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A B S T R A C T

There are annually over two million carloads of hazardous materials transported by rail in the United States. The
American railroads use large blocks of tank cars to transport petroleum crude oil and other flammable liquids
from production to consumption sites. Being different from roadway transport of hazardous materials, a train
accident can potentially result in the derailment and release of multiple tank cars, which may result in significant
consequences. The prior literature predominantly assumes that the occurrence of multiple tank car releases in a
train accident is a series of independent Bernoulli processes, and thus uses the binomial distribution to estimate
the total number of tank car releases given the number of tank cars derailing or damaged. This paper shows that
the traditional binomial model can incorrectly estimate multiple tank car release probability by magnitudes in
certain circumstances, thereby significantly affecting railroad safety and risk analysis. To bridge this knowledge
gap, this paper proposes a novel, alternative Correlated Binomial (CB) model that accounts for the possible
correlations of multiple tank car releases in the same train. We test three distinct correlation structures in the CB
model, and find that they all outperform the conventional binomial model based on empirical tank car accident
data. The analysis shows that considering tank car release correlations would result in a significantly improved
fit of the empirical data than otherwise. Consequently, it is prudent to consider alternative modeling techniques
when analyzing the probability of multiple tank car releases in railroad accidents.

1. Introduction

Each year, over two million carloads of hazardous materials
(hazmat) are transported by American railroads (AAR, 2017). Although
hazardous materials accounts for only 7% of U.S. rail traffic, it is re-
sponsible for a major share of railroads’ liability and insurance risk
(AAR, 2017). Since 2005, the shale oil production boom in North
America has led to significant growth in rail transport of flammable
liquids. Being different from roadway transport of hazardous materials,
a train can carry multiple tank cars, sometimes over 100 tank cars in a
single train. Therefore, a train accident has the potential to cause the
derailments and releases of multiple tank cars. Several recent multiple-
tank-car release incidents, particularly the derailments in Lac-Mégantic,
Canada in July 2013, Aliceville, Alabama in November 2013, and
Casselton, North Dakota in December 2013, all underscore the vital
importance of understanding and preventing multiple-car release risk
(Liu et al., 2014; Liu, 2017).

One principal task in railroad hazmat transportation risk manage-
ment is to understand the number of tank cars releasing per train ac-
cident. Previous studies predominantly assumed that tank car releases

per train accident are mutually independent. Under this assumption,
binomial distribution has been used to estimate the number of tank cars
releasing given the total number of tank cars derailed (e.g. Nayak et al.,
1983; Glickman et al., 2007; Bagheri et al., 2011, 2012, 2014; Liu et al.,
2014). To our knowledge, Liu and Hong (2015) was the only published
study that accounts for the dependency between tank car releases in the
same accident. They found that Beta Binomial model outperforms the
traditional binomial model based on one empirical dataset. Their study
finds that accounting for tank car release dependency could sub-
stantially change risk estimation for the incidents involving a large
number of tank cars releasing contents. Therefore, an accurate esti-
mation of multiple tank car release probability is very critical for rail-
road hazardous materials risk management.

However, Liu and Hong (2015) paper has two major limitations.
First, only one type of dependency structure is considered. It is worth
investigating whether other dependency structures could further im-
prove the fit of the empirical data. Second, they focused on modeling
the conditional mean value of the number of tank cars releasing per
accident. In addition to the conditional mean, other distributional sta-
tistics (e.g. median, 80th percentile) are also worth investigation,
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especially when the distribution of tank cars releasing is asymmetrical.
This paper aims to advance railroad hazardous materials transpor-

tation risk analysis, with the following two objectives:

• Modeling multiple tank car release probability using alternative
correlated binomial models (including Beta Binomial model,
Increment Risk model and Family History model, respectively), in
comparison with the binomial model that assumes no dependency
between tank car releases

• Explore the use of quantile statistics to measure the severity of a
railroad hazmat release incident, in addition to using the conditional
mean

This research focuses on the releases caused by mechanical damage
incurred by tank cars in train accidents, without accounting for the
releases resulting from thermal tearing, which is a process by which a
fire impinging on the tank causes the steel to weaken. Accounting for
thermal-tearing-caused tank car release risk is the next step of this
work.

The paper is structured as follows. Section 2 presents a review of the
literature and clarifies the intended contributions of this paper. Section
3 introduces the statistical methodology that is comprised of three types
of correlated binomial models. Section 4 presents the data used for
statistical modeling. Sections 5 to 7 discuss the results and implications
to railroad safety analysis. Sections 8 and 9 conclude the study and
suggest possible future research directions.

2. Literature review

Tank cars today are the second most common type of railroad
freight car in North America, accounting for approximately 20 percent
of the rail car fleet (Barkan et al., 2013). Tank cars annually transport
over two million shipments of hazardous materials that are essential to
the nation’s economy (Barkan et al., 2013).

The Railway Supply Institute (RSI) and the Association of American
Railroads (AAR) developed industry-wide tank car accident statistics
since the 1970s (Treichel et al., 2006). Using this database, the AAR-RSI
published statistics regarding the safety performance of a tank car by its
safety design. For example, if a non-jacketed 111A100W1 (7/16 inch
tank thickness) derails, its release probability is 0.196. By contrast, the
release probability of a jacketed CPC-1232 car (7/16 inch tank thick-
ness) is reduced to 0.046. Note that the published AAR-RSI tank car
accident statistics focus on single tank cars, without accounting for the
possible correlation between multiple tank car releases within the same
train accident.

In railroad hazmat transportation risk analysis, the estimation of the
number of tank cars releasing is a pivotal task. Differing from roadway
transport of hazardous materials, a train accident can potentially cause
the derailment and releases of multiple tank cars. Given the total
number of tank cars derailed, the number of tank cars releasing ha-
zardous materials follows a probabilistic distribution, depending on
whether tank car releases within the same accident are independent:

a Derailed tank cars have independent release probabilities. Almost all
previous studies were based on this assumption and they used a
binomial distribution to estimate the total number of tank car re-
leases given the number of tank cars derailed (e.g. Nayak et al.,
1983; Glickman et al., 2007; Bagheri et al., 2011, 2012, 2014).

b Derailed tank cars in the same accident have correlated release
probabilities. This scenario accounts for the interactions among tank
car release probabilities within the same train accident. To our
knowledge, the only published study addressing this scenario was
presented by Liu and Hong (2015). They used a Beta Binomial
model to describe a specific correlation structure between releasing
tank cars, and found that the Beta Binomial model outperformed the
traditional binomial model.

While Liu and Hong (2015)'s study indicates the promise of fitting
the tank car accident data by accounting for the correlations of tank car
releases within the same train accident, there are still a number of
unexplored questions, including at least the following:

• Would different correlation structures have different fits of the
empirical tank car safety data?

• Does a particular model always have a better performance than
another model, or is the model performance is dependent on the
specific dataset?

• How do we measure the severity of a railroad tank car release in-
cident? Do we use the conditional mean value or quantile statistics?
How would these statistics vary in different statistical models?

This paper is intended to establish a new methodological framework
for analyzing tank car releases based on historical railroad tank car
accident data. In particular, we consider three alternative correlated
binomial models, including Beta Binomial (BB) model, Family History
(FH) model and Increment Risk (IR) model, respectively. Two in-
dependent sample datasets are used to validate and compare the per-
formance of these models, versus the conventional binomial model.
Finally, based on the model output, we analyze the mean value and
quantile statistics of the probabilistic distribution of the number of tank
cars releasing per train accident.

3. Statistical methodology

Derailment is a common type of freight-train accident in the United
States (Liu et al., 2012; Liu, 2016). Therefore, this paper focuses on
derailment-caused tank car releases. Let Di denote the release of the ith

derailed tank car in a train derailment (Di = 1 if this car releases and 0
otherwise). Let Pi denote its release probability (also called Bernoulli
probability). As a result, the total number of tank cars releasing (denote
as Yn) given n tank cars derailed in a freight-train derailment can be
expressed as:

∑=
=

Y Dn
i

n

i
1 (1)

The release of a derailed tank car can be viewed as a Bernoulli
variable. It can be assumed that the Bernoulli indicators Di are depen-
dent in such a way that the conditional probability of release in any
tank car releasing depends on the total number of cars releasing prior to
the particular tank car. As described in Liu and Hong (2015), this as-
sumption seems to be reasonable given the fact that the total number of
cars releasing reflects the total accident kinetic energy, which is related
to tank car release probability (Liu et al., 2014).

Mathematically, the above-mentioned dependency assumption is
expressed as follows:

= … = = + + …+− −D D D D P D D D DP( 1 , , , ) ( 1 )i i1 2 1 2i i1 1 (2)

For illustrative convenience, we adopt a more concise notion of tank
car release dependency based on a previous statistical study from Yu
and Zelterman (2002):

= = + + + =−C s P D D D D s( ) ( 1 ... )n n n1 2 1 (3)

where Cn(s) denotes the conditional probability that the nth derailed
tank car would release, given that there are s tank cars releasing prior to
it. We also define C1 = C1(0) = P(D1 = 1). Let Pn(s) (n ≥ 1) denotes
the probability of releasing s tank cars out of n derailed tank cars, that is

= + …+ =P s P D D s( ) ( )n n1 (4)

Using the Law of Total Probability (LTP), we can derive Pn using the
following recursive algorithm:

= − − + −− −P s C s P s C s P s( ) ( 1) ( 1) [1 ( )] ( )n n n n n1 1 (5)

Eq. (5) provides a recursive algorithm to calculate the probability
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mass function (PMF) of the number of dependent tank car releases (s)
given the number of tank car derailed (n) per train derailment. Based on
Eq. (5), we can also calculate the probability of the two extreme sce-
narios, which are either all derailed tank cars release Pn(n), or none of
the derailed cars release Pn(0).

∏=
=

−

+P n C i( ) ( )n
i

n

i
0

1

1
(6)
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1
(7)

If the conditional probability Cn(s) is not dependent on the total
number of cars derailed (n), we can simplify Cn(s) = C(s). Accordingly,
Pn(s) can be written as
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The conditional probability Cn(s) can have different forms, each of
which can lead to a different correlated binomial model. This paper
considers three correlated binomial models based on different Cn(s)
functions. Appendix A will discuss each alternative model.

In the three correlated binomial models, the parameters can be
fitted to the empirical data using the method of Maximized Likelihood
(ML). Using the Family History model as an example, its parameters p
and p’ can be derived by maximizing the likelihood function:

∏′ = ′p p P Y( , ) arg max ln[ ( )]p p
k

k,

(9)

where (p, p ') are parameters in the Family History model and P(Yk) is
the probability of releasing Yk tank cars in the kth train accident.
Similarly, the parameters in other models can be derived accordingly
(note: the Family History model will be introduced in Appendix A).

4. Model development and comparison using empirical data

To illustrate the application of our methodology, we assembled two
independent, random samples of hazardous material train derailments
between 1990 and 2010 based on data from the US railroad industry.
The datasets used for the statistical analysis are presented in Appendix
B. The purpose of using multiple random samples is to understand
whether the “best” statistical model depends on the selected data. In
those train derailments, all the derailed tank cars conform to non-
jacketed DOT 111A100W1 tank car design features (7/16 inch tank
thickness and head thickness). This was one of the common hazardous
materials tank cars used in North America (Liu and Hong 2015). De-
railment speed is approximately 30 mph. Each train accident resulted in
10 railcars derailed (including both hazmat cars and non-hazmat cars).
The selection of “homogeneous” accident conditions could better iso-
late the effect of tank car release dependency by controlling other
factors constant. The likelihood values of the four models with para-
meters estimation from two data sets are shown below.

A higher likelihood value indicates a better fit of the empirical data.
For the first dataset, the likelihood of Beta Binomial model is the
highest among the four models (Table 1). However, for the second
dataset, the Increment Risk model has the highest likelihood. In both
datasets, the binomial model has the lowest likelihood. It indicates that
the empirical data exhibits interdependency among tank car releases.

Besides comparing alternative correlated binomial models, we also
used a likelihood ratio (LR) test to examine whether the correlation
parameter is significant in the Beta Binomial model, Family History

model and Increment Risk model, each compared to the benchmark
binomial model. The detailed process is as follow. For illustrative
convenience, we only use Family History model as an example:

Null Hypothesis H0 : p = p ' (no tank car release correlation within
the same train accident).

Alternative Hypothesis H1 : p ≠ p ' (there is tank car release corre-
lation within the same train accident)

To test the hypothesis, a statistic called Deviance is calculated as
follows:

= × −D L Family History L Binomial2 [ln ( ) ln ( )]

where D = deviance, lnL(Family History) = logarithmic likelihood of a
Family History model and lnL(Binomial) = logarithmic likelihood of a
binomial model.

According to the statistical theory, the deviance approximately
follows a Chi-square distribution (Agresti 2007). Using the information
from Table 1a and b, we have the deviance and P-value table below in
Table 2a and b:

It is found that the correlation parameter in each of the three models
is statistically different from zero (P < 0.01), indicating that the ne-
cessity of accounting for tank car release interdependencies exhibited
from the empirical data. Finally, we conduct a Chi-square goodness-of-
fit test to study whether the four models adequately fit the empirical
tank car accident data:
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0
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(10)

Table 1
(a) Parameter estimates (data set I). (b) Parameter estimates (data set II)

a)

Binomial Beta Binomial Family History Increment Risk

Parameter
Estimation

0.216 (p, α) =
(0.222, 0.656)

(p, p′) =
(0.171, 0.618)

(α, β) =
(−1.584, 1.626)

Log-likelihood −48.60 −43.62 −44.70 −44.64
Likelihood 7.83E − 22 1.13E − 19 3.87E − 20 4.11E − 20

b)

Binomial Beta Binomial Family History Increment Risk

Parameter
Estimation

0.209 (p, α) =
(0.178, 0.537)

(p, p′) =
(0.128, 0.720)

(α, β) =
(−1.877, 1.451)

Log-likelihood −64.39 −52.20 −53.33 −50.56
Likelihood 1.08E − 28 2.14E − 23 6.91E − 24 1.10E − 22

Table 2
(a) Likelihood Ratio Test, Compared to the Binomial Model (Data Set I). (b) Likelihood
Ratio Test, Compared to the Binomial Model (Data Set II).

a)

Family History Increment Risk Beta Binomial

Deviance 7.8 7.92 9.96
P-value 0.005 0.005 0.002

b)

Family History Increment Risk Beta Binomial

Deviance 22.12 27.66 24.38
P-value 2.56E-6 2.43E-7 7.91E-7
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where Oi is the observed number of tank cars releasing per train de-
railment; and Ei is the expected (mean) number of tank cars releasing
per accident using the probabilistic model. For the binomial and Beta
Binomial model, their expected means can both be expressed as

=E Y np[ ]n For the Family History model, the mean of Yn is
= ′ + − ′ − −E Y np p p p p[ ] ( )/ [1 (1 ) ]n

n . For the Increment Risk model,
we don’t have a closed form of the mean of Yn, but we can numerically
calculate the expected value of Yn. Using the raw data and equations
above, we conduct Chi-square tests on both empirical data sets. The
detailed results are shown in Table 3.

From the above two tables, for data set 1, all of the four models
adequately fit the empirical data set. However, for data set 2, neither
the binomial or Beta Binomial models would fit the empirical data (they
have the same expected values of Yn). By contrast, the Increment Risk
model seems to have the “best” performance based on the likelihood

value (Table 1b). All the three correlated binomial models outperform
the traditional binomial model based on the likelihood value for both
Table 1a and b. Depending on the specific dataset, the proper model can
be developed and validated using the methodology presented in this
paper.

5. Practical application to railroad safety analysis

The correlated binomial models can be used to predict the prob-
abilistic distribution of the number of tank cars releasing given the total
number of tank cars derailed. For example, assuming that there are 10
tank cars derailed, the possible number of tank cars releasing ranges
from 0 to 10 (11 scenarios). Fig. 1a and b present the predicted prob-
abilistic distribution of the number of cars releasing out of 10 tank cars
derailed, using binomial model, Family History model, Incremental
Risk model as well as the Beta Binomial model, respectively. The
parameters in Fig. 1a are based on dataset I, and the parameters in
Fig. 1b are based on dataset II (Table 3).

From the two figures above, the distribution functions of the four
models are quite different. For the Beta Binomial model, the probability
of a multiple-car release decreases for an increasing number of tank
cars. For the binomial model, it’s highly skewed to the small value of
tank cars releasing. The other two models, Family History model and
Increment Risk model predict a higher probability of a larger number of
cars releasing. Both models tend to reflect a large number of tank cars
releasing contents.

The significant difference between the binomial model (non-de-
pendency assumption) and the three alternative correlated binomial
models has important practical implications. Currently, research has
predominantly used the binomial model to estimate the number of tank
car releasing in railroad hazmat transportation risk analysis. As shown
in both Fig. 1a and b, the binomial model predicts an extremely low
probability of a very large number of cars releasing. By contrast, the
correlated binomial models, particularly the Incremental Risk model,
provides a much higher prediction of a large, multiple-car release in-
cident. For example, in Fig. 1b, the probability that all derailed tank

Table 3
(a) Chi-square goodness-of-fit test (data set I). (b) Pearson Chi-square goodness-of-fit test
(data set II).

a)

Binomial Beta
Binomial

Family
History

Increment Risk

Chi-square value 61.2 61.2 65.69 66.52
p-value (DF = 55) 0.26 0.26 0.15 0.14
Conclusion (Type I

error = 0.05)
Fit Fit Fit Fit

b)

Binomial Beta
Binomial

Family
History

Increment Risk

Chi-square value 78.86 78.86 68.03 73.48
p-value (DF = 58) 0.03 0.03 0.17 0.08
Conclusion (Type I

error = 0.05)
Not fit Not fit Fit Fit
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Fig. 1. a Daistribution of tank cars releasing by different models from data
set I. (10 tank cars derailed per accident). Notes: The parameter estimation
was obtained from Table 1a. (b) Dbistribution of tank cars releasing by
different models from data set II.(10 tank cars derailed per accident).
Notes: The parameter estimation was obtained from Table 1b.

X. Liu et al. Accident Analysis and Prevention 107 (2017) 164–172

167



cars release hazardous materials is 1.56E-7 for binomial model (1.56
out of 10 million chance), 0.01 for Beta Binomial model, 0.007 for
Family Historical model and 0.035 for Incremental Risk model.

To be prudent in risk analysis, we suggest the analysts to test at least
these four models (and other models if proper) to understand 1) which
model better fits the empirical data; and 2) the impacts of influencing
factors on the corresponding predicted distribution. Besides the four
models considered herein, there might be other forms of tank car re-
lease probabilistic modeling. When these models and the needed in-
formation are available, the methodology procedure in this paper can
be adapted accordingly.

6. Quantile index of the number of tank cars releasing per
accident

In the probabilistic distribution, certain statistics such as the mean
or quantiles can be useful in practice to indicate the “severity” of a
hazmat release incident, as measured by the number of tank cars re-
leasing contents. For illustration, we used the empirical dataset I to
develop a quantile-based analysis using the median (50% quantile) and
80% quantile, respectively (Table 4). We used the dataset with 56 ob-
servations to evaluate the difference of the estimated median values
using different correlated binomial methods. Strictly, the probabilistic
distribution of the number of tank cars releasing (denote as s) is dis-
crete. In this example, we use a linear function to extrapolate quantile
statistics. For instance, suppose the number of total derailed cars is 2
(i.e. n = 2), and P(s= 0) = 0.4, P(s≤ 1) = 0.76. In this case, there
are no integer values for s to attain the probability of 0.5 exactly. As a
result, we linearize the cumulative distribution of s between 0 and 1
(0.4 and 0.76), and interpolate a point which has the exact value of 0.5
in the cumulative density function. This linearization approach allows
us to obtain any quantile statistics and directly compare the quantile
outputs derived from different models.

The quantile statistics provide a complementary way for railroad
safety analysts to estimate hazmat train release severity as measured by
the number of cars releasing contents. For example, if the 80% quantile
statistic is used, we can estimate the maximum number of cars releasing
with 80% of the cumulative probability. This would provide additional
information to the estimation of hazmat release severity that is solely
based on the mean (average) value. For instance, for the 49th incident
(ID = 49) in dataset I, 4 tank cars are derailed, among which 2 cars
released contents. This empirical severity (2 tank cars releasing con-
tents) is close to the predicted 80th percentile using the Family History
model or Incremental Risk model. For both models, the 80th percentile
values are around 1.8, indicating that there is 20 percent chance (1-0.8)
that the empirical number of tank cars releasing given 4 cars derailed
would be higher than 1.8. For the same accident, the mean (average)

number of cars releasing is around 1.1 (Appendix A). Again, these
parameters were developed based on train accidents with non-jacketed
DOT 111A100W1 car, 10 railcars derailed (including non-tank cars),
accident speed 30 mph. The model can be adapted to other railroad
operating scenarios.

7. Recommendations for railroad hazmat transportation risk
analysis

Based on this research, we make the following recommendations for
the research community when conducting railroad hazmat transporta-
tion risk analysis:

• The two empirical tank car accident datasets exhibit statistically
significant correlations among tank car releases within the same
train accident. In the presence of multiple-tank-car release correla-
tions, the binomial model in the literature could significantly mis-
estimate the chance of a very large number of cars releasing con-
tents.

• Three alternative correlated binomial models can be adapted to
specific datasets. According to the analysis of the two data samples,
the Family History model and Increment Risk model tend to predict
a much higher probability that all (or most) of the derailed cars
release their contents. This is a very important safety concern to
both researchers and practitioners in railroad community. The
analysis shows that the estimated probability of all-derailed-tank-
car-release-contents would vary by magnitudes when using different
probabilistic models. This also suggests that analysts should pru-
dently consider alternative statistical modeling approaches to
properly analyze tank car safety data. Researchers and practitioners
can use the model to assess hazardous materials transportation risk,
thereby evaluating and implementing promising risk mitigation
strategies, such as tank car safety improvement.

• In addition to the conditional mean (average), researchers can also
consider quantile statistics, to measure the severity index of the
number of tank car releasing. When the probability distribution of
the number of tank car releasing is highly skewed, quantile statistics
could provide a more comprehensive view of the output.
Particularly, quantile statistics can help analysts better understand
tank car release risks in more extreme (or worst case) scenarios (e.g.
80% quantile severity instead of the average severity).

8. Conclusions

This research analyzes the number of tank car releases in a train
derailment, using four alternative correlated binomial models. When
there exist correlations among tank car releases within the same

Table 4
Quantile-based hazmat release severity index. (using dataset I as an example, only 12 records are displayed here for illustration)

ID N (number of tank cars
derailed)

S (number of tank cars
releasing)

Binomial Beta
Binomial

Family
History

Incremental Risk Binomial Beta
Binomial

Family
History

Incremental Risk

Median (50% quantile) 80% quantile

1 1 0 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
2 1 1 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
3 1 0 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
4 1 1 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
5 2 0 0.0000 0.0000 0.0000 0.0000 0.5478 0.6068 0.5421 0.4966
6 4 0 0.2945 0.0000 0.1546 0.1248 1.0359 1.4758 1.8326 1.8626
7 1 0 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
8 5 0 0.5005 0.0000 0.7328 0.5841 1.4275 1.8951 2.5104 2.8088
9 1 0 0.0000 0.0000 0.0000 0.0000 0.0750 0.1003 0.0000 0.0000
10 3 0 0.0465 0.0000 0.0000 0.0000 0.7993 0.9857 1.1971 1.0127
11 2 1 0.0000 0.0000 0.0000 0.0000 0.5478 0.6068 0.5421 0.4966
12 2 0 0.0000 0.0000 0.0000 0.0000 0.5478 0.6068 0.5421 0.4966
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accident, the three correlated binomial models (i.e., the Beta Binomial
model, the Family History model, and the Increment Risk model) have a
better fit to the empirical data than the traditional binomial model.
Based on the empirical data used in this paper, the Family History
model and Increment Risk model may predict a much higher prob-
ability of a very large number of tank cars releasing (e.g. all derailed
tank cars release contents). Also, we propose the use of quantile sta-
tistics (e.g. median, 80% quantile) to evaluate the number of tank cars
releasing, in addition to the conditional mean (average). The metho-
dology developed in this paper can be used by railroad analysts to
improve the accuracy of risk analysis with respect to rail transport of
hazardous materials.

9. Future research

First, there is still lack of knowledge regarding the dissipation of
accident kinetic energy and the dynamics of hazardous materials train
derailments, as well as the occurrence of thermal-tearing-caused re-
leases in fires. While this paper focuses on the releases caused by me-
chanical damage incurred by tank cars from a statistical perspective,
both physical impact and thermal tearing impact deserve more research
in the future. Second, this paper does not account for interactive effects
among different types of hazardous materials. Future research can be
conducted to model this type of risk when a train carries multiple types
of hazardous materials.

Appendix A. —Correlated binomial modeling

(A.1) Family History (FH) model

In the Family History (FH) model, we denote two probability parameters p and p’
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The model assumes that the conditional probability of a tank car releasing is p, if no other tank cars prior to it release contents. If there is already
at least one tank car releasing, then p’ is the conditional probability instead. In particular, if p = p’, then the Bernoulli variables Di are independent
and their sum Yn is a binomial distribution. Binomial model is a special case of the FH model. The FH model was originally used in a medical research
study by Yu and Zelterman (2002). The FH distribution of Yn has the form:
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Based on Equations (A.1) and (A.2), we can derive the probability distribution of dependent tank cars releasing in the same train derailment. The
mean and variance of the number of tank cars releasing are:

= ′ + − ′ − −E Y np p p p p[ ] ( )/ [1 (1 ) ]n
n (A.3)

= ′ − ′ + − ′ + ′ − − − ′ − − ′Y np p p p np p p p p p p pvar[ ] (1 ) ( ){(1 2 ) (1 ) ( )(1 ) }/n
n n2 2 (A.4)

The two equations show that the FH model has different mean and variance values, compared to the binomial model.

9.1. Increment Risk (IR) Model

An alternative model can be used when the conditional probability of releasing Cn(s) is a strictly monotone function with respect to the number of
tank cars that release contents. This model is called Incremental Risk (IR) model, with the following structure:
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where α and β are two parameters that need to be determined. Binomial model is a special case in which β = 0. The parameterβ indicates the sign of
the dependency between tank car releases. If β > 0, there is a positive dependency between tank car releases. If β < 0, it will be a negative
dependency. The probability of P(Yn = s) for this model can be computed numerically from the recursive relation given at Eq. (5). The initial
condition of the recursive process can be achieved as below.
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Using Eq. (6), we have
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There is no closed form of the distribution function of the Increment Risk model, we can only calculate it as well as the mean values numerically
from Eq. (5).

9.2. Beta Binomial (BB) Model

The third correlated binomial model we used is the Beta Binomial model, which was also the one studied in Liu and Hong (2015). This model
considers the total number of tank cars derailed (n) in the tank car release dependency structure. The Beta Binomial model takes the following form:

=
+
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where parameter 0 < p < 1 and α ≥− p/N, N is the largest number of derailed tank cars. In this model, the sign of α determines the sign of the
dependency between the releasing cars. Obviously, when α= 0, it is simplified as the binomial model. Using the recursive relation in (5), we can get
the distribution of Yn is
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which is the beta binomial distribution with parameters p/α and (1 − p)/α. We can also calculate the mean and variance function of the beta
binomial model as

=
= − + − +

E Y np
Var Y np p n α α

[ ]
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n
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Appendix B. —Tank car release data sets and results

For example, in the 8th accident (Accident ID = 8), there were 5 tank cars derailed (n = 5), and none of them released contents (s = 0). Using
the Family History (FH) model, the predicted mean (average) number of tank cars releasing in this accident is 1.50. Also, the estimated probability of
having this observation (i.e. none of the five derailed tank cars release contents) is 0.39. These parameters were developed based on train accidents
with non-jacketed DOT 111A100W1 car, 10 railcars derailed (including non-tank cars), accident speed 30 mph.

Data Set I (parameter estimators of each model are in Table 1a).

Predicted Conditional Mean
(Average)

Estimated Probability of the
Observation

Accident ID Number of Tank Cars Derailed Number of Tank Cars Releasing Bin BB FH IR Bin BB FH IR

1 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
2 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
3 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
4 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
5 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
6 4 0 0.86 0.86 1.09 1.10 0.38 0.56 0.47 0.47
7 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
8 5 0 1.08 1.08 1.50 1.57 0.30 0.53 0.39 0.39
9 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
10 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
11 2 1 0.43 0.43 0.42 0.40 0.34 0.21 0.21 0.22
12 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
13 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
14 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
15 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
16 6 4 1.30 1.30 1.94 2.13 0.02 0.06 0.14 0.12
17 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
18 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
19 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
20 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
21 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
22 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
23 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
24 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
25 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
26 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
27 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
28 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
29 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
30 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
31 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
32 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
33 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
34 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
35 2 1 0.43 0.43 0.42 0.40 0.34 0.21 0.21 0.22
36 2 1 0.43 0.43 0.42 0.40 0.34 0.21 0.21 0.22
37 2 1 0.43 0.43 0.42 0.40 0.34 0.21 0.21 0.22
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38 4 1 0.86 0.86 1.09 1.10 0.42 0.18 0.17 0.21
39 2 0 0.43 0.43 0.42 0.40 0.61 0.67 0.69 0.69
40 3 3 0.65 0.65 0.73 0.70 0.01 0.08 0.07 0.07
41 2 1 0.43 0.43 0.42 0.40 0.34 0.21 0.21 0.22
42 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
43 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
44 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
45 2 2 0.43 0.43 0.42 0.40 0.05 0.12 0.11 0.09
46 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
47 6 0 1.30 1.30 1.94 2.13 0.23 0.50 0.33 0.33
48 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
49 4 2 0.86 0.86 1.09 1.10 0.17 0.11 0.19 0.14
50 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
51 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
52 3 0 0.65 0.65 0.73 0.70 0.48 0.61 0.57 0.57
53 1 0 0.22 0.22 0.17 0.17 0.78 0.78 0.83 0.83
54 1 1 0.22 0.22 0.17 0.17 0.22 0.22 0.17 0.17
55 4 0 0.86 0.86 1.09 1.10 0.38 0.56 0.47 0.47
56 4 0 0.86 0.86 1.09 1.10 0.38 0.56 0.47 0.47
Total 111 24

Notes:
BB = Beta Binomial model.
Bin = Binomial model.
IR = Incremental Risk model.
FH = Family History model.
Data Set II (parameter estimators of each model are in Table 1b).

Predicted Conditional
Mean

Estimated Probability of the
Observation

Accident ID Number of Tank Cars Derailed Number of Tank Cars Releasing Bin BB FH IR Bin BB FH IR

1 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
2 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
3 3 1 0.63 0.63 0.60 0.52 0.39 0.19 0.14 0.22
4 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
5 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
6 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
7 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
8 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
9 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
10 2 1 0.42 0.42 0.33 0.30 0.33 0.19 0.15 0.20
11 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
12 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
13 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
14 2 1 0.42 0.42 0.33 0.30 0.33 0.19 0.15 0.20
15 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
16 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
17 6 0 1.25 1.25 1.73 1.54 0.25 0.56 0.44 0.43
18 5 0 1.04 1.04 1.31 1.13 0.31 0.58 0.50 0.49
19 11 10 2.29 2.29 4.32 4.50 0.00 0.01 0.02 0.06
20 6 2 1.25 1.25 1.73 1.54 0.26 0.10 0.11 0.11
21 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
22 3 1 0.63 0.63 0.60 0.52 0.39 0.19 0.14 0.22
23 3 1 0.63 0.63 0.60 0.52 0.39 0.19 0.14 0.22
24 4 0 0.83 0.83 0.93 0.79 0.39 0.62 0.58 0.57
25 4 0 0.83 0.83 0.93 0.79 0.39 0.62 0.58 0.57
26 2 2 0.42 0.42 0.33 0.30 0.04 0.08 0.09 0.05
27 4 1 0.83 0.83 0.93 0.79 0.41 0.18 0.12 0.22
28 5 1 1.04 1.04 1.31 1.13 0.41 0.18 0.11 0.21
29 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
30 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
31 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
32 6 2 1.25 1.25 1.73 1.54 0.26 0.10 0.11 0.11
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33 2 2 0.42 0.42 0.33 0.30 0.04 0.08 0.09 0.05
34 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
35 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
36 3 3 0.63 0.63 0.60 0.52 0.01 0.05 0.07 0.04
37 3 0 0.63 0.63 0.60 0.52 0.50 0.66 0.66 0.65
38 3 0 0.63 0.63 0.60 0.52 0.50 0.66 0.66 0.65
39 2 1 0.42 0.42 0.33 0.30 0.33 0.19 0.15 0.20
40 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
41 4 0 0.83 0.83 0.93 0.79 0.39 0.62 0.58 0.57
42 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
43 3 1 0.63 0.63 0.60 0.52 0.39 0.19 0.14 0.22
44 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
45 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
46 3 1 0.63 0.63 0.60 0.52 0.39 0.19 0.14 0.22
47 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
48 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
49 2 2 0.42 0.42 0.33 0.30 0.04 0.08 0.09 0.05
50 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
51 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
52 2 1 0.42 0.42 0.33 0.30 0.33 0.19 0.15 0.20
53 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
54 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
55 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
56 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
57 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
58 2 0 0.42 0.42 0.33 0.30 0.63 0.73 0.76 0.75
59 4 0 0.83 0.83 0.93 0.79 0.39 0.62 0.58 0.57
Total 163 34

Notes:
BB = Beta Binomial model.
Bin = Binomial model.
IR = Incremental Risk model.
FH = Family History model.
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