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Abstract
Purpose – Accurately estimating the severity of derailment is a crucial step in quantifying train derailment
consequences and, thereby, mitigating its impacts. The purpose of this paper is to propose a simplified
approach aimed at addressing this research gap by developing a physics-informed 1-D model. The model is
used to simulate train dynamics through a time-stepping algorithm, incorporating derailment data after the
point of derailment.
Design/methodology/approach – In this study, a simplified approach is adopted that applies a 1-D
kinematic analysis with data obtained from various derailments. These include the length and weight of the
rail cars behind the point of derailment, the train braking effects, derailment blockage forces, the grade of the
track and the train rolling and aerodynamic resistance. Since train braking/blockage effects and derailment
blockage forces are not always available for historical or potential train derailment, it is also necessary to fit
the historical data and find optimal parameters to estimate these two variables. Using these fitted parameters,
a detailed comparison can be performed between the physics-informed 1-D model and previous statistical
models to predict the derailment severity.
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Findings – The results show that the proposed model outperforms the Truncated Geometric model (the
latest statistical model used in prior research) in estimating derailment severity. The proposed model
contributes to the understanding and prevention of train derailments and hazmat release consequences,
offering improved accuracy for certain scenarios and train types
Originality/value – This paper presents a simplified physics-informed 1-Dmodel, which could help understand
the derailment mechanism and, thus, is expected to estimate train derailment severity more accurately for certain
scenarios and train types compared with the latest statistical model. The performance of the braking response and
the 1-D model is verified by comparing known ride-down profiles with estimated ones. This validation process
ensures that both the braking response and the 1-Dmodel accurately represent the expected behavior.

Keywords Derailment severity, Hazardous materials, Physics-informed model

Paper type Research paper

1. Introduction
Rail transportation of hazardous materials (hazmat) is typically recognized for its cost-
effectiveness and considered a secure and efficient choice for conveying substantial
quantities of goods across extensive distances (Wang and Liu, 2022; Zaman et al., 2023).
While train derailments resulting in hazmat releases are rare occurrences, they raise
significant concerns due to their potential for catastrophic consequences. Hazmat releases
caused by train derailments can result in environmental damage, property loss and health
risks for nearby communities. A recent example of such an incident took place on February
3, 2023, when a Norfolk Southern train derailed in East Palestine, OH, leading to the release
of hazardous combustible chemicals. The ensuing fire further exacerbated the situation,
causing destruction to additional cars. The air pollution resulting from this incident had
adverse effects on the skin and lungs of residents for several months, with nine monitored
chemicals surpassing normal levels (Moore, 2023). Efforts underway to improve safety
and reduce train derailment risks include increased rail maintenance, electronically controlled
pneumatic brakes adoption and safer tank car designs (Wang and Liu, 2022). Studies suggest
organizing tank cars in manifest trains and using suitable configurations can decrease
release consequences by up to 50% (Kang et al., 2023; Zhao et al., 2023).

Derailment severity, which refers to the number of cars derailed, holds significant
importance in determining the consequences of a train derailment. Understanding the factors
influencing derailment severity and precisely estimating it are essential steps to mitigate
catastrophic accidents and enhance public safety. Two primary methodologies are used to
estimate train derailment severity: statistical models (data driven) and physical models (law
driven). Statistical models analyze structured and unstructured empirical derailment data,
crafting point estimate models and interval estimation models. These models offer valuable
insights into derailment severity (Liu et al., 2013; Martey and Attoh-Okine, 2019; Saccomanno
and El-Hage, 1989, 1991; Song et al., 2022). Conversely, physics-based models include one-
dimensional (1-D), two-dimensional (2-D) and three-dimensional (3-D) models to simulate train
dynamics. These models necessitate a comprehensive depiction of interactions among
locomotives and railcars, encompassing suspension elements and wheel-rail contact forces
(Pogorelov et al., 2017). Statistical models may have difficulty predicting extreme derailment
events that fall outside historical experience, while physical models are able to capture the
conditions of a specific train derailment scenario by mathematically describing the physical
dynamics of the derailment. However, the detailed 2-D and 3-D physics-based models require
complicated calculation processes, and, thus, is not easily applicable for derailment study
(Bosso et al., 2021; Singh, 2019; Tang et al., 2023; Xu and Zhai, 2019).

This study uses a simplified approach that involves a 1-D kinematic analysis using data
gathered from various derailments. These encompass:
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� the length and weight of the rail cars behind the point of derailment;
� the train braking effects;
� derailment blockage forces;
� the grade of the track; and
� the train rolling and aerodynamic resistance.

Since train braking/blockage effects and derailment blockage forces are not always
available for historical or potential train derailments, it is also necessary to fit the historical
data and determine optimal parameters for estimating these variables. Using these fitted
parameters, a comprehensive comparison can be conducted between the physics-informed
1-Dmodel and the preceding statistical model to predict the derailment severity.

Themain contributions of this paper include:
� This paper introduces a simplified physics-informed 1-D model designed to enhance

understanding of the derailment mechanism. It is anticipated that this model will
provide more accurate estimates of train derailment severity for specific scenarios
and train types compared to the latest statistical model.

� The accuracy of the braking response and the 1-D model is verified through a
comparison of known ride-down profiles with estimated ones. This validation
process ensures that both the braking response and the 1-D model accurately
represent the expected behavior. Using the simulated annealing (SA) algorithm and
Class I derailment data sourced from the Federal Railroad Administration (FRA)
Rail Equipment Accident/Incident (REA) database, this paper undertakes the
estimation of important parameters within the 1-D model for various train types.

� The presented physics-informed 1-D model is compared to the statistical Truncated
Geometric (TG) model, and the results demonstrate that, overall, the proposed 1-D
model outperforms the TG model in general.

2. Literature review
Physical models were used in prior research to model train derailment severity, accounting for
physical dynamics of the derailment and using that information to estimate the number of derailed
cars. Physical models can also help understand how factors, including train speed, tonnage and
train length, influence derailment severity from the perspective of physical dynamics.

One type of physical model simulates the longitudinal train dynamics, including traction,
braking and longitudinal forces of the coupled cars in the train. A well-established longitudinal
train dynamics simulator in North America is the Train Operations and Energy Simulator
(TOESTM) model developed for and licensed to AAR-member railroads (Andersen et al., 1991,
1992). TOES has been in use for nearly three decades, has been validated many times over and is
considered an industry standard for longitudinal train dynamics modeling. A similar 1-D
longitudinal dynamics model is the Train Energy and Dynamics Simulator (TEDS) model
(Andersen et al., 2012; Sharma andAssociates, 2015). TEDS is amore recently developed tool that
calculates the in-line train forces and motions under specified track, traction and braking
conditions. Additional studies that have developed similar longitudinal dynamics models include
Mokkapati and Pascoe (2011) and Wu et al. (2014). However, the model proposed in Mokkapati
and Pascoe (2011) is not generally used since it is based on braking function performed by the on-
board computer of a positive train control system. These models have been specifically designed
for analyzing train dynamics under normal operating conditions. However, they are not suitable
or capable of analyzing the response that occurs after a derailment is initiated.
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Another type of physical model includes 2-D and 3-D models of the individual vehicle
dynamics, including additional mechanics such as the wheel-rail interaction forces,
suspension dynamics and derailment kinematics. For example, Toma developed a detailed
2-D multi-body simulation (MBS) train derailment model for his Ph.D. thesis project (Toma,
1998). Toma’s model includes significant features from a longitudinal model such as the
traction, braking and coupler forces for the cars on the track. Once derailed, the cars are
subject to 2-D motions with a velocity-dependent ground friction model, impact forces and
uncoupling of cars based on strength and displacement limits. The primary limitations of
Toma’s model are the simplifications necessary in an MBS model for calculating impact
behaviors and the constraint that the model is only 2-D. Other 2-D MBS derailment studies
include Paetsch et al. (2006) and Jeong et al. (2007).

As a result of the complexity of post derailment behaviors, more recent derailment models
have relied on 3-D computational solvers to simulate the response. An example of this type of
model for simulating train derailments using the LS-DYNA finite element solver was
performed by Kirkpatrick (2021). The fully 3-D finite element model allows for many additional
complex derailment mechanics such as deformation and failure of components and connections
(e.g. truck separations and breakup, coupler failures), realistic impact scenarios between
derailed cars and derailment conditions on slopes, elevated rail berms, etc. For the purpose of
investigating the factors that influence derailment severity, the 3-D modeling approach was
more complex and computationally intensive than required. In contrast, 1-D models are less
complex and more computationally efficient and are capable of capturing train derailment
dynamics. Kirkpatrick et al. (2021) originally introduced the concept of a simplified 1-D model.
In this paper, we further develop and elaborate on their initial work, presenting a
comprehensive and detailed mathematical model that extends and refines their original ideas.

3. Physics-informed 1-Dmodel
The proposed 1-D model operates as a time-stepping algorithm, necessitating specific
inputs. These inputs comprise details about the residual train (i.e. the train behind the
derailment point), encompassing the number of cars, individual car weights and car lengths.
Additional features, like a trailing locomotive, can be incorporated as well. The derailment
speed and time histories for the braking and blockage forces and rolling resistance are
specified as input conditions at the start of the analysis. For derailments with trailing
locomotives, the weight, position and locomotive brake ratio are all specified.

At each time step, the braking, blockage and train resistance forces are updated and
applied to the cars behind the point of derailment (POD) to calculate the deceleration rate.
The equations of motion for the residual train are solved with a computational approach. At
each time step, the sum of the forces acting on the train is calculated (braking, blockage,
rolling resistance and gravitational). The distance traveled, residual length and residual
train mass are also updated. The algorithm then steps through time analyzing the motions
of the residual train (the portion of the train behind the point of derailment). This process is
solved by incremental time steps up to the point where the residual train comes to rest. A
general flowchart for the model methodology is provided in Figure 1.

Further details regarding the various components of the model are explained in the
subsequent sections.

3.1 Train braking effect
Rather than develop a model for the air brake system from first principles, a
simplified approach is adopted that applies data obtained from various derailments.
Three derailments are selected that had different residual train lengths, and trailing
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locomotives with event recorders that provided data on the brake pressure and
deceleration response of the cars behind the derailment. The residual train length
is defined as the length of the train behind the POD and is an important parameter
since it influences how rapidly the air brakes are applied. These three derailments are
(Brosseau, 2014):

(1) Aliceville, AL, 11/7/2013; Loaded unit oil train, 90 cars behind POD.
(2) Brainerd, MN; 7/10/2011; 27 mph; Loaded unit coal train, 56 cars behind POD.
(3) Wagner, MT; 2/13/2013; 37 mph; Loaded unit grain train, 17 cars behind POD.

The brake cylinder pressure histories for the three derailments are depicted in Figure 2
(solid line). All three are characterized by a steady increase in pressure during application
combined with a transition phase at the beginning and end of brake application. The
primary difference in the curves appears to be a shift in the time for which the increase in
brake pressure occurs. This shift is correlated with the residual length of the train behind
the POD, where a shorter residual train length (Wagner, 17 cars behind POD) results in an
earlier application of brakes, while a longer residual train length (Aliceville, 90 cars behind
POD) results in a delayed brake application.

To analyze the specific responses in these three derailments, the recorded brake
application curves can be applied. However, in the absence of this data for the majority of
derailments, an approach has been devised to estimate a brake application curve for others.
This involves applying a time shift to a baseline pressure curve (from the Brainerd

Figure 1.
Physics-informed 1-D
model flowchart
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derailment). The equation used to implement the time shift in the brake application curves
for different derailments is:

Ts ¼ T0 þ NcLC � L0ð Þ=1150� �
(1)

where
Ts= the shifted time (s);
T0 = the baseline (reference) time (s);
Nc= the number of cars in the residual train;
LC= the average length of the cars in the residual train (in feet); and
L0 = the baseline (reference) residual train length (in feet).

Equation (1) effectively shifts the time based on the difference in the length of the residual
train divided by the sound speed in the air pipe (1,150 ft/s). For the corrections performed
here, the reference residual train length used for Brainerd is 2,852 ft. For example, for
Aliceville derailment, according to equation (1), the shifted time of brake pressure curve is
(91 car� 59.3 ft – 2,852 ft)/1,150 ft/s, which is 2.2 s. This means the brake pressure curve of
Aliceville derailment can be approximately obtained by shifting the base derailment,
Brainerd derailment, by 2.2 s. A comparison of the time shifted brake pressure curves with
the event recorder curves for the Aliceville and Wagner derailments is shown in Figure 2.
The comparison shows that the time-shifted curve serves as a reliable approximation of the
actual brake application behavior and represents a suitable approach for estimating braking
in derailments where brake pressure data is unavailable.

An additional feature incorporated into the brake application model within the 1-D model
is the inclusion of a brake application delay time. The brake application curves, depicted in
Figure 2, uses a derailment initiation reference time from the event data recorder (time¼ 0).
This time is determined from the brake pressure change that initiates the onset of
emergency braking. However, this is the time when a separation occurs in the brake pipe
rather than the time when an initial car derails.

Figure 2.
Comparison of the
time-shifted brake

pressure curves and
event recorder curves
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In a typical derailment, initiation occurs due to some failure in the rail, equipment or an
excess of lateral loads at the wheel-rail interface. The initial cars that derail are usually still
connected to the leading and trailing cars, aligning closely with the original rail orientation.
A delay typically exists between the initial wheel derailment and the time when additional
forces on the derailed cars lead to a failure of the coupled connection, resulting in separation
from the leading cars ahead of the point of derailment. It is typically only after this delay and
coupler separation that the brake pipe will be broken, initiating the emergency brake. As a
result, a brake application delay time is added to shift (delay) the brake application curve
from the time of the derailment initiation. The magnitudes of these brake application delay
times are further discussed in the model validation analyses.

The braking forces are assumed to be proportional to the brake application. This paper
uses an emergency braking force of 7,800 lbs brake force per car at full pressure (Lovette
and Thivierge, 1992). This level corresponds to a 3% brake ratio for a 263K gross rail load
(GRL) loaded car and a 12% brake ratio for a 65K light-weight empty car. Similarly, a 9%
brake ratio is assumed to be typical for locomotives in emergency braking with an
application that follows the same pressure curve.

3.2 Derailment blockage force
The subsequent factor in the physics-informed 1-D model is the derailment blockage force.
This force represents the in-line train force generated by the derailed cars and acting on the
remaining cars on the rail behind the POD. The kinematics of a car approaching and passing
the POD in a derailment is illustrated in Figure 3. The blockage resistance is a composite of
the increased rolling or sliding resistance between the car and ground after leaving the rail
and the forces resulting from impacts against a pileup of previously derailed cars in the
forward portion of the derailment. The force is either transmitted through the draft gear or
by any point of contact resulting from impacts between cars. The magnitude of the force

Figure 3.
Example kinematics
of a car passing the
POD
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transmitted longitudinally from the derailed cars will also be a function of the continually
changing alignment of cars resulting from the lateral buckling of derailed cars.

Previous studies have examined and analyzed the magnitude of this blockage force. In an
analysis conducted by Brosseau (2014), several derailments were studied by comparing the
deceleration response to the calculated deceleration resulting from braking alone. The
calculated blockage forces in these instances ranged between 500 and 650 kips. Similarly, an
analysis of the Lac M�egantic derailment (Transportation Safety Board of Canada, 2014)
found an average blockage force of approximately 400 kips. Notably, in this case, the train
was a runaway with no braking applied, meaning the blockage force was solely responsible
for halting themotion of the cars on the rail behind the point of derailment.

While the blockage force is not expected to be a smooth profile due to the buckling and
impact behaviors of the cars (Transportation Safety Board of Canada, 2014), it is commonly
approximated as a smooth force in models, as depicted in Figure 4. In addition, there exists a
potential period at the initiation of the derailment where the cars ahead of the derailment
provide a traction force until separation occurs. Thus, the blockage is modeled with a delay
time before blockage forces begin, a ramp time over which the blockage force is linearly
increased and then a steady state when blockage force is fully developed. This blockage
force is applied in the model as a force fixed at the POD acting on the remaining cars (mass)
on the rails behind that position. The assumption made in this paper is that a pileup is not
formed until there is a separation between cars. Therefore, the blockage delay and the
breaking delay are assumed to be coupled to each other and share the same value.

3.3 Train resistance
The final set of forces included in the model is the standard train resistance forces.
Gravitational acceleration is added to a train on either an uphill or downhill grade. A model
for the remaining train resistance is also added based on existing models (Hay, 1982). Davis
equation, which is a well-known resistance formula with a quadratic form in velocity, is
used in this paper:

Figure 4.
Schematic illustration
of the blockage force

profile in a derailment
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R ¼ Aþ Bvþ Cv2 (2)

with constant coefficients derived from experimental work conducted by Davis (1926). It has
multiple variants known as the Modified Davis and Adjusted Davis equations. The
resistance calculations of the Davis equation are commonly defined as a force per unit train
weight. In the Davis equation, the constant term A represents the journal rolling resistance.
The second term represents the flange resistance and is proportional to the train speed. The
final term is the wind resistance and is proportional to the square of the train speed. For the
model, we use the following values for the resistance:

A ¼ 1:3þ 29
w

lbs=tonð Þ (3)

B ¼ 0:045 lbs=ton�mphð Þ (4)

C ¼ 5:2 lbs=ton�mph2
� �

(5)

where w is the axle load in tons. These coefficients produce the resistance magnitudes
shown in Figure 5 for a 263k GRL-loaded freight car. An assessment of these resistance
forces indicates that they are most significant at high speed and, as a result, have little effect
on most derailments.

As illustrated in Figure 1, we can update various parameters such as total force,
acceleration, speed, distance traveled and residual train mass that has not derailed. The
residual train mass can be readily calculated based on distance traveled and the known
point of derailment.

Figure 5.
Resistance model for
a conventional freight
train
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4. Model validation
This paper includes model validation for both train braking and the overall model. The
primary validation approach involves assessing the response for a set of derailments
where quantitative information about the derailment kinematics is known, typically
from event recorder data. The primary data of interest for this assessment is the
ride-down velocity profile, representing the time history of the train velocity from the
derailment initiation to the point where all train cars come to rest. By comparing known
train ride-down profiles to predicted behaviors, we can effectively validate the model.
The ride-down profiles over a range of derailment conditions can only be matched
if the various contributions to the longitudinal forces are all accurately included in the
model.

Train braking is often the most significant component of the longitudinal forces acting
on the train in many derailments. Therefore, it is critical to independently evaluate this
aspect of the model. Following a derailment, a train typically loses stability and deviates
from its intended path, leading to a separation of the train into two parts due to the forces
and dynamics involved during the derailment process. Usually, the 1-D model is applied to
the portion of the train behind the POD. However, the 1-Dmodel can be applied to the part of
the train ahead the POD (still on the rails) to validate the performance of the braking
response. In this scenario, no blockage force is present, allowing for an assessment of the
emergency braking model in this analysis.

For validation of the braking response, eight train derailments are selected for which the
event recorder data are available from a leading locomotive ahead of the POD. The
derailment information input for braking analyses is shown in Table 1. This data is used to
calculate the ride down profile for the leading cars remaining on the rails ahead of the POD.
The comparison between event recorder data and the simulated train speed is shown in
Figure 6, which shows that the braking model is capable of accurately reproducing the ride-
down response for the lead section of the train in each derailment.

To validate the physics-informed 1-D model for the train behind the POD, five
derailments are selected that had different residual train lengths and trailing locomotives

Table 1.
Derailment

information for
braking model

validation analyses

Incident date Location Train type
Speed
(mph)

No. cars
ahead of
POD

No.
leading
locos

Avg. car
weight
(kips)

Grade
(%)

6/19/2009 Cherry Valley, IL Mixed freight train 36 60 2 264 �0.26
4/30/2014 Lynchburg, VA Loaded unit oil

train
24 71 2 269 �0.10

3/10/2017 Graettinger, IA Loaded unit ethanol
train

28 80 1 254 0.20

2/16/2015 Mount Carbon, WV Loaded unit oil
train

33 3 2 272 �0.05

9/19/2015 Lesterville, SD Loaded unit ethanol
train

10 97 1 257 0.00

8/2/2017 Hyndman, PA Mixed freight train 31 32 5 111 �1.43
8/12/2019 Carey, OH Loaded unit sand

train
23 9 2 286 �0.29

2/8/2020 Sesser, IL Loaded unit coal
train

43 99 2 286 0.18

Source:Authors’ own work
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with event recorders (Table 2). Such residual length variation tests the relative importance
of different aspects of the model. For example, the blockage force is applied to the POD. As a
result, the blockage forces are much more significant for a small residual train length (less
mass behind the POD) than they will be for a long residual train.

The event recorder data for these trailing locomotives provided data on the brake
pressure and deceleration response of the residual cars. Most of the input parameters are
known characteristics of the derailment conditions and equipment involved. The two
parameters that are developed for these analyses are the blockage force and the braking and
blockage delay time. The blockage force level is obtained by a fitting analysis as a function
of various derailment parameters as described below. The braking and blockage delay time

Figure 6.
Validation of the
braking force model
for the part of the
train before the point
of derailment

Table 2.
Derailment
information for the
1-D derailment model
validation analyses

Parameter Units
Aliceville, AL
11/7/2013

Brainerd, MN
7/10/2011

Graettinger, IA
3/10/2017

Wagner, MT
2/13/2013

Casselton, ND
12/30/2013

Derailment speed MPH 39 27 29 37 43
Number of cars beyond the
point of derailment

Each 91 59 106 20 109

Length of cars Feet 59.3 54.0 59.9 57.0 59.6
Avg. car weight kips 260 284 254 286 252
Trail locos Each 1 1 1 1 1
Residual train mass M lbs 23.8 16.9 20.7 5.0 28.0
Blockage force kip 472 466 469 511 461
Braking and blockage delay s 5 14 10 3 0
Blockage ramp time s 4 4 4 4 0
Car braking force lbs 7,800 7,800 7,800 7,800 7,800
Grade Percent �0.35 0 �0.14 0.30 0.10

Source:Authors’ own work

SRT
6,1

82



for these five specific accidents is set to match the conditions of the curve obtained from the
event recorder data and accident severity.

The comparison of the results for the ride down velocity profile from the 1-D analyses
and event recorder data from the derailment is shown in Figure 7, which shows a good
agreement in the calculated and measured ride down profiles indicating that the model
is accurately capturing the longitudinal forces acting on the residual train during the
derailment.

In addition to providing a validation of the model, the analyses of these derailments provide
some interesting insights into the derailment behaviors. First, the average blockage force for all
five derailments is 475 kips. This is the equivalent of the fully developed braking force for
approximately 60 freight cars. Thus, the blockage has a very significant effect on stopping the
residual train. A second insight into the derailment behaviors is that the brake application
delay time varies between 0 and 14 s in these derailments. The 0 s delay time was for Casselton
where the derailment was initiated by a collision with equipment from a derailment on an
adjacent track. For this derailment, the operator placed the train into emergency seconds prior
to impact with the obstruction across the track (National Transportation Safety Board, 2017). In
more typical derailments, the delay time results in several cars being pulled through the point
of derailment before a separation in the train occurs and the emergency braking is initiated. For
example, the Brainerd derailment with a 14 s delay time results in approximately 10 cars being
pulled past the point of derailment on the track prior to the initiation of emergency braking.
Thus, this delay has a significant impact on the overall derailment severity.

The primary model validation, described above, is performed by a detailed comparison
of the model against data for events where the quantitative derailment kinematics is known.
However, the magnitude of the delay time for the braking and blockage force are varied to
match the measured derailment behavior. A secondary model validation has been
performed on a larger set of derailments using the model with a fixed set of input parameter
values. A difficulty with performing this secondary validation is that the details of the train
consist makeup is not known for most revenue train derailments. Since the weight of the

Figure 7.
Validation of the 1-D
derailment model for
scenarios with known

ride-down profiles
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cars both within and behind the POD can have a significant influence on the derailment
severity, the derailments selected for the second validation analyses are primarily unit trains
where the consistency is easily determined.

A set of 442 train derailments are identified from various sources that span a range
of derailment speeds, residual train lengths and derailment severities. The
predicted model severity is plotted against the observed derailment severity for the
secondary model validation cases in Figure 8. The comparison shows a good
correlation of the model with the observed derailment behavior. Any single
derailment may have a predicted severity that is higher or lower than the observed
severity by several cars. This magnitude of variation is expected due to anticipated
variability in factors such as braking or blockage delay and site characteristics.
However, the trend and average severities are in good agreement.

For the analyses shown in Figure 8, the blockage force and delay times applied are
obtained using fitting functions to minimize the mean absolute error (MAE) in
predicted severity. For example, the delay time is determined by a linear function of the
derailment speed, grade, car weight and trailing tons. To demonstrate the importance
of this, Figure 9 plots the delay time that would be required to match the observed
severity of each derailment plotted against the derailment speed. The comparison
shows a clear trend of shorter delay times at higher speed. This makes physical sense
because at high speed, cars are more rapidly pulled past the point of derailment,
developing larger ground resistance forces. Similarly, the delay time is shorter for
heavier cars which would also have higher ground resistance force levels. The delay
time is also increased on uphill grades and reduced on downhill grades. The blockage
force is affected by the lateral buckling of the cars in the consist as they enter the
pileup. Thus, longer and heavier cars result in an increase in the blockage force. The
blockage force is also found to increase on uphill grades. The magnitude of these effects
for loaded unit trains can be seen by the comparison of the blockage force levels in
Table 2.

Figure 8.
Validation of the 1-D
model against
derailment severity
data for known train
configurations
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5. Parameter estimation and performance comparison
In the previous section, two model validation approaches are used to demonstrate a general
validation and provide a comprehensive understanding of the proposed 1-D model.
However, further analyses are essential to establish estimations for the unknown
parameters in the 1-D model. In addition, a crucial aspect involves comparing the
performance of the 1-D model with that of the statistical model to achieve a more
comprehensive evaluation.

This section uses derailment data obtained from the FRA REA/Incident Form
6,180.54, documenting freight train derailments on the main tracks of Class I railroads
spanning the period from 1996 to 2018. The data set contains various parameters,
including derailment location, the number of derailed locomotives and cars, gross
tonnage, cause group, derailment speed, train type and train composition. Since the
data set lacks grade information, it is assumed in this section that all derailments occur
on a flat track. The optimization of parameters for braking/blockage delay and
blockage force aims to minimize the MAE between estimated and observed derailment
severity.

Similar to the outliers identified by the statistical model (Li et al., 2023), the proposed
1-D model exhibits certain instances of derailments categorized as “low-severity
outliers” and “high-severity outliers.” These outliers are attributed to the focus of the
1-D model on derailment incidents following the physical mechanism of an unstable
lateral buckling derailment, commonly associated with broken rail derailments and
similar events. Consequently, the 1-D model does not account for outlier behaviors,
such as broken wheel single-car derailments or a long string of empty cars in
a stationary train knocked over by a high wind event. As a result, this analysis
excludes derailments where the number of derailed cars falls below 0.1 times the
derailment speed (in mph) or exceeds 1.6 times the derailment speed.

Assuming an average car length of 59 feet, with braking delay and blockage
delay set at 12 s, a blockage force of 400 kips, grade is 0 and a blockage ramp

Figure 9.
Assessment of delay

times versus
derailment speed

using the 1-Dmodel
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time of 4 s, Figure 10 shows the comparison of the performance of 1-D model with
or without outliers. Remarkably, the exclusion of outliers leads to a notable
improvement in the estimation performance of the 1-D model, as evidenced by an
increase in the R-squared value from 0.22 to 0.63. Upon excluding all outliers,
the analysis shows a total of 5,186 manifest train derailments, 274 empty unit train
derailments and 1,448 loaded unit train derailments.

Obtaining specific information for each derailment, such as blockage force and
blockage/braking delay, is not always feasible. Therefore, it becomes crucial to
determine optimal parameters for estimating blockage/braking delay and blockage
force (equations (6)–(7)). The paper uses the SA algorithm, which is a probabilistic
optimization technique inspired by the annealing process in metallurgy. SA explores
the solution space by considering both superior and inferior solutions throughout the
simulation, gradually diminishing the acceptance of suboptimal solutions as the
algorithm advances. In this study, the SA algorithm is used to identify near-optimal
solutions for estimating these parameters.

dBrake ¼ dBlock ¼ a0 þ a1 � vD þ a2 � wcar þ a3 � wRes (6)

BF ¼ b0 þ b1 � wcar (7)

where
dBrake = the braking delay (s);
dBlock = the blockage delay (s);
BF = blockage force (kip);
vD = derailment speed (mph);
wcar = the average car mass (kip);
wRes = the residual train mass (kip); and
a0, a1, a2, a3, b0, b1 = parameters need to be estimated.

Figure 10.
The comparison
between estimated
severity and observed
severity using the 1-D
model (a) data with
outliers and (b) data
without outliers
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Using the data excluding outliers and following Algorithm 1, we estimate the optimal
parameter values for equations (6)–(7) for loaded unit trains, empty unit trains and manifest
trains. The estimated values are presented in Table 3. By plugging in the average values for
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variables in equations (6)–(7), the average braking/blockage delay times, as well as the
average blockage force, are also calculated and showed in Table 3. The results indicate that
loaded unit trains typically experience the highest blockage force and delay time, whereas
empty unit trains generally encounter the lowest delay time and blockage force, with
manifest trains falling in between. While a3 for empty unit trains and a2 for manifest trains
are positive, they are almost zero. Since a2 and a3 are both parameters for weight variables,
they compensate each other to achieve optimal estimation.

To thoroughly evaluate the efficacy of the proposed 1-D model, this paper conducts a
comparative analysis with the TG model introduced by Li et al. (2023), representing the latest
statistical model estimating derailment severity. The comparison of the overall MAE is shown in
Table 4. In addition, the derailment incidents are categorized into five severity levels. The MAE
for both the 1-Dmodel and the TGmodel in estimating each severity level category is calculated.

Table 4 shows that the 1-D model consistently outperforms the TG model in terms of
overall estimation accuracy for all train types, exhibiting lower MAE values. This
superiority in accuracy across various types of trains underscores the enhanced estimation
performance of the 1-D model. Notably, the 1-D model excels in estimating loaded unit
trains, characterized by larger train lengths and gross tonnage, making them more
susceptible to severe derailments. In addition, Figure 11(a) further demonstrates that, for
loaded unit trains, the 1-D model excels over the TG model in estimating extreme
derailments (derailment severity> 10) that fall outside historical experience. The 1-D model
achieves this by mathematically describing the physical dynamics of a derailment, enabling
it to better capture the conditions of specific train derailment scenarios.

Figure 11(b) and Figure 11(c) indicate that the 1-D model falls short compared to the TG
model in estimating derailment severity larger than 20 for manifest trains and empty unit
trains. However, the 1-D model consistently outperforms or achieves comparable accuracy to

Table 3.
Results for 1-D model
parameters estimated
values for
parameters in 1-D
model

Parameters Loaded unit trains Empty unit trains Manifest trains

a0 2.37Eþ 01 8.42Eþ 00 1.52Eþ 01
a1 �2.84E� 01 �7.90E� 02 �3.32E� 01
a2 �5.59E� 04 �1.53E� 03 3.73E� 04
a3 �1.65E� 08 8.48E� 08 �1.02E� 07
b0 4.47Eþ 00 7.90E� 01 2.37Eþ 00
b1 3.48Eþ 00 3.90Eþ 00 2.58Eþ 00
MAE 3.80 4.19 3.80
Average braking and
blockage delay time (s)

14.55 5.17 8.8

Average blockage force (kip) 464 127 224

Note: *Assume the blockage ramp time is 4 s and the average car length is 59 feet
Source:Authors’ own work

Table 4.
Comparison of MAE
obtained by 1-D
model and TG model

Train types 1-D model Truncated geometric model

Loaded unit train 3.80 4.20
Empty unit train 4.19 4.40
Manifest train 3.80 3.94

Source:Authors’ own work
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the TG model when estimating derailments in other categories. The performance of the 1-D
model faces challenges in extreme cases for manifest trains, likely due to the mixed weight
composition of these trains. The 1-D model assumes consistent weights for the cars due to data
limitations, which is not always hold true. Similarly, accurate estimation of extreme cases for
empty unit trains proves challenging due to the limited occurrence of such events within the
study period. Within the study period, only 33 empty unit train derailments involved more
than 20 derailed cars, resulting in limited data availability for effective modeling. In addition,
the data set lacks grade information, but most severe derailments occurred on downhill grades.
This absence of grade data impedes the optimal performance of the 1-Dmodel.

6. Conclusions and future study
This paper introduces a physics-informed 1-D model for estimating train derailment
severity. The model is validated through two approaches. Parameters for braking/blockage
delays, as well as blockage force, are estimated using historical derailment data spanning
over two decades. The following conclusions are drawn based on the severity estimation
results obtained by comparing the TGmodel and the 1-Dmodel:

Figure 11.
Comparison between

1-Dmodel and TG
model for different

severity levels for (a)
loaded unit trains (b)
empty unit trains and

(c) manifest trains
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� The FRA REA/Incident Form 6,180.54 database contains outliers that do not represent
typical derailments or primary risk factors for tank car punctures and hazmat releases.
These outliers adversely affect the estimation performance of the 1-D model.

� The 1-D model consistently outperforms the TG model in terms of MAE across all
train types. This consistent superiority underscores the effectiveness of the 1-D
model in accurately estimating derailment severity.

� The 1-D model excels in capturing specific characteristics of train derailment
scenarios by mathematically representing the involved physical dynamics.
However, despite its general superiority over the TG model, the 1-D model faces
limitations due to data constraints. These constraints can impact the performance of
the 1-D model in particular scenarios.

For future studies, it would be advantageous to develop specific parameters for the 1-D model
that target derailments with distinct causes. This approach involves constructing the 1-D model
with customized and estimated parameters designed for different derailment causes. By doing so,
amore targeted and precise analysis of derailment severity estimation can be achieved.
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