the initial484

chromosome is generally generated randomly, while its genes485

are randomly scattered in the solution space. In contrast, the486

genes in the chromosome obtained by K-means++ are more487

concentrated and have smaller energy consumption. This ini-488

tial chromosome with higher fitness values (function values)489

will accelerate the optimization process. Subsequently, the other490

m − 1 chromosomes in the parent population are generated us-491

ing shift mutation methods based on the first chromosome [28].492

As shown in Fig. 6(b), two pairs of points are selected at ran-493

dom, then the rear points are inserted ahead of the front point494

and the front points are all shifted backward. The number of495

point pairs is determined by the mutation probability pm .496

2) Population Optimization: In the population optimization497

phase, we try to generate the optimal chromosomes within an498

acceptable timeframe. The offspring Q with m chromosomes499

is generated based on the parent population through crossover500

operation and the roulette wheel selection operation.501

The individual selection probability is defined as502

p(ci) =
g(ci)∑m
i=1 g(ci)

(28)

where ci is the ith chromosome and g(ci) is its fitness value,503

denoted as504

max g(ci) =
(

1
f1(ECHi)

,
1

f2(ECHi , ENCHi)

)
. (29)

Theoretically, greater residual energy renders larger proba-505

bility of selection. The two-point crossover and shift mutation506

are adopted in the following steps to create the new offspring507

Q. Subsequently, the offspring Q and the parent population P508

are combined into a new population R. The NSGA-II method509

is used to update the parent population P from R. Finally, the510

best chromosomes in the updated parent population P will be511

selected as the optimal clusters. The detailed process is shown512

in Table II.513

E. Steady Communication Phase514

After the optimal clusters and the most energy-efficient trans-515

mission route are determined, the system steps into the steady516

TABLE II
STEPS OF THE NSGA-II METHOD

NSGA-II Algorithm Population Optimization

Input: Algorithm parameters, the population scale m, the iteration times T ;
Output: Pareto optimal solution set P ;
1: Step 1: Create m initial chromosomes as the initial population P based on

K-means++;
2: Step 2: Generate m chromosomes in offspring Q based on the traditional

genetic algorithm;
3: Step 3: Combine the parent with offspring in population R;
4: Step 4: Fast-nondominated-sort R(mi )
5: All chromosomes in R are allocated into several layers according to

dominant relationships. The nondominant chromosomes in R are alloca-
ted to the first layer; the nondominant chromosomes in the remaining po-
pulation (removing the chromosomes in the first layer from R) are alloc-
ated into the second layer, and so on. The chromosomes in the same layer
are assigned the same Pareto value;

6: Step 5: Crowding distance assignment D(mi )
7: The crowding distance is defined as the sum value of multi-objective

functions. This is important because it allows the ranking of chromosomes
in the same layer;

8: Step 6: Elitism selection
9: Elitism selection is the selection of m chromosomes from R based

on R(mi ) and D(mi ). This strategy can be used to retain good individ-
uals and improve the overall level of population evolution;

10: Step 7: Judge if the terminal criteria are satisfied. If so, output the solution;
if not, return to Step 2.

communication phase. In this phase, the infrastructure condition 517

information is inspected, synthesized, and transmitted from the 518

sensors to the sink node. The steady communication process 519

is executed as follows. First, the inspected data packets from 520

non-CH sensors in each cluster are sent to the corresponding 521

CH. Then, all the received data packets are synthesized by their 522

respective CHs, which can reduce information redundancy and 523

minimize energy consumption. Finally, the synthesized infor- 524

mation packets at all CHs are transmitted to the sink node. 525

As shown in Fig. 3, the transmission rounds will repeat as long 526

as the sensors have sufficient energy. In this optimal communica- 527

tion protocol designed above in each round, the communication 528

between the sensors and sink node will operate in the energy- 529

efficiency ways. The valid lifetime of the railway infrastructure 530

monitoring wireless system will be extended ultimately. 531

V. SIMULATION VALIDATION AND ANALYSIS 532

In this section, the proposed protocol is validated via com- 533

puter simulations with Python 3.6.2. Comparative case studies 534

are carried out to demonstrate the superiority of the proposed 535

scheme. 536

A. Simulation Configuration 537

In the paper, a rectangular region (L × W : 500 m × 50 m) 538

along the rail is taken as the RIWMS monitoring area. The 539

monitoring region is divided into ten small square regions (L × 540

W : 50 m × 50 m) evenly, with ten sink nodes located above 541

them. The information inspected by the sensors in the small 542

square monitoring regions is sent to the corresponding sink 543

nodes and then transmitted to the BS. 544
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TABLE III
PARAMETERS OF THE OPTIMIZATION MODEL

No. Parameter Describe Value

1 Eele Electronic energy 50 nJ/bit
2 ξfs Amplifier energy (d2) 10 pJ/bit/m2

3 ξm p Amplifier energy (d4) 0.0013 pJ/bit/m4

4 Ein Initial energy 0.02 J
5 N Sensor number 200
6 l (bit) Data packets size 150
7 kopt Clusters number 8
8 Sink node Location (25, 50)
9 Sensor nodes Square monitoring region [(0 25), (0 –25), (50 –25),

(50 25)]
10 m Population size 100
11 pm Mutation rate 0.01
12 pc Crossover rate 0.85
13 t Termination conditions 400
14 α Distance adjust parameter 0.6

This paper focuses on the protocol optimization of the com-545

munication between the sensors and sink nodes. We pick one546

sink node and 200 sensors in the corresponding small square547

monitoring region as the simulation objects. In this simulation548

scenario, the rail is considered as the X-axis, and its terminal549

point, which is far away from the BS, is set as the origin. The550

parameters used in the simulations are shown in Table III.551

Based on (7), (9), and the simulation environment parame-552

ters in Table III, we can get E[d2
toSKi ] = 3264 m2 and initial553

optimal clusters number is kopt = 7.75. Since the number is a554

positive integer, we set k = 8 for the experiments in this paper.555

Moreover, the residual energy of the sensors declines with the556

communication. To reduce the load on the CHs and guarantee557

connectivity of the communication system, we increase the clus-558

ters number at the rate of 1 once the energy of the existing CHs559

is not sufficient to transmit all the information from their own560

clusters to the sink node. The crossover and mutation rates were561

experienced from the range of (0.75,0.95) and (0.005,0.02), re-562

spectively [28]. In this paper, they are selected as pc = 0.85 and563

pm = 0.01.564

B. Simulation Results and Analysis565

For a railway infrastructure wireless monitoring system,566

four aspects should be considered to ensure the stability and567

continuity.568

1) The system valid lifetime569

In this paper, the valid lifetime of the RIWMS is represented570

by the number of alive sensors and the total residual energy of571

all sensors after several transmission rounds.572

1) The balance of energy consumption across all sensors573

Balancing the energy consumption aims to avoid the death of574

some sensors due to energy exhaustion.575

The variance of the remaining energy of all sensor nodes is576

used to reflect the balance of energy consumption, defined as577

VRE =
∑M

k=1 (EREk (r) − ERE(r))
2

M
(30)

Fig. 7. Comparison of number of alive sensors.

where M is the number of sensor nodes in the first monitoring 578

region; EREk (r) is the remaining energy of sensor node k at 579

time t; and ĒRE(r) is the average remaining energy of all sensor 580

nodes. 581

Furthermore, the inspection data received at the sink node 582

should be another major criterion to support the infrastructure 583

condition estimation and prediction. 584

The comparisons among the proposed CVLMP, FAF-EBRP 585

[10], and MOFCA [11] are conducted based on the aforemen- 586

tioned four criteria. To ensure the accuracy of the comparisons, 587

the CHs setting and clusters generation for the two protocols are 588

all implemented strictly according to the algorithm flow in [10] 589

and [11]. Moreover, the CVLMP, MOFCA, and FAF-EBRP are 590

all performed under the unique simulation environment (i.e., 591

the railway wireless monitoring system) to guarantee the fair 592

comparison. Additionally, we compare the solution based on 593

the traditional NSGA-II, which generates the initial population 594

randomly. 595

We compare and justify the performances of the proposed 596

CVLMP with other two protocols FAF-EBRP and MOFCA in 597

four criteria, as shown in Figs. 7–10. 598

1) From Fig. 7, we see that all sensors died after 190 trans- 599

mission rounds using the CVLMP, whereas using the 600

FAF-EBRP, the sensors death begins at 150 rounds and 601

decreases quickly to 0 by 175 rounds. Using the MOFCA, 602

the tendency of sensors death is similar to but a bit more 603

than using the FAF-EBRP. The efficiency of the protocols 604

is compared in Fig. 8 in terms of the total residual en- 605

ergy. Using CVLMP, FAF-EBRP, and MOFCA, the total 606

residual energy declines are all smooth, while the most 607

residual energy is using the CVLMP. Thus, the CVLMP 608

is proved to be the longest-running protocol. 609

2) The variance of the residual energy in the CVLMP is 610

smaller than those of the other two, as shown in Fig. 9, 611

revealing that the CVLMP remains the most balanced en- 612

ergy consumption of all sensors. The CVLMP can keep 613

all the sensors alive to the utmost and ensure the connec- 614

tivity of the entire network. 615
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Fig. 8. Comparison of the total residual energy of all sensors.

Fig. 9. Comparison of the residual energy variance of all sensors.

Fig. 10. Comparison of total data received at the sink node.

3) As shown in Fig. 10, the total data received at the sink 616

nodes using the CVLMP are about 1.2 times of that us- 617

ing FAF-EBRP and MOFCA. Therefore, the protocols 618

proposed in this paper render significantly more trans- 619

mission rounds and received data in comparison with the 620

other two methods, and this is crucial to maintaining the 621

stable railway infrastructure monitoring and condition 622

analysis. 623

4) Additionally, Figs. 7–10 reveal that the performances of 624

the system using the CVLMP, which initializes the popu- 625

lation by K-means++, are better than those using the ran- 626

dom initialization population. Moreover, we found that 627

the performances are not stable using the random GA 628

due to the uncertain initialization population with lim- 629

ited iterations. More advanced control and monitoring 630

schemes with robustness need to be studied in the future 631

to optimize the system performance further [29], [30]. 632

VI. CONCLUSION 633

Wireless railway infrastructure condition monitoring network 634

is vital to the railway industry. Safe and efficient railway oper- 635

ations require a sufficient lifetime of the sensor network. This 636

paper proposes a novel CVLMP to maximize the lifetime of 637

the monitoring system. The optimization models are used to ro- 638

tate the CHs and optimize the clusters before each transmission 639

round starts, so as to minimize the total energy consumption and 640

to balance the energy consumption among sensors. 641

Simulation results demonstrate that the superiority of the pro- 642

posed CVLMP is threefold. 643

1) Compared with FAF-EBRP and MOFCA models in the 644

literature, the CVLMP can effectively prolong the life- 645

time of the monitoring system by 23%, all else being 646

equal. 647

2) The CVLMP has superior performance in optimally con- 648

serving the total residual energy of all the sensors and 649

balancing energy consumption among sensors. 650

3) The monitoring data received at the sink node are more 651

than those using the other two methods. 652
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An Optimal Communications Protocol for
Maximizing Lifetime of Railway Infrastructure

Wireless Monitoring Network

1

2

3

Xiaoping Ma, Honghui Dong, Xiang Liu, Limin Jia, Guo Xie, and Zheyong Bian4

Abstract—A wireless monitoring network is an effective5
way to monitor and transmit information about railway in-6
frastructure conditions. Its lifetime is significantly affected7
by the energy usage among all sensors. This paper pro-8
poses a novel cluster-based valid lifetime maximization pro-9
tocol (CVLMP) to extend the lifetime of the network. In the10
CVLMP, the cluster heads (CHs) are selected and rotated11
with the selection probability and energy information. Then,12
the clusters are determined around the CHs based on the13
multi-objective optimization model, which minimizes the14
total energy consumption and balances the consumption15
among all CHs. Finally, the multi-objective model is solved16
by an improved nondominated sorting genetic algorithm II.17
The simulation results show that, compared with two other18
strategies in the prior literature, our proposed CVLMP can19
effectively extend the valid lifetime of the network as well20
as increase the inspected data packets received at the sink21
node.22

Index Terms—Cluster, energy-efficiency, K-means++,23
lifetime, nondominated sorting genetic algorithm (NSGA) II,24
railway monitoring network.25

I. INTRODUCTION26

W ITH the rapid increase of operating speed and mileage,27

operational safety of railways has attracted wide at-28

tention from both academia and industry. A large portion of29

railway accidents is caused by infrastructure failures. Thus, rail30
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infrastructure inspections are an indispensable solution to ob- 31

taining related information regarding infrastructure conditions 32

(e.g., rail defects, track geometry failure) to ensure railway 33

safety [1], [2]. The track inspection vehicle has been a prevalent 34

technology for railway infrastructure inspection. However, track 35

inspection vehicles are usually used to periodically inspect rail- 36

way infrastructure and can hardly provide real-time information 37

regarding railway conditions [3] by detecting emergency condi- 38

tions. Moreover, frequent inspection requires intensive human 39

resources and high capital cost. As a supplementary approach 40

for periodic track inspection, industrial wireless sensor networks 41

(IWSNs) emerge as a preferable technology to inspect the opera- 42

tional condition of the railway infrastructure [4]–[6]. In addition, 43

in order to identify infrastructure defects quickly by means of 44

monitoring the system in real time, IWSNs appear to be an effi- 45

cient method for monitoring railway infrastructures, especially 46

for complex, extensive railway transportation systems, such as 47

the high-speed rail networks. 48

In IWSNs, a large quantity of sensors is installed on rail- 49

way infrastructures (e.g., rails, roadbeds, and bridges) to mon- 50

itor and transmit condition information [7]. The efficiency of 51

IWSNs greatly depends on the availability and reliability of 52

these sensor nodes. However, the processing ability, communi- 53

cation bandwidth, and energy storage of these sensor nodes are 54

often limited. Therefore, an effective communication protocol 55

is needed to utilize the limited sensing resources. Previous liter- 56

ature demonstrated that the cluster-based routing protocol is one 57

of the energy-saving strategies [8]–[20] that minimizes the total 58

energy consumption and/or balances the energy consumption 59

among all sensors. 60

To optimally utilize IWSNs, this paper proposes a novel 61

cluster-based valid lifetime maximization protocol (CVLMP), 62

which generates the optimal global clusters dynamically in each 63

transmission round. In the CVLMP, the K-means++ algorithm 64

is used to generate initial clusters based on the deployment 65

of the sensors, and then, the initialized clusters are optimized 66

dynamically in the following rounds. During the optimization 67

process, the cluster heads (CHs) are dynamically selected and 68

rotated from all sensors in the monitoring area to balance their 69

energy consumption. To achieve the target, each CH’s rotation 70

is performed based on the probability of CH candidacy, the ra- 71

tio of residual energy, and predicted energy consumption. Then, 72

the genetic algorithm (GA) is used to optimize clusters with 73

the objective of minimizing the total energy consumption and 74

1551-3203 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications standards/publications/rights/index.html for more information.
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balancing the consumption of each sensor. Experimental simu-75

lations are designed to test the performance of the proposed76

CVLMP. The experimental results show that the CVLMP77

outperforms the typically used approaches, including the78

energy-balanced routing method based on forward-aware factor79

(FAF-EBRM) and multi-objective fuzzy clustering algorithm80

(MOFCA) [10], [11].81

The rest of the paper is organized as follows. Section II re-82

views the related literature and formulates the problem. The83

overall scheme of the energy-saving protocol is described in84

Section III. The novel CVLMP is presented in Section IV. Ex-85

perimental simulations are analyzed in detail in Section V, and86

Section VI presents the key conclusions.87

II. RELATED PRIOR WORK AND PROBLEM FORMULATION88

As previously mentioned, IWSNs have been widely applied89

in railway transportation systems, especially in infrastructure90

condition monitoring, to improve operational safety. IWSNs91

transmit real-time monitoring information for remote fault di-92

agnosis of critical parts of bridges, tunnels, trains, and rails [4],93

[5]. However, most existing studies focus on the technological94

applications of IWSNs in railway systems, whereas the reliabil-95

ity and availability of IWSN information transmission have not96

received adequate attention. To address this problem, Shafiullah97

optimized the energy consumption among the sensors installed98

in the rail cars [6], given a relatively small sensor network. The99

energy efficiency optimization in a large network with many100

sensors in railway monitoring systems has rarely been studied,101

while the number of sensors continues to increase, owing to102

their wide application in railway inspection.103

Some studies focus on improving the energy efficiency of104

IWSNs using optimization methods. For example, transmis-105

sion power adjustment technologies help to avoid the interfer-106

ence by controlling the signal coverage area and thus reduce107

the energy consumption [12]–[14]. Optimizing the deployment108

of the sensor nodes is useful to reduce the energy consump-109

tion as well [15], [17]. The consumption of limited energy is110

reduced by optimizing the transmitted data packets size [18].111

Besides, hierarchization (clustering) is an ideal solution to re-112

ducing and balancing the energy consumption. To this end, CH113

selection/rotation and cluster generation/optimization schemes114

are two major procedures to establish such a protocol.115

For the CH selection and rotation scheme, some existing116

methods prescribe that those nodes that have not been regarded117

as CHs in previous rounds might have a higher probability to118

be selected as CHs [8], [9]. Zhang proposed an FAF-EBRM119

algorithm for CH selection and rotation scheme using a mul-120

tihop strategy to balance the energy consumption [10]. In this121

strategy, the next-hop node is determined by the link weight122

and forward energy density. This method aims to minimize123

wasted energy caused by the backward transmission of in-124

formation. The position of the sensors is considered in the125

MOFCA [11]. Similarly, the residual energy and distances be-126

tween sensor nodes are considered in CH selection in predictive127

energy consumption efficiency, energy-balanced routing proto-128

col (EBRP), and hybrid, energy-efficient, distributed clustering129

approach [18]–[20]. Kuila applied the particle swarm optimiza- 130

tion heuristic algorithm to solve similar problems [21]. How- 131

ever, in these approaches, CH selection and rotation are achieved 132

within each local cluster, which is determined in the initial stage. 133

This may result in a local optimization rather than the global 134

optimization for CH selection and rotation. 135

For cluster generation, Heinzelman proposed two clustering 136

strategies, LEACH and LEACH-centralized [8], [9], which di- 137

vide all sensor nodes evenly into k-clusters. Cenedese proposed 138

a distributed clustering strategy to generate the clusters [22]. 139

Khan used the K-means method to classify the sensor nodes 140

according to their relative positions [23]. However, these meth- 141

ods did not consider the impact of cluster size on CH energy 142

consumption. Thus, some improved clustering methods are de- 143

veloped by determining the size of each cluster based on the 144

distances from the sensor nodes to the sink node [24], [25]. 145

However, in those studies, the cluster size remains constant 146

once the clusters are determined, and thus may result in unbal- 147

anced sensor node energy consumption in a dynamic operational 148

environment. 149

To solve the above-mentioned problems, an optimal cluster- 150

based protocol is proposed in this paper for the RIWMS. The 151

lifetime of the system is maximized by minimizing the total 152

energy consumption and balancing the consumption among all 153

sensors simultaneously. The intended contributions of this study 154

can be summarized as follows. 155

1) The impact factors are comprehensively considered in 156

the modeling of CHs selection and rotation, including the 157

predicted energy consumption of the tentative CHs, the 158

candidacy probability, together with the residual energy 159

of sensors. This addresses the limited consideration of 160

energy consumption after CHs selection in existing stud- 161

ies, which can effectively reduce the selected probability 162

as CHs for incompetent sensors. 163

2) The cluster scales and the CH-to-members correspon- 164

dence are dynamically optimized at the beginning of each 165

transmission round, simultaneously considering both the 166

energy consumption minimization and balance, which 167

expands the single focus in previous studies. 168

3) A hybrid algorithm by blending K-means++ with a 169

nondominated sorting genetic algorithm II (NSGA-II) 170

is developed to achieve the multi-objective optimization 171

model. Using K-means++ can improve the population 172

initialization of NSGA-II so as to accelerate the optimiza- 173

tion progress and enhance the quality of the solutions. 174

4) The proposed CVLMP model enhances the utilization 175

efficiency of the limited energy, which satisfies the real- 176

time and consecutive inspection requirements of the rail- 177

way wireless monitoring system. This will promote its 178

application in the railway monitoring system and increase 179

the safety of the railway operation. 180

III. OVERALL SCHEME OF THE ENERGY-EFFICIENCY 181

PROTOCOL 182

A. Overall Structure 183

In RIWMS, the information transmission network is com- 184

posed of three layers, as shown in Fig. 1, sensor layer 185
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Fig. 1. Schematic structure of the RIWMS.

(infrastructure condition monitoring), communication layer (in-186

formation transmission), and data processing layer (fault diag-187

nosis and prediction). Since the base station (BS) is located at188

one end of the monitoring region, it is hard for the sensors to189

send information to the BS directly. To address this problem,190

the monitoring region is divided into several small regions, and191

the sink node is equipped to collect the information from each192

small region locally. The information transmission progress is193

shown as follows. First, the information inspected by the sensors194

is sent to CHs and then forwarded and collected at the local sink195

nodes. Then, the collected information is transmitted among the196

sink nodes and forwarded to the BS. Finally, the infrastructure197

information arrives at the data center from BS via internet. The198

sink nodes, whose energy storage, computing, and communica-199

tion ability are all superior to the sensors, act as the local BS in200

RIWMS to collect the information from the nearby sensors.201

B. Overall Framework202

We adopt and optimize a cluster-based protocol to reduce the203

energy consumption in the information transmission between204

the sensors and sink nodes in the small monitoring region. In205

this protocol, all the sensors in the small monitoring region are206

divided into several clusters. One of the sensors in each cluster207

is selected as the CH to receive the information from other non-208

CH sensors. Due to the small scale of the monitoring region and209

high real-time demands, the single-hop protocol is adopted in210

the communication between the sensors and the corresponding211

sink node.212

As shown in Fig. 2, the scheme is composed of three layers:213

the input information layer, cluster optimization strategy layer,214

and output information layer.215

In the input layer, the input information, including the en-216

ergy and location information, is centered around the sensors217

deployed in the monitoring region.218

In the strategy layer, the CHs and clusters are generated with219

the objective of minimizing the total energy consumption and220

balancing the consumption among all sensors, and the approach221

will ultimately extend the RIWMS lifetime. First, the number222

of the clusters, which is essential to the K-means++, is calcu-223

lated in advance. Then, the K-means++ algorithm is adopted to224

initialize the clusters and CHs. The basic idea of this approach225

Fig. 2. Overall scheme of RIWMS sensor cluster optimization.

is to cluster the sensors that are close to each other in order 226

to reduce the energy consumption. However, for the complex 227

RIWMS, the CHs and clusters generated by the K-means++ 228

are not necessarily the optimal solutions, and thus, we develop a 229

more effective method in which clusters and CHs are optimized 230

in the following steps. In each optimization round, the CHs are 231

rotated and selected at first, and then, clusters are generated 232

around them. The candidacy probability, residual energy, and 233

predicted energy consumption of all sensors are all considered 234

to determine the CHs. Furthermore, the clusters are obtained by 235

solving a multi-objective optimization model using the GA. 236

In the output layer, the sensors are allocated to the clusters 237

according to the optimal solutions. The transmission of the in- 238

spected information based on the optimal solutions is expected 239

to extend the lifetime of the RIWMS significantly. 240

IV. PROPOSED CLUSTER-BASED VALID LIFETIME 241

MAXIMIZATION PROTOCOL 242

The CVLMP is proposed and introduced in detail in this sec- 243

tion, including cluster initialization, CH rotation and selection, 244

and cluster optimization by solving a multi-objective model 245
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Fig. 3. Structure of the communication round of the proposed CVLMP.

using the NSGA-II. The operational process of the proposed246

CVLMP is shown in Fig. 3.247

The protocol is executed by several communication rounds,248

including one initialization clustering round and several trans-249

mission rounds. In the initialization round, all sensor nodes are250

divided into several clusters using K-means++. In the trans-251

mission rounds, three phases (CH selection and rotation, cluster252

generation and optimization, and steady transmission) are exe-253

cuted repeatedly.254

A. Clusters Initialization by the K-Means++ Algorithm255

In the cluster-based protocol, the energy consumption of non-256

CHs is determined by the distance to the CH and the size of data257

packets. In this section, the K-means++ algorithm is adopted258

to initialize the clusters, and they will accelerate the cluster259

optimization in the following stages.260

1) Optimal Number of Clusters: For the K-means++ algo-261

rithm, the number of the clusters k should be determined in262

advance, as it will affect the total energy consumption of all the263

N sensors in the small monitoring region. Take a short section of264

the rail and the corresponding infrastructure as monitoring ob-265

jects; the monitoring field could be considered as a rectangular266

region. Then, the rectangular region is divided into several small267

square regions, as mentioned above. The coordinates of the small268

region are (x ∈ [−M/2,M/2],y ∈ [−(1 + α)M,−αM ]). α is269

the distance coefficient, which is used to adjust the vertical dis-270

tance between the square region to the sink node. The sink node271

is located at the origin SK(0, 0). The joint probability density272

of the sensor nodes coordinates is ρ(x, y) = 1/M 2.273

The total energy consumption of all the sensor nodes in one274

transmission round is calculated as275

Etotal =
k∑

i=1

⎛

⎝Ei
CH +

n−1∑

j=1

Eji
Non−CH

⎞

⎠ (1)

where Ei
CH is the energy consumed by the ith CHs, Eji

Non−CH276

represents the energy consumption of the jth sensor node in ith277

cluster, and n is the number of the sensors in each cluster. We278

assume that all the N sensors are divided into k clusters equally.279

Hence, there are n = N/k sensors in each cluster, including one280

CH sensor and n − 1 non-CH sensors.281

The energy of the CH sensors is consumed in three phases: 282

data packet reception (Ei
CH−Rx ), aggregation (Ei

CH−Dx ), and 283

transmission (Ei
CH−Sx ). The energy consumption of the CHs 284

can be written as 285

Ei
CH = Ei

CH−Rx + Ei
CH−Dx + Ei

CH−Sx

= (n − 1) × l × Eele + n × l × EDA

+ (l × Eele + l × ξmp × d4
toSKi)

= l × (n × Eele + n × EDA + ξmp × d4
toSKi) (2)

where Eele denotes the electronics energy coefficient, ξmp is the 286

amplifier energy coefficients for the multipath fading model, l 287

is the size of data packet, and dtoSKi is the distance from the ith 288

CH sensor to the sink node. It is calculated as 289

dtoSKi =
√

x(i)2 + y(i)2. (3)

The non-CHs just transmit their data packets to the corre- 290

sponding CHs, and the energy consumption is calculated as 291

Eji
Non−CH = l ∗ Eele + l ∗ ξfs ∗ d2

toCHj i (4)

where ξfs is the amplifier energy coefficients for the free space 292

model, and dtoCHj i represents the distance from the jth sensor 293

to the CH in the ith cluster, which is calculated as 294

dtoCHj i =
√

(x(j) − x(i))2 + (y(j) − y(i))2. (5)

Statistically, the opportunity of each sensor to be the CH is 295

equal. The expected total energy consumption, as shown in (1), 296

can be rewritten as 297

E[Etotal ] ≈ k ∗ E(Ei
CH) + N ∗ E[Eji

Non−CH]

= l ∗ (2N ∗ Eele + N ∗ EDA + k ∗ ξmp ∗ E[d4
toSKi ]

+ N ∗ ξfs ∗ E[d2
toCHj i ]). (6)
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The expected fourth (4th) power of d4
toSKi is calculated as298

E[d4
toSKi ] =

∫ −αM

−(α+1)M

∫ M/2

−M/2
(
√

x2 + y2)
4
ρ(x, y)dxdy

=
∫ −αM

−(α+1)M

∫ M/2

−M/2
(x2 + y2)

2
ρ(x, y)dxdy

=

(
0.0125 +

(α+1)3−α3

18
+

(α+1)5−α5

5

)
∗ M 4.

(7)

The expected of d2
toCHj i is expressed as299

E[d2
toCHj i ] =

1
2

∫ −αM

−(α+1)M

∫ M/2

−M/2

∫ −αM

−(α+1)M

∫ M/2

−M/2

×
(√

(xj − xi)
2 + (yj − yi)

2
)2

× ρ(xj , xi, yj , yi)dxjdxidyjdyi

=
M 2

6k
. (8)

The initial optimal number of clusters is calculated by setting300

the derivative of E[Etotal ] in (6), with respect to k, to zero, as301

kopt =

√
ξfs ∗ N ∗ M 2

6ξmp ∗ d4
toSKi

. (9)

The optimal number of clusters kopt is calculated by (9) when302

the energy of sensors is sufficient to act as CHs. However, the303

residual energy of the sensors will decrease as the communica-304

tion travels. Once the residual energy is not enough to transmit305

all the information to the sink node as a CH in the current cluster306

scale, the number of clusters will increase to reduce the sensors307

in one cluster and decrease the load on the CHs. In this manner,308

the energy consumption of each CH will be reduced, and the in-309

formation transmission will be resumed. The strategy is helpful310

to extend the system lifetime.311

2) Initialize Clusters Based on K-Means++: After the num-312

ber of clusters k is determined, the K-means++ is performed313

to initialize the clusters. In this algorithm, the selected initial314

cluster centers are spread out as much as possible [27], ensur-315

ing the dispersion of the clusters. The algorithmic details of the316

K-means++ are shown in Table I.317

In step 4, the sensors far from the selected cluster centers will318

be selected as the new cluster center with high probability. In319

step 5, all the sensors will be divided into the kopt clusters based320

on the selected cluster centers.321

3) Initialize CHs Based on K-Means++: As shown in Fig. 4,322

the initial CHs are selected from the k clusters. The virtual CHs323

(the center points of clusters) are calculated by (10). Then, the324

sensors nearest to each virtual CH are selected as the initial CHs325

as follows:326

Virtual CHs (X(k), Y (k)) =
(∑nk

i=1 x(i)
nk

,

∑nk

i=1 y(i)
nk

)

(10)

TABLE I
CLUSTER INITIALIZATION BASED ON K-MEANS++

K-means++ Algorithm Cluster Initialization

Input: The N sensors deployed in a square monitoring region;
Output: The N sensors are divided into kopt clusters;

1: Step 1: determine the number of the clusters kopt based on (13).
2: Step 2: select one sensor as the first cluster center (CC1).
3: Step 3: calculate the distance between sensors and selected cluster centers;
4: repeat
5: for i = 1, 2, . . . , k; cluster centers
6: for j = 1, 2, . . . , N − k; cluster members

7: dtoCC j i =
√

(x(j)− x(i))2+(y(j)−y(i))2; calculate distance
8: until all the distances are calculated.
9: Step 4: select the kth cluster center (CCk , 1 ≤ k ≤ kopt )

10: repeat
11: for j = 1, 2, . . . , N − k
12: for i = 1, 2, . . . , k
13: dtoCC j = min(dtoCC j i ); select the minimum distance;

14: sum(d(xtoCHj )) =
N −k∑
j= 1

dtoCC j

15: pj = d(xtoCH j )/sum(d(xtoCH j )); define the selection
16: probability of the cluster centers
17: until all the kopt cluster centers are selected.
18: Step 5: Generate the initial clusters based on the kopt CHs.
19: repeat
20: for i = 1, 2, . . . , kopt
21: for j = 1, 2, . . . , N − kopt

22: dtoCC j i =
√

(x(j) − x(i))2 + (y(j) − y(i))2

23: for j = 1, 2, . . . , N − kopt
24: for i = 1, 2, . . . , kopt
25: dtoCC j = min(dtoCC j i )
26: dividing the jth sensor into the ith cluster;
27: until all the sensors are grouped into the corresponding clusters.

Fig. 4. Cluster initialization based on K-means++.

where nk is the number of sensors in the kth cluster. 327

The initial clusters and CHs obtained by K-means guarantee 328

that the sensors close to each other are divided into the same 329

cluster, which can reduce the energy consumption of non-CHs. 330

However, the size of the clusters is unpredictable, which is 331

related to the balance of CHs energy consumption. To prolong 332

the lifetime of the RIWMS, the initial CHs and clusters should 333

be further optimized. The K-means++ method obtaining the 334

initial CHs and clusters is not necessarily able to fully utilize 335
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the limited energy. They will be used as the initial clusters in336

the following cluster optimization.337

B. CH Selection and Rotation Probability Model338

In the cluster-based protocol, the energy consumption of CH339

is much more than that of non-CH sensors. Selecting and ro-340

tating the CHs before each transmission round starts will help341

to balance the energy among all sensors. In the CH selection342

and rotation, in addition to the candidacy probability and the343

sensors residual energy, the predicted energy consumption after344

the election is considered. This model could reduce the CH’s345

selected probability of incompetent sensors.346

1) Probability of CHs Candidacy: As described above, to347

balance the energy consumption among all sensors, each sensor348

should have a completely equal opportunity to operate as CH.349

This means that the N/k sensors in each cluster will have one350

chance to act as the CH in the following N/k rounds [8], [9].351

The probability of CH candidacy considers whether the sensor352

is selected as CH in the last r − 1 rounds. The probability is353

defined as [8]354

p1i(r) =

{
k

N −k∗r , Ci(r) = 1

0, Ci(r) = 0
(11)

where r ∈ [1, �N/k�] means that when all sensor nodes have355

rotated as CHs in previous rounds, r will be reset to 1 and356

increase to [N/k] in each subsequent round. �N/k� means that357

r will always round down to the nearest integer. Ci(r) represents358

the condition of the node i. If the node has been the CH in the359

previous r rounds, we set Ci(r) = 0 and vice versa.360

2) Ratio of Residual Energy: The residual energy of the sen-361

sors will vary after several transmission rounds, since362

1) the energy consumptions of CHs and non-CHs are363

different;364

2) the energy consumption of different CHs varies due to the365

different cluster scales and transmission distances; and366

3) the different distances from non-CHs to the CHs will also367

lead to the different energy consumptions of non-CHs.368

Therefore, in the CH selection and rotation phases, a higher369

ratio of residual energy yields a greater probability of CH selec-370

tion. The ratio of the residual energy is defined as371

p2i(r) =

∣∣Ei
Re(r) − Emin

Re (r)
∣∣

∑n
i=1

∣∣Ei
Re(r) − Emin

Re (r)
∣∣ (12)

where Ei
Re(r) represents the residual energy of the ith sensor372

before the rth round, and Emin
Re (r) is the minimum residual373

energy of all sensors in the cluster. Furthermore, the residual374

energy of the ith sensor before the rth round is computed as375

Ei
Re(r) = Ei

Re(r − 1) − Ei
Co(r − 1) (13)

where Ei
Co(r − 1) is the energy consumed by the ith sensor in376

the r − 1th round. If the sensor is CH in the r − 1th round, it is377

computed according to 378

ECo−CH(r − 1) = ERx(r − 1) + EDx(r − 1) + ET x(r − 1),
(14)

ERx(r − 1) = (nk − 1) ∗ l ∗ Eele , (15)

EDx(r − 1) = nk ∗ l ∗ EDA , (16)

ET x(r − 1) = l ∗ Eele + l ∗ ξmp ∗ d4
toSK(r − 1). (17)

If the sensor is non-CH in the r − 1th round, it is 379

computed by 380

ECo−NCH(r − 1) = l ∗ Eele + l ∗ ξfs ∗ d2
toCH(r). (18)

3) Ratio of the Predicted Energy Consumption: The pre- 381

dicted energy consumption of the CHs after the election is an- 382

other essential factor. The sensors with less energy consumption 383

as CHs will be selected in the following transmission round with 384

high probability. The ratio of the predicted energy consumption 385

in the following r + 1th round is defined as 386

p3i(r) =

∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣

∑nk

i=1

∣∣Ei
Co(r + 1) − Emax

Co (r + 1)
∣∣ (19)

where Ei
Co(r + 1) represents the predicted energy consump- 387

tion of the ith sensor in the following r + 1th round while it is 388

selected as CH. Emax
Co (r + 1) is the maximum predicted con- 389

sumption of the sensors in the cluster. The predicted energy 390

consumption can be calculated by (14)–(17). 391

The above-mentioned three factors are all considered in the 392

CH selection and rotation probability model. The probability is 393

defined as 394

pi(r) = ω1p1i(r) + ω2p2i(r) + ω3p3i(r)

S.T.

3∑

i=1

ωi = 1

0 ≤ p1i(r), p2i(r), p3i(r) ≤ 1 (20)

where ωi, i = 1, 2, 3 are the weighting coefficients, and they are 395

used to adjust the importance of each factor to the model. 396

The most appropriate CHs are selected and rotated based on 397

this model before each transmission round starts. They can be 398

used to support the cluster generation and optimization in the 399

following phases. 400

C. Cluster Generation and Optimization 401

Probability Model 402

After the CHs are determined, the clusters will be updated 403

accordingly to optimize the communication protocol and extend 404

the system lifetime. 405

For the RIWMS, the death of any sensor may potentially lead 406

to system instability or inspection failures. In this paper, the 407

valid lifetime of the system is defined as the time when more 408

than 90% of the sensors are alive. Hence, the optimal clusters 409

should guarantee all sensors remain alive as long as possible. 410

The optimal clusters are generated based on the following 411

two schemes. 1) Adjust the clusters scales to balance the energy 412

consumption among CHs. 2) Optimize the correspondence 413
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among the CHs and non-CHs to minimize the total energy con-414

sumption.415

1) Scale of Clusters: As mentioned before, the energy con-416

sumption of the CHs is related to dtoSK and the scale of clusters417

(number of non-CHs). dtoSK changes as the CHs rotate, and418

hence, the scales of clusters should vary correspondingly to bal-419

ance the energy consumption among the CHs. The optimization420

model is defined as421

f1(ECHi(ni)) = min
∑k

i=1 (ECHi(ni) − ECH)
2

k
(21)

where f1(ECHi(ni)) aims to minimize the variance of the CHs422

energy consumption, which represents the energy consumption423

balance degree among all CHs. ECHi represents the energy424

consumption of the CH in the ith cluster; ECH represents the425

average energy consumption for all CHs; and k is the number426

of clusters.427

The energy consumed by the CH in the ith cluster is calculated428

based on (1), as429

ECHi(ni) = l ∗ (ni ∗ Eele + ni ∗ EDA + ξmp ∗ d4
toSKi)

S.T.

k∑

i=1

ni ≤ N (22)

where ni(i = 1, 2, . . . , k) is the number of sensors in the ith430

cluster. The constraint implies that only the living sensors par-431

ticipate in the clusters generation and optimization.432

The average energy consumption of all the CHs is433

calculated as434

ĒCH =
∑k

i=1 ECHi(ni)
k

. (23)

2) CHs to Non-CHs Correspondence: Based on the435

above-mentioned model, the CHs have almost identical energy436

consumptions, while the energy consumption of each non-CHs437

sensor would vary while divided into different clusters. In the438

following model, the correspondences between the CHs and439

non-CHs will be optimized to minimize the energy consumption440

of non-CHs. The total energy consumption optimization model441

is given by442

f2(ENCHi , ECHj ) = min

⎛

⎝
N −k∑

i=1

ENCHi +
k∑

j=1

ECHi

⎞

⎠ , (24)

ENCHi = l ∗ Eele + l ∗ ξfs ∗
∑

j

rij∗d2
t o C H j

, (25)

rij =
{

1, sensor i is allocated to cluster j
0, otherwise

(26)

where f2(ENCHi , ECHj ) aims to minimize the total energy443

consumption of all sensors. ENCHi is the energy consumption444

of the ith non-CH sensor and ECHj is the energy consumption445

of the CH in the jth cluster. rij is the decision variable.446

The scales of the clusters are optimized to balance the energy447

consumption among the CHs, while the total energy consump-448

tion is minimized by optimizing the correspondence between449

Fig. 5. Flowchart for cluster optimization using NSGA-II.

the CHs and non-CHs members. The optimization of the corre- 450

spondence between the CHs and non-CHs will reversely affect 451

the cluster scales. It is obvious that the cluster generation is a 452

multi-objective optimization problem. It can be formulated as 453

min f(E) = (f1(ECHi), f2(ECHi , ENCHi)). (27)

The following two constraints should be considered: 1) there 454

are at least two nodes in each cluster, i.e., 2 ≤ ni ≤ N ; and 2) 455

the energy-exhausted, “dead” sensors should be excluded from 456

cluster generation, i.e.,
∑k

i=1 ni ≤ N . 457

The cluster generation and optimization is an NP-hard prob- 458

lem. Exact analytical methods face difficulty in obtaining the 459

optimal solutions when the scale of the problem is large. Heuris- Q1460

tic methods such as the GA are effective to solve such multi- 461

objective optimization problems in practice. 462

D. Cluster Optimization Based on the NSGA-II 463

The multi-objective optimization algorithm is adopted to op- 464

timize the clusters to minimize total energy consumption and 465

balance the consumption among all CHs. The NSGA-II is one 466

of the effective GA methods to solve multiple objective opti- 467

mization problems [26]. The optimization process is described 468

in Fig. 5. The optimal clusters can be obtained by the NSGA-II. 469

1) Population Initialization: The optimization process based 470

on the NSGA-II is intended to obtain the best solution (chromo- 471

somes) based on the initial population. The population consists 472

of m chromosomes. Each of them is composed of M genes, and 473

their positions and contents denote the sensor index and cluster 474

number [see Fig. 6(a)]. The sensor index [1, 2, . . . , N ] will be 475

assigned to sensors when they are deployed in the monitoring 476

region. The cluster number [1, 2, . . . , k] represents which cluster 477

the sensors belong to. 478
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Fig. 6. Representation and mutation: (a) Chromosomal representation;
and (b) shift mutation.

The initialization of the population would have a substantial479

influence on the cluster optimization speed and results, because480

all the chromosomes are generated based on the initial ones481

in the parent population. The initialized clusters based on K-482

means++ in this paper can provide better first chromosome in483

the initial parent population P . In the existing studies, the initial484

chromosome is generally generated randomly, while its genes485

are randomly scattered in the solution space. In contrast, the486

genes in the chromosome obtained by K-means++ are more487

concentrated and have smaller energy consumption. This ini-488

tial chromosome with higher fitness values (function values)489

will accelerate the optimization process. Subsequently, the other490

m − 1 chromosomes in the parent population are generated us-491

ing shift mutation methods based on the first chromosome [28].492

As shown in Fig. 6(b), two pairs of points are selected at ran-493

dom, then the rear points are inserted ahead of the front point494

and the front points are all shifted backward. The number of495

point pairs is determined by the mutation probability pm .496

2) Population Optimization: In the population optimization497

phase, we try to generate the optimal chromosomes within an498

acceptable timeframe. The offspring Q with m chromosomes499

is generated based on the parent population through crossover500

operation and the roulette wheel selection operation.501

The individual selection probability is defined as502

p(ci) =
g(ci)∑m
i=1 g(ci)

(28)

where ci is the ith chromosome and g(ci) is its fitness value,503

denoted as504

max g(ci) =
(

1
f1(ECHi)

,
1

f2(ECHi , ENCHi)

)
. (29)

Theoretically, greater residual energy renders larger proba-505

bility of selection. The two-point crossover and shift mutation506

are adopted in the following steps to create the new offspring507

Q. Subsequently, the offspring Q and the parent population P508

are combined into a new population R. The NSGA-II method509

is used to update the parent population P from R. Finally, the510

best chromosomes in the updated parent population P will be511

selected as the optimal clusters. The detailed process is shown512

in Table II.513

E. Steady Communication Phase514

After the optimal clusters and the most energy-efficient trans-515

mission route are determined, the system steps into the steady516

TABLE II
STEPS OF THE NSGA-II METHOD

NSGA-II Algorithm Population Optimization

Input: Algorithm parameters, the population scale m, the iteration times T ;
Output: Pareto optimal solution set P ;
1: Step 1: Create m initial chromosomes as the initial population P based on

K-means++;
2: Step 2: Generate m chromosomes in offspring Q based on the traditional

genetic algorithm;
3: Step 3: Combine the parent with offspring in population R;
4: Step 4: Fast-nondominated-sort R(mi )
5: All chromosomes in R are allocated into several layers according to

dominant relationships. The nondominant chromosomes in R are alloca-
ted to the first layer; the nondominant chromosomes in the remaining po-
pulation (removing the chromosomes in the first layer from R) are alloc-
ated into the second layer, and so on. The chromosomes in the same layer
are assigned the same Pareto value;

6: Step 5: Crowding distance assignment D(mi )
7: The crowding distance is defined as the sum value of multi-objective

functions. This is important because it allows the ranking of chromosomes
in the same layer;

8: Step 6: Elitism selection
9: Elitism selection is the selection of m chromosomes from R based

on R(mi ) and D(mi ). This strategy can be used to retain good individ-
uals and improve the overall level of population evolution;

10: Step 7: Judge if the terminal criteria are satisfied. If so, output the solution;
if not, return to Step 2.

communication phase. In this phase, the infrastructure condition 517

information is inspected, synthesized, and transmitted from the 518

sensors to the sink node. The steady communication process 519

is executed as follows. First, the inspected data packets from 520

non-CH sensors in each cluster are sent to the corresponding 521

CH. Then, all the received data packets are synthesized by their 522

respective CHs, which can reduce information redundancy and 523

minimize energy consumption. Finally, the synthesized infor- 524

mation packets at all CHs are transmitted to the sink node. 525

As shown in Fig. 3, the transmission rounds will repeat as long 526

as the sensors have sufficient energy. In this optimal communica- 527

tion protocol designed above in each round, the communication 528

between the sensors and sink node will operate in the energy- 529

efficiency ways. The valid lifetime of the railway infrastructure 530

monitoring wireless system will be extended ultimately. 531

V. SIMULATION VALIDATION AND ANALYSIS 532

In this section, the proposed protocol is validated via com- 533

puter simulations with Python 3.6.2. Comparative case studies 534

are carried out to demonstrate the superiority of the proposed 535

scheme. 536

A. Simulation Configuration 537

In the paper, a rectangular region (L × W : 500 m × 50 m) 538

along the rail is taken as the RIWMS monitoring area. The 539

monitoring region is divided into ten small square regions (L × 540

W : 50 m × 50 m) evenly, with ten sink nodes located above 541

them. The information inspected by the sensors in the small 542

square monitoring regions is sent to the corresponding sink 543

nodes and then transmitted to the BS. 544
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TABLE III
PARAMETERS OF THE OPTIMIZATION MODEL

No. Parameter Describe Value

1 Eele Electronic energy 50 nJ/bit
2 ξfs Amplifier energy (d2) 10 pJ/bit/m2

3 ξm p Amplifier energy (d4) 0.0013 pJ/bit/m4

4 Ein Initial energy 0.02 J
5 N Sensor number 200
6 l (bit) Data packets size 150
7 kopt Clusters number 8
8 Sink node Location (25, 50)
9 Sensor nodes Square monitoring region [(0 25), (0 –25), (50 –25),

(50 25)]
10 m Population size 100
11 pm Mutation rate 0.01
12 pc Crossover rate 0.85
13 t Termination conditions 400
14 α Distance adjust parameter 0.6

This paper focuses on the protocol optimization of the com-545

munication between the sensors and sink nodes. We pick one546

sink node and 200 sensors in the corresponding small square547

monitoring region as the simulation objects. In this simulation548

scenario, the rail is considered as the X-axis, and its terminal549

point, which is far away from the BS, is set as the origin. The550

parameters used in the simulations are shown in Table III.551

Based on (7), (9), and the simulation environment parame-552

ters in Table III, we can get E[d2
toSKi ] = 3264 m2 and initial553

optimal clusters number is kopt = 7.75. Since the number is a554

positive integer, we set k = 8 for the experiments in this paper.555

Moreover, the residual energy of the sensors declines with the556

communication. To reduce the load on the CHs and guarantee557

connectivity of the communication system, we increase the clus-558

ters number at the rate of 1 once the energy of the existing CHs559

is not sufficient to transmit all the information from their own560

clusters to the sink node. The crossover and mutation rates were561

experienced from the range of (0.75,0.95) and (0.005,0.02), re-562

spectively [28]. In this paper, they are selected as pc = 0.85 and563

pm = 0.01.564

B. Simulation Results and Analysis565

For a railway infrastructure wireless monitoring system,566

four aspects should be considered to ensure the stability and567

continuity.568

1) The system valid lifetime569

In this paper, the valid lifetime of the RIWMS is represented570

by the number of alive sensors and the total residual energy of571

all sensors after several transmission rounds.572

1) The balance of energy consumption across all sensors573

Balancing the energy consumption aims to avoid the death of574

some sensors due to energy exhaustion.575

The variance of the remaining energy of all sensor nodes is576

used to reflect the balance of energy consumption, defined as577

VRE =
∑M

k=1 (EREk (r) − ERE(r))
2

M
(30)

Fig. 7. Comparison of number of alive sensors.

where M is the number of sensor nodes in the first monitoring 578

region; EREk (r) is the remaining energy of sensor node k at 579

time t; and ĒRE(r) is the average remaining energy of all sensor 580

nodes. 581

Furthermore, the inspection data received at the sink node 582

should be another major criterion to support the infrastructure 583

condition estimation and prediction. 584

The comparisons among the proposed CVLMP, FAF-EBRP 585

[10], and MOFCA [11] are conducted based on the aforemen- 586

tioned four criteria. To ensure the accuracy of the comparisons, 587

the CHs setting and clusters generation for the two protocols are 588

all implemented strictly according to the algorithm flow in [10] 589

and [11]. Moreover, the CVLMP, MOFCA, and FAF-EBRP are 590

all performed under the unique simulation environment (i.e., 591

the railway wireless monitoring system) to guarantee the fair 592

comparison. Additionally, we compare the solution based on 593

the traditional NSGA-II, which generates the initial population 594

randomly. 595

We compare and justify the performances of the proposed 596

CVLMP with other two protocols FAF-EBRP and MOFCA in 597

four criteria, as shown in Figs. 7–10. 598

1) From Fig. 7, we see that all sensors died after 190 trans- 599

mission rounds using the CVLMP, whereas using the 600

FAF-EBRP, the sensors death begins at 150 rounds and 601

decreases quickly to 0 by 175 rounds. Using the MOFCA, 602

the tendency of sensors death is similar to but a bit more 603

than using the FAF-EBRP. The efficiency of the protocols 604

is compared in Fig. 8 in terms of the total residual en- 605

ergy. Using CVLMP, FAF-EBRP, and MOFCA, the total 606

residual energy declines are all smooth, while the most 607

residual energy is using the CVLMP. Thus, the CVLMP 608

is proved to be the longest-running protocol. 609

2) The variance of the residual energy in the CVLMP is 610

smaller than those of the other two, as shown in Fig. 9, 611

revealing that the CVLMP remains the most balanced en- 612

ergy consumption of all sensors. The CVLMP can keep 613

all the sensors alive to the utmost and ensure the connec- 614

tivity of the entire network. 615



IEE
E P

ro
of

10 IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS

Fig. 8. Comparison of the total residual energy of all sensors.

Fig. 9. Comparison of the residual energy variance of all sensors.

Fig. 10. Comparison of total data received at the sink node.

3) As shown in Fig. 10, the total data received at the sink 616

nodes using the CVLMP are about 1.2 times of that us- 617

ing FAF-EBRP and MOFCA. Therefore, the protocols 618

proposed in this paper render significantly more trans- 619

mission rounds and received data in comparison with the 620

other two methods, and this is crucial to maintaining the 621

stable railway infrastructure monitoring and condition 622

analysis. 623

4) Additionally, Figs. 7–10 reveal that the performances of 624

the system using the CVLMP, which initializes the popu- 625

lation by K-means++, are better than those using the ran- 626

dom initialization population. Moreover, we found that 627

the performances are not stable using the random GA 628

due to the uncertain initialization population with lim- 629

ited iterations. More advanced control and monitoring 630

schemes with robustness need to be studied in the future 631

to optimize the system performance further [29], [30]. 632

VI. CONCLUSION 633

Wireless railway infrastructure condition monitoring network 634

is vital to the railway industry. Safe and efficient railway oper- 635

ations require a sufficient lifetime of the sensor network. This 636

paper proposes a novel CVLMP to maximize the lifetime of 637

the monitoring system. The optimization models are used to ro- 638

tate the CHs and optimize the clusters before each transmission 639

round starts, so as to minimize the total energy consumption and 640

to balance the energy consumption among sensors. 641

Simulation results demonstrate that the superiority of the pro- 642

posed CVLMP is threefold. 643

1) Compared with FAF-EBRP and MOFCA models in the 644

literature, the CVLMP can effectively prolong the life- 645

time of the monitoring system by 23%, all else being 646

equal. 647

2) The CVLMP has superior performance in optimally con- 648

serving the total residual energy of all the sensors and 649

balancing energy consumption among sensors. 650

3) The monitoring data received at the sink node are more 651

than those using the other two methods. 652
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