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Abstract: Freight railroads contribute to the national economy by moving over 40% of intercity ton-miles of freight. Meanwhile, train
accidents can damage infrastructure and rolling stock, disrupt operations, and possibly cause casualties and harm the environment. Under-
standing major accident causes is the first step in developing and prioritizing effective accident prevention strategies. The literature has
predominantly focused on nationwide train accident cause analysis, without accounting for possible variation in accident cause distributions
by railroad and season. This research develops a log-linear statistical model that can estimate the number of freight-train derailments ac-
counting for railroad, accident cause, season, and traffic volume. The analysis shows that broken rails and track geometry defects are the two
leading freight-train derailment causes on four major U.S. freight railroads. Fall and winter appear to have a higher likelihood of a broken-rail-
caused derailment than spring and summer, given the same railroad and traffic level. By contrast, track-geometry-defect-caused derailments
occur more frequently in spring and summer than in fall and winter, given all else being equal. The statistical modeling techniques in this
paper can be adapted to other types of train accidents or accident causes, ultimately leading to the prioritization of train safety improvement
resources on various spatial and temporal scales. DOI: 10.1061/JTEPBS.0000014. © 2016 American Society of Civil Engineers.
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Introduction

The United States has an extensive freight railroad network in the
world. Its 225,308 km (140,000 mi) of track transport over 40% of
intercity-cargo ton-miles (FRA 2010). Ensuring the safe, efficient
operation of the American rail transport system is an economic ne-
cessity. The reduction of train accident risk has long been a top
priority for both the U.S. Department of Transportation (USDOT)
and the railroad industry. Understanding major accident causes is
the first step in developing and prioritizing effective accident pre-
vention strategies. To this end, this research identifies major derail-
ment causes in the United States and uses statistical techniques to
quantify their derailment frequency distributions. The prior re-
search has largely focused on empirical, nationwide train accident
cause analysis. By contrast, this paper aims to advance existing
knowledge in the following areas. First, major derailment causes
are identified for each of the four major freight railroads in the
United States, which are Burlington Northern and Santa Fe Rail-
way (BNSF), Union Pacific Railroad (UP), CSX Transportation
(CSX), and Norfolk Southern Railway (NS). Second, this paper
aims to understand the seasonal effect on the distribution of
track-related accident causes, particularly broken rails and track
geometry defects. Third, this paper develops a log-linear statistical
model to predict the number of freight train derailments by rail-
road, season, and traffic volume for each major derailment cause.
Finally, this research identifies the existing knowledge gaps re-
garding train accident causal analysis and suggests future research
directions.

The exposition of this paper is as follows. First, this paper re-
views the relevant literature on rail safety and risk analysis to under-
stand the state of the art in the literature and to identify and fill
knowledge gaps. Second, this paper introduces the collection of
accident data from the Federal Railroad Administration (FRA)
and traffic exposure data from the Surface Transportation Board
(STB). Third, this paper analyzes accident-cause-specific freight-
train derailment rate by railroad and season on mainlines in the
United States between 2000 and 2014. Finally, this paper presents
its major findings and suggests directions for further research.

Literature Review

Railroad safety and risk analysis is an increasingly active research
field. We review those studies that are directly related to the objec-
tives of this paper, focusing particularly on studies based on the
FRA train accident data. Many other rail-engineering studies
(e.g., mechanics, lab and field test, simulation) were not included
in the literature review of this paper. In general, previous train ac-
cident data analysis studies can be classified into the following
categories: (1) accident cause analysis, (2) accident frequency
analysis, (3) accident severity analysis, and (4) accident prevention
and risk analysis. The following subsections briefly introduce
each stream of research. Interested readers can refer to the cited
references for technical details.

Accident Causes

The FRA identifies distinct accident causes organized into the cat-
egories of track defects, rolling stock failures, signaling failures,
human errors, and other causes (FRA 2011). Each accident cause
describes a specific circumstance or contributing factor that may
lead to a train accident. It was found that track failures were among
the common freight-train derailment causes in the United States
(Barkan et al. 2003; Liu et al. 2011, 2012), most likely because
heavy-haul rail operations impose cyclic high-load impact loads to
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the track infrastructure. Furthermore, the extensive use of equip-
ment may lead to some mechanical problems (e.g., overheated
bearings, broken wheels), which may result in train derailments.
For example, when the oil leaked or dried out, the bearings are
overheated and could destroy the entire railroad car if not detected.
Also, thermal stress and high impact load may damage railroad
wheels and possibly cause wheel failures.

In addition to derailments, the causes for train collisions and
highway–rail grade crossing incidents were also studied. Evans
(2007, 2010, 2011) and Liu (2016) analyzed train collisions due
to human error in Great Britain and the United States, respectively.
Mok and Savage (2005) and Savage (2006) discussed improve-
ments in rail-highway grade crossing safety resulting from engi-
neering, law enforcement, and the educating of the public about
the risks.

Accident Frequency Analysis

Count data regression models were widely used for transportation
accident frequency analysis. Evans (2007, 2010, 2011) developed
Poisson regression and negative binomial regression models to es-
timate train accident frequency by year and traffic volume. Liu
(2015, 2016) applied similar techniques to U.S. freight-train derail-
ments and collisions. Some other studies focused on associating
train accident rate (accident frequency normalized by traffic expo-
sure) with a set of engineering factors, such as FRA track class
(Anderson and Barkan 2004). The FRA track class is determined
by maximum operating speed. A higher track class denotes both a
higher maximum speed and correspondingly more stringent safety
standards (FRA 2014). The maximum allowable speed for freight
trains on Track Class 1 to Track Class 5 are 16 km=h (10 mph),
40 km=h (25 mph), 64 km=h (40 mph), 97 km=h (60 mph), and
129 km=h (80 mph), respectively (note: nonsignaled track has a
speed limit 79 km=h (49 mph) for freight trains, regardless of
track class).

Accident Severity Analysis

In addition to analyzing accident frequency, researchers also ana-
lyzed accident severity. Train accident severity can be measured by
different metrics, such as the number of cars or locomotives de-
railed, property damage, casualties, or environmental impact. A
number of studies focused on analyzing the number of cars derailed
because this statistic is an indication of the accumulated kinetic en-
ergy of the accident. Barkan et al. (2003) found that the average
number of cars derailed per train accident is associated with acci-
dent speed. A higher speed may result in more cars derailed, given
all other factors being equal. In addition to speed, Saccomanno and
El-Hage (1989, 1991) found that the point of derailment (the posi-
tion of the first derailed car), train length, and accident cause also
affect accident severity. They developed a truncated geometric
model to quantify the relationship between the expected number
of cars derailed and the previously mentioned factors. Liu et al.
(2012) found that, on average, derailments caused by track failure
typically resulted in more cars being derailed than in the case of
mechanical failures. For example, broken rails resulted in an aver-
age of 13 cars derailed per freight train derailment, as compared to
seven cars derailed from bearing failures (Liu et al. 2012). Consid-
ering that the distribution of the number of cars derailed is asym-
metrical, Liu et al. (2013) developed a quantile regression to model
the median and other quantiles of freight-train-derailment severity.
In addition to analyzing the number of cars derailed, some other
studies analyzed other metrics, such as casualties (Clarke and Loeb

2005; Evans 2007), evacuated population (Erkut and Verter 1995,
1998), or environmental impact (Yoon et al. 2009).

Accident Prevention and Risk Management

It is of keen interest to both the rail industry and the FRA to identify
promising strategies for the prevention of train accidents. The
literature has largely concentrated on individual risk reduction op-
tions, such as track quality upgrade (Liu et al. 2011), equipment
condition improvement (Schlake et al. 2011), asset condition
monitoring (Schlake 2010), or advanced train control technology
(Martland et al. 2001). However, there is very limited prior research
analyzing the interactive effect of simultaneously applied multiple
accident prevention strategies. Furthermore, few studies have com-
prehensively quantified the implementation costs and benefits
(safety and business) of accident prevention strategies, individually
or in combination. Because of the low-probability, high-severity
characteristics of train accidents, researchers used risk analysis
methods to account for the combination of train accident likelihood
and severity. Either an expected consequence model or an expected
utility model is used when the decision makers are risk-averse
toward catastrophic consequences (Erkut and Verter 1995, 1998;
Erkut and Ingolfsson 2000). This line of research largely focuses
on the transport of passengers or hazardous materials.

Knowledge Gaps and Contributions of This Paper

To the author’s knowledge, no published studies explicitly analyzed
how major derailment causes vary with railroad and season in the
United States. Also, no statistical model exists to predict accident-
cause-specific derailment frequency with a set of influencing
factors. Understanding the temporal-spatial variation in accident
cause distribution can provide the rail industry with information
to develop cost-justified safety improvement strategies. This paper
analyzes whether and how major accident causes differ by railroad
and season through a log-linear statistical model. If a certain carrier
is expected to have more derailments of a specific cause in a
particular season, proper inspection and remedial actions may be
undertaken to improve safety. This paper focuses on the two lead-
ing freight train derailment causes (broken rails, track geometry
defects), but its statistical methodology can be adapted to other
accident causes as well. In essence, this research falls into the
exploratory-analysis category. This type of analysis focuses on
understanding what the data pattern is, instead of explaining
why the pattern exists. The latter requires an explanatory analysis,
which associates the response variable with a set of potential affect-
ing (ideally causal) factors. Explanatory analysis, which comprises
the next stage of this paper, requires extensive access to railroads’
infrastructural and operational data, which are proprietary and
rarely available to the public.

Data Sources

Accident Count Data

The FRA maintains three major databases, each related to a differ-
ent aspect of train operating safety: train accidents, employee casu-
alties, and grade crossing collisions. A particular reportable event
may require that reports be submitted to any or all of these data-
bases, alone or in combination, depending on the circumstances.
The rail equipment accident/incident report (REAIR) form (FRA
F 6180.54) is used by railroads to report all accidents that exceed
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a monetary threshold of damages to infrastructure and rolling stock.
The form accounts for damage to on-track equipment, signals,
track, track structures, and roadbed (FRA 2011). FRA compiles
these reports into the Rail Equipment Accident (REA) database,
which records rail equipment accident data dating back to the
1970s. In addition to the REAIR, the highway–rail grade crossing
accident/incident report (FRA F 6180.57) and the death, injury, or
occupational illness summary (FRA F 6180.55a) are the two other
principal railroad accident and incident reporting forms. Because of
the overlap of the reporting criteria, a single accident may require
more than one report. This study used data exclusively from the
FRA REA database. The REA database contains useful informa-
tion on the type of accident or incident (e.g., derailment, collision,
grade crossing incident, etc.), type of track (mainline, yard, siding,
industrial), cause of accident (e.g., track failure, mechanical failure,
human error), consequences (number of cars derailed, track and
rolling stock damage, casualties), and other information. This in-
formation has been used to support numerous railroad safety and
risk analyses.

Traffic Exposure Data

Traffic exposure is another important variable in railroad safety and
risk analysis. U.S. railroads typically use train-miles, car-miles, or
gross ton-miles to represent traffic volume (Nayak et al. 1983;
Anderson and Barkan 2004). Previous studies found that some de-
railment causes are train-mile related, whereas other derailment
causes are related to the number of car-miles (Schafer and Barkan
2008). The differences between train-miles and car-miles vary with
the number of cars per train. According to Schafer and Barkan
(2008), car-mile-related causes are those for which the likelihood
of an accident is proportional to the number of car-miles operated.
These include most track component failures for which accident
likelihood is proportional to the number of load cycles imposed
on the track (e.g., broken rails or track geometry defects). By
comparison, train-mile-related causes are those in which the acci-
dent likelihood is proportional to the number of train-miles oper-
ated. These include most human-error failures for which accident
likelihood is independent of train length and depends only on train
exposure.

Because most track-related accident causes (e.g., broken rails,
track geometry defects) are car-mile related (Schafer and Barkan
2008), it is more proper to calculate the derailment rate per car-
mile. However, monthly car-mile data are not available in FRA
databases. The only information from the FRA Operational Safety
Database is the monthly train mile data reported by each railroad. In
addition to the FRA database, the Surface Transportation Board
(STB), an economic regulator of the railroad industry, requires each
Class 1 railroad to submit its operational data (including annual car
miles) through the Form R-1. These data are publicly available on
the STB website (STB 2014).

Because of data limitations, this paper infers monthly car-mile
data by using the distribution of monthly train-mile traffic data. For
example, if 10% of annual train-miles for a specific railroad occur
in January (from the FRAOperational Safety Database), we assume
that January also has 10% of annual car-miles. Because annual car-
mile data are available through the STB database, we can estimate
car-miles for that railroad in January. The underlying assumption is
that there is no substantial variation in train length by month (train
length affects car-miles). This assumption might be reasonable if a
railroad does not substantially change train length in the fleet
within different months in a year. When railroad carriers use the
model in this paper, they should update the analysis based on their

actual car-mile data in each month because this information is not
available to the author at the time of writing this paper.

Derailment Analysis

Scope of the Analysis

In the FRA REA database, there are four types of track: main, sid-
ing, yard, and industrial. Operational functions differ among these
four track types. Each one can have different types of accident,
causes, and consequences. In addition, train accidents are classified
into derailment, collision, highway–rail grade crossing incident,
and several other, less frequent types. Table 1 presents an analysis
of train derailment frequency and severity both by track type and
accident type, including data from 2000 to 2014 (Liu 2016).

Table 1 shows that derailment was the most common type of
accident on each track type, accounting for 72% of train accidents
across all types of track. Because of the prevalence of derailment on
U.S. freight railroads, the following sections focus exclusively on
the analysis of derailments. The methodology can be adapted to
other types of train accident as well.

Major Derailment Causes

The FRA REA database records hundreds of accident cause codes.
Each cause code describes a specific accident circumstance. The
train accident cause codes are hierarchically organized and catego-
rized into five major cause groups: track, equipment, human fac-
tors, signal, and miscellaneous (FRA 2011). Within each cause
group, the FRA organizes individual cause codes into subgroups
of related causes. Avariation on the FRA subgroups was developed
by Arthur D. Little (ADL), in which similar cause codes were com-
bined into groups on the basis of expert opinion (ADL 1996). The
ADL groupings are similar to FRA’s subgroups but are more fine-
grained for certain causes, allowing greater resolution in some
cases. These groups were used to analyze cause-specific derailment
frequency and severity. Note that the ADL accident cause grouping
might not be the only grouping approach. Additionally, the same
cause may fall into multiple groups. Therefore, if analysts use a
different accident cause grouping scheme, the analyses should be
adapted accordingly.

The prior literature has focused exclusively on nationwide sta-
tistics on accident cause distribution. For example, Barkan et al.
(2003) and Liu et al. (2012) found that track and mechanical
failures are common accident causes on U.S. freight railroads.
In particular, broken rails were identified as the leading track-
related freight train derailment cause (Barkan et al. 2003; Liu et al.
2012; Liu and Dick 2016). However, there is no prior published
research that addresses railroad-wide major derailment causes.

The four largest freight railroads operating in the United States
include UP, BNSF, NS, and CSX. In 2012, these four railroads ac-
counted for 76% of network mileage, over 80% of traffic carloads,
and 89% of revenue among all the railroads (AAR 2014). Table 2

Table 1. Accident Frequency by Accident Type and Track Type, U.S.
Freight Railroads, 2000–2014 (Data from Liu 2016)

Track type Derailment Collision Highway–rail Other Total

Main 6,026 429 1,929 874 9,258
Yard 4,220 524 14 518 5,276
Siding 632 33 7 66 738
Industry 1,286 76 9 190 1,561
Total 12,164 1,062 1,959 1,648 16,833
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presents the top derailment causes on each of the four selected
freight railroads.

With the exception of BNSF Railway, broken rails were the top
derailment causes for each railroad. In BNSF, track geometry de-
fects were slightly more frequent than broken rails (142 versus
132). Track geometry defects in this study include cross level, pro-
file, improper superelevation, and other defects (FRA 2011). On
Eastern Railroads (CSX and NS), bearing failures (10E) and broken
wheels (12E) were the second most common causes. For all four
railroads combined, the top five derailment causes were broken
rails or welds (08T), track geometry defects (04T), bearing failures
(10E), broken wheels (12E), and train handling error (09H).

Overall, the top two causes (broken rails and track geometry
defects) accounted for 20% of mainline freight-train derailments
on four railroads combined. It indicates that prevention of these
major causes may lead to a substantial reduction in derailment risk.
Over the past decades, the U.S. freight rail industry has continually
invested in technologies and operational changes to prevent track
and equipment failures. For example, the industry employs ad-
vanced nondestructive detection technologies (e.g., ultrasonic,
eddy current) to detect rail defects (Garcia and Zhang 2006) and
develop risk-based approaches to prioritize track inspection
frequencies (Zarembski and Joseph 2005). In terms of track geom-
etry defects, the Federal Railroad Administration and railroads
developed automated or autonomous systems to collect track
geometry data (Carr et al. 2009). With respect to bearing failures
and broken wheels, the industry uses wayside or train-borne sen-
sors for condition monitoring of specific mechanical components
and develop risk-based alert thresholds to guide rolling stock in-
spection and maintenance (Schlake 2010). In future research, it
would be interesting to explore the development and use of more
advanced technologies to continue to prevent these major accident
causes related to infrastructure and rolling stock on heavy-haul
freight railroads.

Statistical Modeling of Derailment Frequency

Model Development

After identifying major derailment causes on freight railroads, of
interest is to develop a parametric model that can estimate the num-
ber of train derailments for each major cause, given affecting fac-
tors such as railroad, season, and traffic exposure. These predictor
variables were selected to understand whether there is a spatial-
temporal variation of derailment occurrence by accident cause
given different traffic volumes. Depending on questions of interest
and data availability, future research can include additional factors.
The derailment frequency data by railroad, cause, and season came

from the FRA REA database. Seasonal car-mile data were esti-
mated based on the STB database. The season spring includes
March to May, summer includes June to August, fall includes
September to November, and winter includes December to
February.

Table 3 is a contingency table displaying the distribution of
derailment frequency by railroad and season.

The multicategory table contains four railroads (BNSF, CSX,
NS, UP) and four seasonal levels (spring, summer, fall, winter);
their complex interactive relationship is difficult to discern visually.
Therefore, a statistical methodology called log-linear modeling
is used to quantify and assess the effects of season, railroad, and
traffic volume on derailment frequency. Log-linear modeling is a
widely adopted approach to model Poisson-based accident count
data (Abdel-Aty and Abdelwahab 2000). Eq. (1) presents a general
form of the log-linear model for estimating freight train derailment
frequency

logðμÞ ¼ β0 þ β1Seasonþ β2Railroadþ β3Railroad

× Seasonþ logðTrafficÞ ð1Þ

where μ = derailment frequency for a specific accident cause;
Season = categorical variable (Spring, Summer, Fall, Winter); Rail-
road = categorical variable (BNSF, CSX, NS, UP), Railroad ×
Season = interaction term between railroad and season variables;
Traffic = traffic volume (million car-miles); and β0, β1, β2, and
β3 = parameter coefficients.

In the model, the variable Season represents the seasonal effect.
Let one season (e.g., winter) be the baseline case where the param-
eter coefficient β1 represents the difference between other seasons
and the baseline season (i.e., winter). Similarly, Railroad represents
railroad differences in derailment frequency, given all else being
equal. The interaction term Season × Railroad describes whether
the distribution of derailment frequency by season would also vary
by railroad. If its coefficient β3 is zero, there is no interactive effect
between these two variables (i.e., railroad and season). Traffic
volume is an exposure variable (Evans 2007), describing the fact
that given each specific scenario of season and railroad, derailment
frequency increases with traffic volume.

Table 4 shows the statistical significance test for parameter co-
efficients, for the top two derailment causes (broken rails and track
geometry defects). The P-value indicates whether a variable is
significant. In general, when the P-value is larger than 0.05, the
variable is not statistically significant. As shown in Table 4, the
interaction term between railroad and season is not statistically
significant, meaning that the conditional effect of season or railroad
is not mutually dependent.

Table 2. Railroad-Specific Freight Train Derailment Cause Distribution on Mainlines, 2000 to 2014

Rail-road

Accident cause

Top 1 Top 2

08T 04T 10E 12E 09H 05T 03T

Others Total
Percentage by
top 2 causes

Broken
rails

Track geometry
defects

Bearing
failures

Broken
wheels

Train
handling

Buckled
track

Wide
gauge

BNSF 04T 08T 132 142 113 109 54 81 64 940 1635 17
CSX 08T 10E 219 46 65 23 42 33 30 548 1,006 28
NS 08T 12E 116 23 34 49 37 5 24 369 657 25
UP 08T 04T 232 138 92 109 90 58 53 1,076 1,848 20
Total 08T 04T 699 349 304 290 223 177 171 2,933 5,146 20

Note: 08T = broken rails or welds; 04T = track geometry defects (excl. wide gauge); 03T = wide gauge; 10E = bearing failures (car); 09H = train handling error
(excl. brakes); 05T = buckled track; 12E = broken wheels (car).
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After removing the insignificant variable (Railroad × Season),
a simplified log-linear model is as follows:

logðμÞ ¼ β0 þ β1Seasonþ β2Railroadþ logðTrafficÞ ð2Þ

Based on the assumption that the number of derailments
follows a Poisson distribution (Liu 2015), parameter coefficients
(β0, β1, β2) can be estimated by maximizing the likelihood
function L:

L ¼
YN

i¼1

μyi
i expð−μiÞ

yi!
ð3Þ

where μi = estimated number of derailments in the ith category
from the log-linear model; yi = empirical number of derailments
in the ith category; and N = number of categories.

The parameter coefficients were estimated using a statistical tool
called statistical analysis system (SAS). Table 5 shows parameter
coefficients and their standard errors. The P-value for each param-
eter coefficient indicates its statistical significance in relation to the
reference level (for the season variable, the reference level is winter;
for the railroad variable, the reference level is Union Pacific
Railroad). When the P-value is larger than 5%, a variable is generally
deemed to be nonsignificant. For example, for broken-rail-caused

derailments (Table 5), the P-value for the parameter coefficient
of season Fall is 0.9905, indicating that there is no statistical
difference between fall and winter in terms of broken-rail-caused
derailment frequency, given all other factors (railroad, traffic
volume) being the same. Similarly, Table 5 shows that there is
no statistical difference between CSX Transportation and Union
Pacific Railroad in terms of track-geometry-defect-caused derail-
ment likelihood, given season and traffic volume. Based on param-
eter coefficient estimates in Table 5, the predicted number of
freight-train derailments by cause is as follows:
• Broken rail

logðμBÞ ¼ 0.48 − 0.71ISpring − 0.79ISummer þ 0.001IFall

− 0.36IBNSF þ 0.84ICSX þ 0.39INS þ logðTrafficÞ
ð4Þ

• Track geometry defects

logðμTÞ ¼ −0.83þ 0.58ISpring þ 0.84ISummer þ 0.28IFall

þ 0.23IBNSF − 0.20ICSX − 0.71INS þ logðTrafficÞ
ð5Þ

where μB = estimated derailment frequency due to broken rails;
μT = estimated derailment frequency due to track geometry
defects; ISpring ¼ 1 if the season is spring, 0 otherwise, similar
notations for other seasonal indicators; IBNSF ¼ 1 if the railroad
is BNSF, 0 otherwise, similar notations for other railroad indi-
cators; and Traffic = billion car-miles.
For example, from 2000 to 2014, when there were a total of

40 billion car-miles in spring on BNSF Railway (Traffic ¼
40), broken-rail-caused derailment frequency can be estimated
using Eq. (4):

Table 3. Derailment Frequency by Cause, Season, and Railroad on Mainlines, 2000 to 2014

RR/season

Accident cause

Billion car-miles08T 04T 10E 12E 09H 05T 03T Others Total

BNSF 132 142 113 109 54 81 64 940 1,635 160
Spring 22 41 35 27 17 12 23 240 417 40
Summer 21 46 20 11 16 63 10 262 449 40
Fall 55 34 22 21 10 6 11 211 370 41
Winter 34 21 36 50 11 0 20 227 399 39

CSX 219 46 65 23 42 33 30 548 1,006 80
Spring 37 9 17 7 17 9 9 151 256 21
Summer 33 21 13 4 7 21 7 125 231 20
Fall 72 8 12 3 11 3 0 125 234 20
Winter 77 8 23 9 7 0 14 147 285 19

NS 116 23 34 49 37 5 24 369 657 67
Spring 19 7 6 22 9 3 8 101 175 17
Summer 14 8 7 3 11 2 5 108 158 17
Fall 38 4 6 7 8 0 1 65 129 17
Winter 45 4 15 17 9 0 10 95 195 16

UP 232 138 92 109 90 58 53 1,076 1,848 197
Spring 41 41 26 27 25 8 16 284 468 50
Summer 41 51 17 21 25 46 9 270 480 50
Fall 77 27 18 28 22 4 9 257 442 50
Winter 73 19 31 33 18 0 19 265 458 47

Total 699 349 304 290 223 177 171 2,933 5,146 504

Note: 08T = broken rails or welds; 04T = track geometry defects (excl. wide gauge); 03T = wide gauge; 10E = bearing failures (car); 09H = train handling error
(excl. brakes); 05T = buckled track; 12E = broken wheels (car).

Table 4. Statistical Significance of Predictor Variables

Variables Degree of freedom Chi-square Pr > ChiSq

Broken rails
Season 3 88.00 <0.0001
Railroad 3 113.89 <0.0001
Railroad × Season 9 7.58 0.5766

Track geometry defects
Season 3 19.18 0.0003
Railroad 3 23.20 <0.0001
Railroad × Season 9 4.77 0.8540
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logðμBÞ ¼ 0.48 − 0.71ðISpring ¼ 1Þ − 0.36ðIBNSF ¼ 1Þ
þ logð40Þ ¼ 3.099

where log represents the natural logarithmic operator.
Therefore, the estimated number of broken-rail-caused derail-

ments at this season on this railroad during the study period is

μB ¼ expð3.099Þ ¼ 22.17

where the empirical derailment count is 22, from Table 3.

Model Validation

For a log-linear regression model, the goodness of fit can be evalu-
ated using a statistical criterion called Deviance (Agresti 2007).
The Deviance approximately follows a chi-squared distribution.
The Deviance values for the broken-rail-related model [Eq. (4)]
and the track-geometry-defect-related model [Eq. (5)] are 7.58
and 4.77, respectively. The corresponding P-values are 0.58 and
0.85, respectively. When the P-value is larger than 0.05, the overall
fit of the model is adequate.

In addition to the overall goodness of fit, the empirical-versus-
predicted value is conducted by railroad and season (Table 6).

A chi-squared test is used to evaluate whether the model predic-
tion matches the empirical value

χ2 ¼
XN

i¼1

ðOi − EiÞ2
Ei

ð6Þ

where Oi = observed number of derailments in year i; Ei =
estimated number of derailments in year i; and N = number of
categories.

The P-value of the chi-squared test for broken-rail-caused de-
railment analysis is 0.2490, and for track-geometry-defect-caused
derailment analysis is 0.2732, both of which are greater than 0.05,
suggesting that both models are statistically adequate.

Model Application Using Conditional Odds
Ratio Analysis

One useful output of the model is the conditional odds ratio (COR),
which provides a comparison of the effect of different levels of
a variable on derailment frequency (Table 7). For example, for
broken-rail-caused derailment, the conditional odds ratio for spring
versus winter is 0.49. It indicates that, given all else being equal
(including traffic volume), the derailment frequency in spring is
49% of that in winter, with a 95% confidence interval between
0.39 and 0.61. Similarly, summer has a lower derailment frequency
due to broken rails than winter does, given all else being equal. This
discrepancy probably exists because the thermal contraction forces
in rails under lower temperature will likely pull apart internal rail

Table 5. Parameter Coefficient Estimates in Log-Linear Modeling

Parameter Estimate Standard error Wald 95% confidence limits Pr > ChiSq

Broken rails
Intercept 0.4760 0.0852 0.3091 0.6429 <0.0001
Season

Fall 0.0011 0.0922 −0.1796 0.1818 0.9905
Spring −0.713 0.113 −0.9345 −0.4915 <0.0001
Summer −0.7904 0.1164 −1.0185 −0.5623 <0.0001
Winter (reference) 0 0 0 0 —

Railroad
BNSF −0.3631 0.109 −0.5767 −0.1494 0.0009
CSX 0.8395 0.0942 0.6548 1.0241 <0.0001
NS 0.3879 0.1137 0.165 0.6108 0.0006
UP (reference) 0 0 0 0 —

Track geometry defects
Intercept −0.8327 0.1537 −1.134 −0.5314 <0.0001
Season

Fall 0.2802 0.1815 −0.0754 0.6359 0.1225
Spring 0.5832 0.1716 0.247 0.9195 0.0007
Summer 0.8371 0.1648 0.514 1.1601 <0.0001
Winter (reference) 0 0 0 0 —

Railroad
BNSF 0.2344 0.1195 0.0001 0.4686 0.0499
CSX −0.2023 0.1703 −0.536 0.1314 0.2347
NS −0.7141 0.2252 −1.1556 −0.2727 0.0015
UP (reference) 0 0 0 0 —

Table 6. Empirical versus Predicted Derailment Frequency by Railroad
and Season

Railroad Season

Broken rails
Track geometry

defects

Empirical Predicted Empirical Predicted

BNSF Spring 22 22 41 40
BNSF Summer 21 20 46 51
BNSF Fall 55 46 34 30
BNSF Winter 34 43 21 21
CSX Spring 37 38 9 13
CSX Summer 33 34 21 17
CSX Fall 72 75 8 10
CSX Winter 77 72 8 7
NS Spring 19 20 7 7
NS Summer 14 18 8 8
NS Fall 38 40 4 5
NS Winter 45 38 4 3
UP Spring 41 39 41 39
UP Summer 41 36 51 50
UP Fall 77 81 27 29
UP Winter 73 76 19 21
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defects, causing more broken rails. From the COR analysis, there
is no statistical difference between fall and winter in the rate of
broken-rail-caused derailment. An example manual calculation
(comparing broken-rail-caused derailment frequency in spring ver-
sus in winter, given railroad and traffic volume being equal) of the
COR for broken rails is as follows, using Eq. (4):

logðμSpringÞ ¼ 0.48 − 0.71ISpring − 0.36IBNSF þ 0.84ICSX

þ 0.39INS þ logðTrafficÞ

logðμWinterÞ ¼ 0.48 − 0.36IBNSF þ 0.84ICSX þ 0.39INS

þ logðTrafficÞ

logðμSpringÞ − logðμWinterÞ ¼ −0.71
μSpring

μWinter
¼ expð−0.71Þ ¼ 0.49

Regarding railroads, taking Union Pacific Railroad (UP) as a
reference, broken-rail-caused derailment rate on BNSF Railway
is 70% of that of Union Pacific Railroad. The two Eastern railroads
(CSX and NS) have a higher derailment likelihood due to broken
rails than the two Western railroads, given the same season and
traffic volume.

With respect to track geometry defects, the seasonal effect is
opposite to that of broken rails. Spring and summer have more
track-geometry-defect-caused derailments than in fall and winter
(given railroad and traffic volume), probably due to thermal expan-
sion stress in rails. In terms of track geometry defects, NS appears
to have a lower derailment frequency than the other three railroads.

According to the COR analysis, it appears that broken-rail-
caused derailment is generally more likely to occur in fall and
winter, holding all else being equal, whereas track-geometry-
defect-caused derailment occurs more frequently in spring and
summer. Given the same season and traffic volume, the two Eastern
railroads (CSX and NS) have more derailments due to broken rails,
but fewer derailments due to track geometry defects, when com-
pared with the two Western railroads (BNSF, UP). This might
partly be due to the temperature difference in each season between
the western and eastern region, and/or due to different operational
and infrastructure characteristics on different railroads. Because
of data limitations, explaining accident rate heterogeneity by rail-
road is beyond the scope of this paper, but can be one direction
for future research.

Conclusions

This research develops a statistical log-linear model to analyze the
causal distribution of freight train derailment frequency by railroad

and season. The analysis finds that broken rails and track geometry
defects were the two leading freight train derailment causes on U.S.
mainlines from 2000 to 2014, accounting for approximately 20% of
train derailments. The odds of having a broken-rail-caused derail-
ment in fall and winter appear to double that of spring and summer,
given the same railroad and traffic level. By contrast, track-
geometry-defect-caused derailments occur more frequently in
spring (80% more likely) and summer (130% more likely) than
in fall and winter, given the same railroad and traffic level. The
two Eastern railroads (CSX Transportation and Norfolk Southern
Railway) appear to have higher odds of broken-rail-caused derail-
ment than the two Western railroads (BNSF Railway and Union
Pacific Railroad), given the same season and traffic volume. In
terms of track geometry defects, the two Western railroads appear
to have equal or higher odds of a derailment than do the two Eastern
railroads, given all else being equal. The statistical modeling tech-
niques herein can be adapted to other types of train accidents or
accident causes. Ultimately, future research can be developed to
further understand why derailment likelihood varies, what the
potential contributing factors are, and how these factors affect de-
railment risk.

Future Research

The current research focuses on exploring the statistical causal
distribution of freight train derailments by railroad and season.
Because of data limitations, the author was not able to perform
a detailed explanatory analysis to articulate why different railroads
or seasons have different causal distributions. This will be one di-
rection for future research. Also, this research focuses on broken
rails and track geometry defects, which are the two top derailment
causes on freight railroads. The log-linear modeling approach can
be adapted to other major derailment causes as well (e.g., wide
gauge, broken wheels). In addition to derailment, collision and
grade crossing are two other common types of train accident. For
collisions and grade-crossing incidents, human error is the major
cause. Future research can be directed to understand the distribu-
tion of human-related causes for other accidents under different
circumstances. Additionally, this research analyzes cause-specific
derailment frequency. The severity of an accident (e.g., casualties,
number of cars derailed, damage cost) is not analyzed in this paper
but can be addressed in future research. The statistical models in
this paper were based on data from 2000 to 2014. Future data can
be used to validate and possibly refine the current model to reflect
the change in railroad safety. Additional data sources (e.g., track
geometry inspection data) (Xu et al. 2016) might be used to predict
train accident risk in future research. Ultimately, future research
can incorporate train safety statistical analysis into an integrated
accident prevention and risk management framework that opti-
mizes the portfolio of railroad safety improvement options.
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Table 7. Comparison of Derailment Distribution by Cause, Season, and
Railroad

Conditional odds ratio Broken rails Track geometry defects

μspring=μwinter 0.49 (0.39, 0.61) 1.79 (1.28, 2.51)
μsummer=μwinter 0.45 (0.36, 0.57) 2.31(1.67, 3.19)
μfall=μwinter 1.00 (0.84, 1.20) 1.32 (0.93, 1.89)
μBNSF=μUP 0.70 (0.56, 0.86) 1.26 (1.00, 1.60)
μCSX=μUP 2.32 (1.92, 2.78) 0.82 (0.59, 1.14)
μNS=μUP 1.47 (1.18, 1.84) 0.49 (0.31, 0.76)

Note: The values in the parenthesis represent the 95% confidence interval of
the conditional odds ratio.
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