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A B S T R A C T

Grade-crossing trespasses are one of the greatest sources of injuries and fatalities on railways. While there is a
wealth of data regarding grade-crossing accidents, near misses (or precursor events) associated with unsafe
trespassing on railroad tracks are not reported, and therefore a comprehensive dataset is unavailable. This paper
presents a Computer Vision (CV) algorithm to automatically detect trespassing near misses based on surveillance
video footage of railway-road grade crossings. The CV algorithm is designed to be robust under changing lighting
conditions over the course of the day-night cycle and works well under varying weather conditions. The algo-
rithm is currently implemented based on data from one grade crossing in New Jersey. With minimal config-
uration changes, the algorithm can be adapted to various other grade crossings. Ultimately, the CV methodology
can support data-driven grade-crossing near-miss risk analysis and contribute to proactive safety improvements
at grade crossings.

1. Introduction

Highway-railroad grade crossings are intersections where a railroad
line crosses a highway. According to US Federal Railroad
Administration (FRA) in 2015, there were approximately 210,000
highway-rail grade crossings in the nation, of which 61% were publicly
approachable (FRA, 2017a). Each highway-rail grade crossing presents
a potential hazard to highway users and train crews. The possible
dangers, such as collisions between highway vehicles and trains, can
result in property damage, casualties, or even the release of hazardous
materials (Chadwick et al., 2014). Collisions between highway vehicles
or pedestrians and trains have been the greatest source of injuries and
fatalities in the railroad industry since 1996 (FRA, 2017a). From 2006
to 2015, there were over 22,000 highway-rail grade-crossing incidents,
resulting in 2717 highway-rail deaths and 9595 highway-rail injuries
(FRA, 2017b). Therefore, there is a significant need for safety ad-
vancements of highway-rail grade crossing.

Considerable research has been conducted on highway-rail grade-
crossings accidents, most of them aiming to reduce accident frequency
and/or severity (e.g. number of fatalities and injuries). Observed acci-
dent data is useful for safety research; however, a far greater number of
risk-prone events (near misses or precursors) occur in which there is no
collision or loss of life but which might possibly have contributed to
such accidents. These events did not result in fatalities, injuries, or

property damage to either highway users or trains, but had the pro-
pensity to do so if they repeatedly occur. This paper focuses on the near
misses due to trespassing at highway-rail grade crossings, which are
defined as those incidents where roadway users are found to be in
violation of existing laws related to grade crossings. Grade-crossing
near misses may precede costly accidents but are not well documented
because they did not result in immediate harm. The analysis of near
misses can provide additional insight that may contribute to grade-
crossing safety improvement. However, very little prior research has
focused on near-miss-based grade-crossing data collection and corre-
sponding safety analysis.

This knowledge gap motivates the development of this paper, which
aims to develop an adaptable Artificial Intelligence (AI) framework for
automatically collecting near-miss data based on surveillance video
data. Surveillance cameras are currently deployed at many grade
crossings in the United States. The existing video data can be used to
track various objects such as pedestrians and wheelchairs that cannot
be detected by conventional photoelectric, ultrasonic, and loop coil
systems (Fakhfakh et al., 2010). In this study, closed-circuit television
(CCTV) cameras are placed at railway grade crossings to monitor real-
time activities. Due to limited storage capability, most railroads delete
the raw video data every one or two months after relevant data has
been collected. To preserve useful near-miss information from these
unused big data sources, we collaborated with one rail agency in New
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Jersey to develop an AI-aided analytic platform for extracting near-miss
information from video data. Ultimately, our aim is to build a unique,
expanding near-miss database for proactive risk management at grade
crossings in the future.

2. Literature review

This study examines the automated detection of near misses due to
highway-rail grade-crossing trespassing using AI as a support tech-
nology. Three major fields of research are relevant to this project:
grade-crossing safety, near misses, and artificial intelligence algorithms
for video analytics. The following subsections review some of the most
relevant prior studies in each field.

2.1. Grade crossing safety

Considerable efforts have been made to quantify the frequency and
severity of highway-rail grade-crossing incidents. The U.S. Department
of Transportation (USDOT) Accident Prediction Model is a commonly
used model in the U.S. to predict the number of collisions occurring at
grade crossings, given specific highway and railroad conditions (Faghri
and Demetsky, 1986; FRA, 2007). Saccomanno et al. (2004) performed
Poisson regression and Negative Binomial Regression to achieve higher
prediction accuracy and found that train speed, exposure, surface
width, and number of tracks were significant factors in collision pre-
diction models. Statistical models were developed to analyze the impact
of a grade crossing collision on highway traffic (FRA, 2007; Hu et al.,
2010) as well as rail traffic (ADL, 2010; Hu et al., 2010; Chadwick et al.,
2012). Furthermore, research has also been conducted to examine
passenger train car crashworthiness (Simons and Kirkpatrick, 1999;
Tyrell et al., 2006).

In addition to the analysis of accident frequency and severity at
highway-rail grade crossings, a clear understanding of driver behavior
and the identification of the human factors can contribute to the de-
velopment of better accident-prevention strategies. Caird (2002) sum-
marized a taxonomy of accident contributors in six categories: unsafe
actions, individual differences, train visibility, passive signs and
markings, active warning systems, and physical constraints. Although
each of these issues requires slightly different approaches to reduce
undesirable occurrences, engineering, law enforcement, and the edu-
cation of the public about the risks are three generally effective ap-
proaches to the improvement of grade-crossing safety. For more con-
crete details regarding human factor causes, Chadwick et al. (2014)
provided a comprehensive overview of grade-crossing risk research in
the United States. The frequency of grade-crossing accidents has de-
clined 80% over the past 20 years, despite an increase of both train and
highway traffic. Nevertheless, collisions between highway users and
trains are still the greatest source of fatalities and injuries in the U.S.
railroad industry (FRA, 2017a). Hence, it is crucial to better understand
noncompliant behaviors at grade crossings, through both accident data
and near-miss data.

2.2. Near-miss events in transportation safety research

Prior research has been conducted regarding near-miss identifica-
tion in maritime and aviation sectors. For example, Zhang et al. (2015)
proposed a method to identify potential ship-ship collisions using Au-
tomatic Identification System (AIS) data. High risk vessel encounters
are evaluated by navigational experts to identify a potential near miss.
In another study of bird collision hazard to aircraft, Klope et al. (2009)
used digital avian tracking radars to automatically monitor and identify
near-miss events. It shows that a combined dataset of actual bird-strike
incidents and near-misses can provide risk managers with a more re-
sponsive metric in assessing the hazards over time than by using only
the bird-strike dataset.

To date, almost all prior studies in the field of grade crossing safety

have focused on using the reported highway-rail grade-crossing acci-
dents in the available databases, such as the U.S. Federal Railroad
Administration Rail Equipment Accident database or Grade Crossing
Incident database. However, none of these databases contain near-miss
events that did not cause actual damage. Several studies, however, in-
dicated the importance of near-miss data for railroad safety and risk
analysis. For example, Wright and Van der Schaaf (2004) stated that
accidents are (fortunately) too few in number to support decision
making about investing in safety improvements, while the use of near
misses is able to dramatically increase the available data to counteract
this problem. In addition, most accidents, such as grade-crossing colli-
sions, were preceded by near-miss events and accident prevention
should not wait until an accident actually occurs. Nevertheless, a large
proportion of published studies have continued to focus on accidents
only, while very few included near-miss data. The primary reason be-
hind this deficiency may be the lack of sufficient, available near-miss
data. San Kim and Yoon (2013) collected near-miss data from 80 rail
accident investigation reports published by an independent accident
investigation organization in the UK; however, it is time-consuming to
manually judge the type of outcome (accident, incident, or near miss)
derived from the title or summary of each report. A similar method was
used by Le Coze (2013), in which near misses were identified from
published studies or books. Given the limitations of these previous
studies, an efficient near-miss collection method with high accuracy is
essential to support the study of near misses.

Grade-crossing near-miss data is largely unavailable. Lobb (2006)
pointed out that inadequate reporting has hindered the understanding
of grade crossing collisions. Understanding and affecting driver beha-
vior and human factors has contributed to about 70% of the decrease in
the number of collisions and fatalities at grade crossings over the past
30 years (Mok and Savage, 2005). Behavioral models, such as Signal
Detection Theory (SDT), have been used to model motorists’ stopping
behavior at grade crossings (Richards and Heathington, 1990; Yeh
et al., 2009). A FRA report (Raslear, 2015) also discussed the applica-
tion of SDT in motorist behavior at grade crossings, but also claimed
that the models have only been tested against limited data and more
field studies about motorist behavior and train arrival times are ne-
cessary. Thus, it is crucial to create an algorithm to detect and record
grade-crossing near-miss data, so that it can provide sufficient data to
test and refine the models within the framework of behavioral risk
analysis.

2.3. Artificial Intelligence for video analytics

AI technologies, particularly computer vision, is used to train
computer program to “understand” images and videos and identify
useful features. AI techniques in computer vision include background
subtraction (Shah et al., 2007; Sheikh et al., 2004; Ramesh, 2003;
Elgammal et al., 2000; Fakhfakh et al., 2010; Zivkovic, 2004), image
segmentation (Sheikh et al., 2004; Elgammal et al., 2000; Salmane,
et al., 2015; Sen-Ching and Kamath, 2004), and trajectory prediction
using Kalman Filtering (Salmane, et al., 2015; Sen-Ching and Kamath,
2004; Patel and Thakore, 2013). Patel and Thakore (2013) have re-
viewed the technique of foreground detection by learning the back-
ground template of the frame and then applying a background sub-
traction technique to identify moving objects. After that, objects are
detected through segmentation of the isolated pixels, and their move-
ment is tracked using Kalman Filtering. This has proven to be an ef-
fective technique for handling this task in computer vision. However, to
implement this technique for the detection of highway-rail grade-
crossing near-miss events, it is necessary to address several challenging
problems in this real-world scenario, such as severe weather conditions
and isolation of the train from the rest of the moving objects.

Very little prior work has used these techniques on grade-crossing
safety analysis, except the following few studies. Shah et al. (2007)
presented a background subtraction approach that detects moving
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objects on railway tracks, with a high accuracy of object detection.
However, the system only performed during the day and turned off
automatically when the illumination fell below a certain predefined
level. Similarly, Salmane et al. (2015) implemented a security surveil-
lance system in order to detect and evaluate abnormal situations in-
duced by users in grade crossings based on the aforementioned algo-
rithms. This intelligent system allows for automatic recognition and
evaluations of noncompliance behaviors in grade-crossing environ-
ments. However, that study did not discuss the isolation of the train
from other vehicular movement if their algorithm was to be used for
detecting grade crossing near misses. Furthermore, the algorithm is
expected to run in real time, but there is no information regarding the
speed of the algorithm’s performance on stored videos. Few previous
studies addressed all crucial practical issues related to grade crossing
near miss detection.

In this paper, to automate the detection of near misses at grade
crossings, a customized AI algorithm is developed and validated using
video data provided by one rail agency in New Jersey. The video data
contains various traffic and environmental scenarios for the AI algo-
rithm to “see”, “understand,” and “detect” near misses associated with
unsafe trespassing. The collected near-miss data will be used to gain a
better understanding of the circumstances and factors for various types
of potential collision incidents at grade crossings.

3. Data source and nomenclature

3.1. Data

For the purpose of designing and testing this algorithm, previously
captured footage is stored and analyzed. The detection technology can
be adapted to real-time video footage with modifications in the future.
The video files from the CCTV camera are stored in a proprietary format
called Nomad Voice File (NVF). In order to gain access and read these
videos for processing, these videos are converted to standard MP4 or
AVI formats. This conversion process was performed using the con-
version tool provided by the data supplier. Also, to limit the file size of
the extremely long videos, the frame rate is reduced to 10 frames per
second (fps). The video has been read in the RGB (Red-Green-Blue)
color format in the following implementation. Both daytime (Fig. 1a)
and nighttime (Fig. 1b) footage is included in the video data.

3.2. Nomenclature

3.2.1. Region of interest
The region of interest (ROI) is defined as the part of the road and

rail intersection where roadway traffic is prohibited to enter during the
stop signal. In terms of the detection algorithm, this region is defined as
an enclosed polygon within every frame of the video, as shown in
Fig. 2(a). In addition to the ROI in real frame pictures, Fig. 2(b) displays
the ROI in a binary mask that will be used in the following processes.

3.2.2. Grade-crossing trespassing near miss
A grade-crossing-trespassing near miss is defined as an incident in

which drivers/pedestrians/cyclists are found to be in violation of ex-
isting laws related to grade crossings. If warning signals (particularly
the red signal warning roadway users) are active and yet there are
vehicles or pedestrians inside the ROI during this time period, although
there is no actual injury or damage, a near-miss event has occurred.
Such events could lead to potentially hazardous situations or accidents.

3.2.3. Algorithm reading frame rate (r1)
The reading rate of the algorithm (r1) is defined as the time interval

between the times the algorithm checks the video for active stop sig-
nals. For example, if the reading rate is 10 s, the video will check for
active signals every 10 s rather than checking every frame. This is to
avoid unnecessary processing of video frames to accomplish the iden-
tification task.

3.2.4. Skipping time frame (r2)
The skipping time frame (r2) is used to speed up processing based on

train schedule. It is defined as the time interval that can be skipped
during video processing immediately after a stop signal ends. The
length of this time interval (r2) depends on the train schedule, or more
concretely, it should be smaller than the minimum possible time gap
between two trains crossing a certain grade crossing based on the local
train schedule. For example, for the chosen grade crossing, it has been
observed that no stop signal is followed by another for at least 10 min.
Hence, the value of the skipping time frame (r2) in this study is set at 5
min. It is a rational parameter in most cases, especially for tracks that
are operated by freight railroads or main passenger train lines. Some
passenger train lines may need a revised parameter for the skipping
time frame (r2).

4. Algorithmic framework

A generalized AI algorithm was developed here to detect near
misses from video footage of a grade crossing. This AI algorithm reads
the video file, looks for a red signal, processes the image (details will be
presented later), and evaluates whether a near-miss has occurred. The
basic procedural steps of the algorithm are shown in Fig. 3. Further-
more, the developed computer vision algorithm should be trained to
test and verify its robustness. A training program for a computer vision
application for railroads would require the development of an initial
algorithm with established environmental parameters. This initial al-
gorithm would analyze a training set of data in comparison to the
known to ensure that the algorithm can properly “see” and “under-
stand” the images of trains and pedestrians independently from the
background. The computer vision algorithm should also be refined and
tested with various weather conditions and diverse daylight conditions,
such as dawn, day, dusk, and dark. After undergoing this training,
testing and continual parameter refinement, a computer vision appli-
cation can capture the images and moving paths of trains and highway
users (e.g. cars, pedestrians, bicyclists) under diverse conditions. Then

                 (a) Daytime (b) Nighttime 

Fig. 1. Example of footage at (a) daytime (b)
nighttime.
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the developed algorithm can be used to automatically process video
data, and compile the near miss information into a database for future
safety study.

Further implementation details for every step of the procedure are
as follows.

Step 1: Configure Algorithm and Video Settings

The first step is to extract the meta-data of the video to be processed,
as well as necessary information, such as the duration, frame-rate, and
the resolution of the video. Parameters of the algorithm are initialized
in order to define the ROI and the location of the stop signal in the
frame. In addition, the two hyper-parameters of the algorithm, algo-
rithm reading frame rate (r1) and skip time frame (r2), are also initialized
at this step.

Step 2: Read Video Frames

Next, the algorithm starts to read the video file from the first to the
last frame of the video. During this reading, the prime objective is to
detect whether the active signalized crossing light has been triggered.
To optimize processing speed, these frames are not read in a continuous
manner; instead, a frame-skip segment is conducted, which advances

the reading in a fixed reading frame rate (r1), 10-s intervals, and stops
when a red light is detected. This is practical in this application, since a
stop signal normally lasts for more than 10 s, so there is no risk of
skipping any active signal. Most importantly, this efficient frame-skip
algorithm supports adaptability to high frame rate surveillance video
with acceptable analysis time.

Step 3: Check Stop Signal

Once a frame has been extracted, the algorithm checks whether the
(red) stop signal has been triggered in that frame. This is achieved
simply by checking the red pixel values in the small area of the frame
where the signal is located. If a stop signal is detected, the algorithm
performs a frame-by-frame check backward to find the initial activation
of the stop signal, and then activates a subroutine procedure to detect
near-miss events during that red signal.

Step 4: Background Learning Model

Before the process of near miss detection can begin, the algorithm
must learn to subtract the background template established at the initial
activation of the stop signal. Instead of using a single background
template throughout the whole video, the algorithm learns a new
template for every stop signal encountered throughout the video. This
overcomes the challenge of gradually changing light levels over the
course of the day. In addition, this ensures that the algorithm also takes
into consideration temporary changes, such as short-term rainstorms,
cars parked in the background, or other elements that may not remain
static throughout the day.

Step 5: Detection of Moving Objects

Based on the background templates that are learned in the previous
step, the algorithm initializes the detection of moving objects with the
background subtraction technique. For every frame of video during the
stop signal, the number of moving pixels is tracked and recorded. This
detection activity continues until the stop signal turns off.

Step 6: Identification of Near-Miss Events

Finally, based on moving objects detected in the form of a set of
moving pixels, the algorithm analyzes the recorded values of moving
pixels to find near-miss events. The main challenge in this step is to
separate the moving pixels of a near miss from those of a train or other
static noise which is not included in the background template. The
number of pixels that a train occupies in the foreground during a
crossing is much larger than that of a pedestrian or vehicle, and ac-
cordingly, it is necessary to establish a threshold based on a set of
training data. Then, if a segment is identified as and confirmed to be a
near miss, all the frames within the duration of the red signal are ex-
tracted to an output video file for further review and study. Once the
processing of one stop signal period concludes, the algorithm has a skip

(a) Real frame picture                              (b) Binary mask 

Fig. 2. Region of Interest (ROI) as indicated by (a)
the blue polygonal area on the tracks, and (b)
binary polygon mask.

START

Configure Algorithm and 
obtain Video details

Does Video have 
frame to read

Red Signal?

END

Next Frame

Near Miss
Found?

WRITE OUTPUT

Process Red Signal
YES

YESNO

NO

Fig. 3. General algorithm flowchart.
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time frame (r2), such as 5 min, and then continues to process the rest of
the video from Step 1. This 5-min skip further reduces processing time
and does not compromise accuracy, since no stop signal would occur
again within such a short an interval in this case study. This parameter
can be easily modified accordingly for different applications, such as a
busy commuter-train crossing or short-line passenger trains.

5. Application and implementation

To illustrate and validate the feasibility of AI-aided video analytics,
a customized algorithm was developed and implemented for the de-
tection of trespasses resulting in near misses using data at one grade
crossing in New Jersey. Near misses detected by this AI algorithm can
provide researchers and policy makers with additional information for
safety improvement. The following section details the parameters and
process of using AI to automatically detect near misses from grade-
crossing surveillance video data.

5.1. Stop signal detection

Indication of the on/off state of the stop signal is derived by fo-
cusing on the stop signal post. The stop signal consists of a left lamp and
a right lamp emitting red light. Two small square windows in RGB color
scale with a size of 7× 7 pixels are extracted from the left signal lamp
(LRGB) and the right signal lamp (RRGB) respectively, in one frame. LRGB
and RRGB are converted to gray-scale using a weighted sum transfor-
mation =x xΦ( )RGB GRAY of the individual red, blue, and green color
channels (Eq. (1)). As a standard color-to-grayscale conversion method,
the weights for each color have been widely used in previous research
(Bala and Braun, 2004; Grundland and Dodgson, 2007).

= = × + × + ×x x x x xΦ( ) (0.2989) (0.5870) (0.1140)RGB GRAY R G B (1)

where xR, xG, xB, xGRAY are color values for red, green, blue, and gray
respectively.

Based on this transformation for each element of the two RGB
windows L and R, the gray scale representations are defined as

= ∈ ×L l( ) [0,1]GRAY ij
7 7 and = ∈ ×R l( ) [0,1]GRAY ij

7 7. Here, the on/off
state for each signal lamp is identified based on the median values,
which are represented as ΘL in LGRAY and ΘR in RGRAY .

From observation of the stop signal in the actual surveillance video
data, it was noticed that the two lamps light up alternately with a rapid
flicker between the two lamps. As a result, at any given moment, one of
the two lamps is brighter than the other in intensity. Thus, the absolute
intensity difference δ between the two lamps gives a positive indication
of the state of the entire signal, = −δ |Θ Θ |L R . This technique of evalu-
ating intensity difference makes signal state detection robust under
nighttime conditions, in which the headlights of vehicles bounce off
both signal lamps, giving the false appearance that they are active. The
state of the entire stop signal is chosen to be off =(Θ 0)s or on =(Θ 1)s

depending on a particular threshold α:

= ⎧
⎨⎩

<δ αΘ 0, if
1, otherwiseS

(2)

As shown in Fig. 4, the intensity difference is easier to detect in the
daytime as compared to nighttime, when the lamps look extremely
bright. Thus, accounting for both daytime and nighttime conditions, the
intensity difference threshold of α has been fixed at 0.3 after trial and
error. The practicability of this threshold is validated in the test of the
detection algorithm.

5.2. Background learning

The first step in detecting moving objects throughout the video is to
learn the pattern of static or non-moving objects in the video frames.
This is done by learning the background template for a short time
duration. The learning of background template B depends on N

consecutive video frames, starting from the initial activation of the stop
signal. Each video frame is divided into ×l d RGB images and the
nthvideo frame in the set of video frames is denoted as

= ∈ × ×F n f n( ) ( ( )) [0,1]ijk
l d 3. The background template is learned by

taking the mean value over N consecutive video frames for every pixel
position in the background frame:

∑= ∀
=

b
N

f n i j k1 ( ) , ,ijk
n

N

ijk
1 (3)

where ∈ … ∈ …i l j d{1,2, , }, {1,2, , } and ∈k {1,2,3}.
In this study, N (number of frames) is set at 200, which is equivalent

to watching the first 20 s of the video to determine the positions of non-
moving objects using the frame rate of 10 frames per second as de-
scribed above. Fig. 5 shows a sequence of learned frames from video
footage and the corresponding background template generated from
them.

5.3. Daytime object tracking

In order to track moving objects during the daytime, Background
Subtraction is applied to create a moving-object binary “mask” (M) for
every frame. Background Subtraction here performs subtraction with
binary thresholding for every pixel of the frame (F ) and the background
template (B) as shown here:

= ⎧
⎨⎩

− >
m

f b λ1, if max(0,Φ( ))
0, otherwise

ij
ijk ijk

(4)

where ∈ … ∈ …i l j d{1,2, , }, {1,2, , } and ∈k {1,2,3}. The threshold in object
tracking =λ 0.3 has been chosen.

After obtaining the noise-free mask (Fig. 6), the algorithm performs
a check to see whether these moving objects lie inside the ROI. To
achieve this, a pixel-wise “and” operation is conducted between the
foreground mask M and the ROI mask P to obtain a binary image I
indicating objects moving on the rail tracks:

= ∩ ∈ ×I m p( ) {0,1}ij ij
l d

(5)

5.4. Nighttime object tracking

The night time footage presents a big challenge in the detection of
moving objects due to extreme illumination in various regions, largely
arising from the light emitted from vehicle head lights. Another chal-
lenge is the static noise produced at nighttime due to the low quality of
the CCTV camera. Both of these problems are apparent in Fig. 7(a).

To solve these two difficulties, the algorithm makes use of the fact
that light makes any object brighter when it falls upon it, thereby
leading to an increase in that object’s pixel intensity in the frame.
Hence, to eliminate illumination, the mask is developed using a dif-
ferent process than the usual Background Subtraction approach. Here,
all the pixels whose intensity is higher in comparison to the background
model are eliminated from the mask, since they may correspond to il-
lumination (Eq. (6)). While this approach loses some of the moving
objects’ resolution, sufficient information remains in the mask to detect
vehicular movement in spite of the head lights. A comparison of this
mask and the background subtraction mask are shown in
Fig. 7(b) and (c).

= ⎧
⎨⎩

− >
m

b f λ1, if max(0,Φ( ))
0, otherwise

ij
ijk ijk

(6)

5.5. Tracking under rainy conditions

Previous researchers have pointed out that one of limitations of
their studies is the inability to operate the algorithm in rainy or other
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adverse weather conditions (Shah et al., 2007). When tracking objects
move in rainy weather, the algorithm may incorrectly identify rain-
drops as moving objects that count as “trespassing”. To obtain high
detection accuracy, these raindrops must be filtered out of the moving-
object mask. Accordingly, adapting principles similar to those used to
eliminate light in nighttime tracking, minor modifications are made to
the algorithm to eliminate raindrops from the mask. For light rain, the
noise removal process of the algorithm will filter rain from the binary
mask based on the usual threshold value of λ, 0.3. However, when

considering heavy rain and strong wind, the threshold value λ must be
adjusted to eliminate the extreme noise in the mask. In the currently
available video database, there is no footage recording such weather
conditions and λ = 0.3 is sufficient under all conditions. Fig. 8 shows
the foreground mask for rainy conditions, and the moving pixels cor-
responding to rain drops have been eliminated using the noise removal
process.

Fig. 4. Intensity difference of stop signal during day
and night.

  (a) Input frames    (b) Output background 

Fig. 5. Background learning (a) input frames to
determine (b) output background.
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5.6. Separation of the train from other moving objects

Another challenge of this application is to make a distinction be-
tween moving trains and uncompliant highway users in the mask. The
percentage of pixels corresponding to the moving objects in the mask is
used as the metric to achieve the distinction. Fig. 9 shows a certain
binary mask obtained from a frame in which the train is passing. As

evidenced from the mask, the train covers most of the frame. In other
words, the percentage of pixels corresponding to this single moving
object is significantly higher than that of highway users in the ROI, such
as motorists, pedestrians, and bicyclists. Hence, it is assumed that
during an active stop signal, the time frame containing considerable
activity in the mask corresponds to a passing train.

5.7. Algorithm validation

The performance of the proposed grade-crossing near-miss detection
algorithm was tested using a footage dated May 25, 2016. This is a
testing database and was not used for model development. Two near-
miss events of interest were successfully extracted and recorded by this
algorithm. It took around 5 min of processing time to go through the
210-min segment extending from 5:30 AM to 9:00 AM. This means that
the processing of the surveillance video takes roughly 2–3% of the total
video duration to complete. However, the exact computational effi-
ciency depends upon the number of active stop signals throughout the
video. Less processing time is needed for fewer stop signal activations.

In terms of accuracy, there are four possible results: (1) an illegal
trespass occurs and a detection is recorded (correct); (2) no illegal
trespass occurs, but a detection is recorded (false positive); (3) an illegal
trespass occurs, but there is no detection (false negative); and (4) there
is no illegal trespass and no resulting detection (correct). To check the
algorithm results with actual conditions, surveillance footage was re-
viewed manually and then compared with the output of AI detection. In
this short-term case study, the AI algorithm detects all near misses ac-
curately without any false positives or false negative.

5.8. Description of detected near misses

Two AI-detected near-miss events occurred within the active period
of a single stop signal in the early morning. In the first near miss, before
the arrival of the train, two pedestrians crossed inside the zone of
danger while long arm gates were open and stop signals were activated
(Fig. 10a). Five seconds after the two pedestrians crossed the track, the
train arrived. In the second near miss, a bicyclist had stopped in front of
the deployed arm gate and stop signal while the train passed this grade
crossing. However, immediately after seeing the train had passed, this
bicyclist crossed the tracks without waiting for the signal to be deac-
tivated and without even checking whether there was a second train on
this multiple-track territory (Fig. 10b).

These two near-miss events epitomize two types of highway user,
pedestrian and bicyclist, and two typical non-compliance behaviors.
More specifically, the two pedestrians timed the arrival of the train
using their visual judgment and were confident in their ability to cross
the track before the train arrived under the current railroad conditions.
However, there may be considerable uncertainty when visually esti-
mating train speed and time of arrival, especially the evaluation of train
speed from their perpendicular perspective. Similar human error of
misjudging speed of oncoming vehicle, was found by Stanton and
Salmon (2009). In regard to the bicyclist trespassing, the second near
miss illustrates the common assumption that no other train will pass
directly after another, despite the presence of multiple tracks and the
continuation of active signals at the grade crossing. This assumption is
not always true. Yeh and Multer (2008) highlighted the safety of drivers
and pedestrians at grade crossings with multiple tracks, and concluded
that significantly more crashes appeared to occur with multiple tracks
than that at crossings with single tracks. Both of these near misses re-
present risky non-compliance behaviors and can potentially cause cat-
astrophic consequences, as evidenced in past accident data (Ogden,
2007).

6. Counting traffic exposure and calculating near-miss rate

As shown in the two aforementioned near-miss examples, the

Fig. 6. Moving-Object Mask - Daytime.

(a) Moving objects at night time 

(b) Background subtraction                          

(c) Illumination elimination
Fig. 7. Moving objects in (a) raw mask and masks obtained by (b) background subtraction
and (c) illumination elimination.
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algorithm detects and tracks noncompliance behaviors based on the
surveillance video. Apart from the detection of near-miss events, it is
also essential to count traffic objects, such as vehicles and pedestrians,
in the output video. The tally results can be used to determine traffic
volume and calculate the rate of near-miss events, which is equal to the
number of near misses normalized by traffic volume. In train accident
studies, accident rate is a major empirical model and can be im-
plemented for high-level rail operational safety analysis (Liu, 2016).
Similarly, near-miss event rates can provide grade-crossing safety
conditions and comparisons between crossings involving various traffic
volumes. In addition, it can act as an essential standard to evaluate
potentially high-risk time periods or locations, where special instruc-
tion and prevention efforts can be implemented. Object Path-Tracking
is one commonly used vision-based counting approach (Barandiaran
et al., 2008; Cong et al., 2009; Kocamaz et al., 2016). It is adapted here
to estimate the number of traffic objects in highway-rail grade crossing
areas over a specific time period. To distinguish the types of traffic
objects (pedestrian or vehicle), bounding boxes can be assigned to
moving objects using a series of tracking points and employing a
combination of Background Subtraction, Kalman Filtering (Coifman
et al., 1998; Chen, 2015), and the Hungarian cost optimization algo-
rithms (Kuhn, 1955; Torresani et al., 2008). The parameters of these
bounding boxes (height, width, and aspect ratio) and a confidence score
based on series of points are two metrics capable of distinguishing ve-
hicles from pedestrians. For example, a relatively larger bounding box
or a score above a certain threshold indicates a motor vehicle (Fig. 11).
Nevertheless, there are several common technical challenges, involving
occlusion caused by multiple objects, maintaining the identity of a
moving object across multiple frames given low camera quality, etc.,
which call for future research using more video data.

For illustration, we test a similar AI algorithm to count traffic ex-
posure (e.g. pedestrian, vehicle) from 5:30 AM to 9:00 AM on the same
day described above. Taking pedestrians as an example, the traffic
count algorithm shows that 25 pedestrians and 2335 vehicles crossed
this grade crossing, both of which are almost identical with the authors’
manual counting. There were only 8 bicycle passes during this period.
Given this low traffic exposure, we did not calculate the near miss rate
for bicycle-related trespassing, which can be studied in the future using
more data. As described above, one near miss occurred due to pedes-
trians and no near miss resulting from vehicular traffic. In this paper, a

group of people crossing the track together is treated as one trespassing
activity. Based on these information, there are an average of 4 near-
miss events per 100 pedestrians at this grade crossing. On average, for
an individual, the estimated probability of unsafe trespassing is 0.04
assuming that the unsafe trespass for each individual entering the track
region follows an independent, identical Bernoulli process. If we as-
sume that the number of near misses approximately follows a Poisson
distribution, the probability of any possible number of near misses can
be estimated as =

−
p n( ) ,e

n
4

!

n 4
where n is number of near misses per 100

pedestrians. For example, if 100 pedestrians cross the track within the
studied 210-min interval, the probability of having at least 10 near
misses is around 0.0081 ( − ∑ =

−
1 n

e
n0

9 4
!

n 4
). For all types of motor vehicles,

near misses appear to be rare events, and so far there was no recorded
occurrence within the traffic exposure covered by this study. For si-
tuations where there are zero near-miss events within the study in-
terval, Quigley and Revie (2011) estimated that the rate of this event
occurring can be simply approximated with

n
1

2.5
, where n is the number

of trials. Under this estimator, the probability of a vehicle near miss
here is 0.00017 ( × )1

2.5 2335 using the data in the studied period. Long-
term, additional video data will advance the estimation of the near-miss
rate. The locations or time periods with higher near-miss rates may
need special preventative efforts or enforcement.

7. Potential use of near-miss data for grade-crossing risk analysis

The grade-crossing near misses detected and recorded in this study
can add to research into the improvement of grade-crossing safety,
since prior research has been based on reported accidents only. This
algorithm can efficiently record near-miss outputs that can ultimately
provide detailed characteristics of near-miss events for behavioral risk
analysis (Raslear, 2015). Even though forms of noncompliance have
been hypothesized, a lack of actual behaviors captured at the time of
violation has hindered further studies. Yeh et al. (2009) have confirmed
that grade crossing warning devices are effective in encouraging drivers
to stop and behave more cautiously using the FRA Highway-Rail Grade
Crossing Accident/Incident database. Nevertheless, a database invol-
ving accidents may provide limited information to clarify behavioral
characteristics. In the study of Signal Detection Theory, Raslear (2015)
similarly raised the concern that models have only been tested against

Fig. 8. Moving-Objects Mask in Rain.

Fig. 9. Mask corresponding to a frame containing
the train.
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limited data and there is a need for more information about motorist
behavior. Thus, sufficient near-miss data detected through the proposed
AI-based algorithm in this paper can contribute to a specific behavior
risk analysis. Highway users’ decision-making strategies modeled by
behavioral risk analysis can then help clarify the factors that influence
such noncompliant decisions and establish a comprehensive framework
for evaluating the impact of proposed countermeasures.

The detected near misses at grade crossings can be used to support
more detailed cognitive and sociological analyses. For example, some
studies have found that prior behaviors can affect future decisions
(Hastie and Dawes, 2010; Tinsley et al., 2012). Also, people’s activities
may depend, in part, on what others decide to do (Fitzpatrick and
Mileti, 1991). For instance, one near miss identified in this study shows
that two pedestrians chatted and unsafely cross the grade crossing to-
gether. There might be clustering of near misses attributable to socio-
logical interaction.

The video data analyzed by computer vision technology can provide
valuable information for prospective, in-depth, cognitive and socio-
logical analyses. Researchers from multiple disciplines, including psy-
chology, cognitive science, statistics, risk analysis, and transportation
engineering, may collaborate to better understand human behaviors
and root causes of near misses. Furthermore, it would be interesting to
better understand the relationship between near misses and accident
occurrences. If this relationship exists, near miss might be used as
surrogate safety measure for evaluating grade crossing safety risk and
thus prioritizing risk mitigation resources (Tinsley et al., 2012).

All these prospective analyses can shed new light on grade crossing
safety improvement through Engineering, Education or Enforcement.
For example, if certain types of grade crossing configuration char-
acteristics are correlated with more near misses, engineering improve-
ment strategies might be identified. Also, if near misses cluster in cer-
tain locations or time periods, enforcement may be optimally arranged
to prevent them. Also, the near miss video data can be used to educate
the public about the risk of unsafely trespassing grade crossings.

8. Conclusion

There is an increasing amount of surveillance video data available
from railroads that provide opportunities for near-miss-driven safety
analysis. This paper presents an AI-aided computer vision technique
that is able to automatically identify and collect data regarding near-
miss events due to unsafe trespassing of highway-rail grade crossings.
This grade-crossing detection algorithm is capable of processing video
data in a reasonably short period of time with adequate accuracy in the
real-world scenario. Moreover, the near-miss detection can efficiently
work under various weather and visibility conditions. The automated
collection of near-miss data supported by the AI technology in this
paper can be used for the development of a grade-crossing near-miss
database and provide opportunities to study and improve grade-
crossing safety. The near-miss database can be used for behavioral risk
analysis and the development of risk-informed studies, to prevent the
occurrence of risk-prone behaviors and resultant accidents. Ultimately,
an interdisciplinary safety study between psychology, statistics, and
railway engineering can contribute to insightful risk reduction strate-
gies and significantly improved the safety at highway-rail grade cross-
ings.

9. Future work

In the future, the near-miss detection algorithm can be trained and
adapted based on the increasing duration of the surveillance video data
covering more environmental conditions and various noncompliant
crossings. The next step is to establish a significant near-miss database
that includes all grade-crossing near misses captured by the detection
algorithm based on multiple grade crossings in several months. One
area of future research is to better understand human behaviors and
root causes of near misses at grade crossings using a nexus of multi-
disciplinary approaches, such as cognitive and sociological theory,
transportation engineering and statistical risk analysis. In addition, the
AI algorithm can be adapted to other relevant areas in railroad safety
research, such as in-cab video analysis for distraction detection or se-
curity surveillance in railway stations. Forthcoming applications of AI
algorithms can be developed in support of identifying precursors and
prioritizing risk mitigation strategies related to engineering, education
and enforcement.
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