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A B S T R A C T   

This paper leverages the “Mechanism Design” theory to design the ridesharing-based transit 
feeder service with mixed scheduled and on-demand passenger requests. An online hybrid 
mechanism is proposed with four incentive objectives: promoting passengers to participate by 
satisfying their mobility preferences, inducing passengers to truthfully reveal their mobility 
preferences, incentivizing the service provider to be financially sustainable, and incentivizing 
more regular commuters to early schedule the service. We propose and prove four properties, 
“preference-based individual rationality”, “preference-based incentive compatibility”, “financial 
sustainability”, and “scheduling preferability” to achieve the four incentive objectives, respec-
tively. This online hybrid mechanism is comprised of a dynamic re-optimization methodology for 
re-matching and re-routing and a hybrid real-time pricing mechanism discriminative against 
different passenger types. In order to obtain the large-scale solutions for the online hybrid 
mechanism, this paper improves the solution pooling approach (SPA), which was originally 
proposed in our previous work for a static offline mechanism, to adapt for the online hybrid 
mechanism. The improved SPA successfully sustains the “preference-based individual rational-
ity”, “financial sustainability”, and “scheduling preferability” properties. The simulation results 
demonstrate the superiority of the proposed online hybrid mechanism over the static offline 
mechanism and the outperformance of the improved SPA over the original SPA.   

1. Introduction 

One critical issue that an industrialized nation faces is the need for a low-cost, reliable, and environmentally sustainable public 
transit system. Despite the huge investment in infrastructure and operations, American public transit system does not have significant 
growth in ridership. In fact, the transit ridership in the U.S. decreased by 2.7 percent from 2017 to 2018 (O’Toole, 2020). Among 
various issues, one well-recognized factor that hinders the use of public transit is the “first mile” accessibility gap, which significantly 
affects a passenger’s choice of public transit (Lesh, 2013; Perera et al., 2018). Enabled by recent advances in technology, ridesharing 
holds the promise of bridging the accessibility gap in public transit and reducing the on-road vehicles. As an innovative way to provide 
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“transit feeder service,” recent literature has discussed the possibility to increase national-wide public transit ridership by leveraging 
ridesharing as a first-mile service (Lesh, 2013; Stiglic et al., 2018). 

Our research uses mechanism design theory to investigate how a multi-agent (vehicles and travelers) first-mile ridesharing (FMR) 
system can operate effectively in such a way that all participants collectively achieve the system goals, while satisfying their personal 
needs via customized incentives. This paper accounts for mixed scheduled and on-demand passenger requests because, in FMR service, 
a portion of passengers are commuters and can schedule the service in advance, while other spontaneous travelers may send requests 
up to the “last minute”. Therefore, an online hybrid mechanism (ONHBM) is designed with four incentive objectives achieved:  

1. Promoting passengers to participate by satisfying their mobility preferences. Many people are not so enthusiastic about sharing 
rides because the system is not designed in a manner that satisfies their mobility preferences. Thus, the designed mechanism should 
ensure that the mechanism can satisfy passengers’ mobility preferences (e.g., the latest arrival time, the longest tolerable detour, 
the maximum tolerable number of shared riders, maximum price they are willing to pay, etc.).  

2. Promoting to truthfully reveal users’ mobility preferences. The mechanism allows passengers to directly report their personalized 
mobility preferences. However, rational passengers may intentionally misreport the preferences to maximize their utilities. For 
example, a passenger may report a very low price that he/she is willing to pay. This untruthful behavior may impair the system- 
wide optimization and other passengers’ and the service provider’s benefits. Therefore, the mechanism should be misreporting 
preventable.  

3. Incentivizing the service provider to be financially sustainable. The designed mechanism incentivizes the service provider to 
continually provide the service without a financial deficit so that the service is self-sustainable without external investment.  

4. Promoting passengers to early schedule the service as well as incentivizing regular commuters to use the FMR service. A large 
portion of the passengers scheduling the service are commuters, who may use the FMR service regularly and frequently (Kumar and 
Khani, 2021). They deserve a discount compared with single-use on-demand passengers. In addition, scheduling the service pro-
motes to reduce the uncertainty of trip requests and provides priori information for the system-wide global optimization. Thus, the 
designed pricing scheme is particularly discriminatory against different types of passengers, providing scheduled passengers with 
more incentive. This objective of the mechanism is similar to the concept of group purchasing, which usually give customers some 
discount as incentive (Matsuo et al. 2005). 

We propose four mechanism properties, namely “preference-based individual rationality”, “preference-based incentive compati-
bility”, “financial sustainability”, and “scheduling preferability”, to achieve the four incentive objectives, respectively, which will be 
detailed in Section 4. 

The mechanism is modeled through a dynamic re-optimization approach to enable re-matching and re-routing and a real-time dual- 
layer incentive pricing scheme, which is implemented by a rolling horizon planning (RHP) approach. The system continuously receives 
and uses RHP to process passengers’ requests. Emerging passengers’ requests are accommodated either in existing routing plans, which 
need to be re-adjusted, or in new matching plans and routing sequences. The real-time, dual-layer pricing scheme consists of an in-
termediate pricing scheme and a final pricing scheme. The intermediate pricing scheme, determined by the passengers’ request lo-
cations and times, is embedded as a baseline in the final pricing layer. The main objectives of the intermediate pricing layer are to 
differentiate prices of passenger requests with different urgencies (defined as time to train departure time) as well as to ensure financial 
sustainability of the service. The final pricing layer is determined by passengers’ mobility preferences as well as the matching plan and 
the routing sequence. The final pricing layer prevents passengers’ misreporting strategy. 

The re-optimization problem of matching and routing is NP-hard and is difficult to be solved within a short time when the problem 
scale is sufficiently large, while the real-time FMR service requires a computationally efficient algorithm with near-optimal results. 
Traditional heuristic or approximate algorithms may not maintain crucial properties in solving large-scale problems (Mu’alem and 
Nisan, 2008; Nisan and Ronen, 2007; Bian and Liu 2019b). Our previous work (Bian and Liu, 2019b) developed an efficient algorithm, 
Solution Pooling Approach (SPA), to solve an offline mechanism design problem for scheduled FMR, which successfully holds “in-
dividual rationality” and “incentive compatibility”. Nevertheless, it is not sufficiently fast for the real-time FMR service with on- 
demand passenger requests. In addition, the original SPA may not hold “financial sustainability” and “scheduling preferability” 
(the reason is given in Section 5). Thus, this paper improves the original SPA. The improved SPA can solve mechanism design problem 
within a short time and can hold “preference-based individual rationality”, “financial sustainability”, and “scheduling preferability”. 

The remainder of the paper is structed as follows. Section 2 reviews the state-of-the-art and summarizes the contributions of this 
research. Section 3 describes the FMR system and clarifies the mechanism design problem. Section 4 introduces the online hybrid 
mechanisms. The improved SPA algorithm is presented in Section 5. Experimental results are presented in Section 6. Section 7 
summarizes conclusion remarks. 

2. Literature review 

Section 2.1 reviews the literature on FMR, mechanism types for ridesharing, user types in ridesharing, and solution algorithms for 
ridesharing mechanisms. Section 2.2 introduces our previous work on mechanism design for FMR service. Section 2.3 identifies the 
knowledge gaps and introduces the intended contributions of this paper. 
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2.1. Existing work 

2.1.1. First-mile ridesharing 
Research has been aware of the efficacy of ridesharing to address first-mile accessibility problem and proposed relevant research. 

Most of the research applied optimization and simulation approaches to design or improve FMR systems, but to our best knowledge, 
incentive problem, which is critical for FMR organization, is not well studied. Masoud et al. (2017a) studied the first- and last-mile 
problem in Los Angeles Metro Red Line and proposed a mechanism that selectively serves passengers with an incentive pricing 
scheme. Bian and Liu (2017) designed the optimal FMR service connecting to train schedules using the simulated annealing algorithm. 
Shen et al. (2018) conducted a simulation of the shared autonomous vehicle FMR service. Bian and Liu (2018) designed a detour-based 
discounting mechanism for the FMR service. Jiang et al. (2020) studied the FMR service problem with a limited vehicle fleet capacity, 
aiming at maximizing the number of served passengers. Chen et al. (2020) built a mixed integer programming model for autonomous 
vehicle FMR. Kumar and Khani (2021) studied a first- and last-mile ridesharing matching problem in a multimodal transportation 
network. 

2.1.2. Mechanism design types for ridesharing 
Recently, researchers have proposed various types of ridesharing mechanisms to achieve different incentive objectives. These 

mechanisms can be classified into two general categories, which are rule-based and auction-based mechanisms. 

1. Rule-based mechanisms. Rule-based mechanisms determine the matching plan, routing sequence, and prices based on pre-
determined rules. There are four basic rule-based mechanisms. The first is called the “flat rate” mechanism, which determines the 
price via a constant (flat) rate based on travel distance and/or travel time (Ungemah et al., 2006). The second is the sup-
ply–demand-based mechanism (e.g., surging pricing scheme), which uses dynamic pricing scheme to balance the supply and de-
mand (Liu and Li, 2017; Wei et al., 2019; Ma et al., 2020; Ke et al., 2020). The third type is fair cost sharing mechanism that splits 
the fare among riders with a certain degree of fairness (Zhang et al., 2020; Hu et al., 2020; Chau et al., 2020, etc.). Lastly, the fourth 
mechanism simultaneously optimizes matching plan, routing sequence, and prices to achieve one of certain objectives (e.g., 
minimizing total vehicle mileage, maximizing profits, and minimizing transportation cost) (Santos and Xavier, 2015; Lei et al., 
2019). In these “rule-based” mechanisms, passengers cannot report their mobility preferences and thus the service and pricing are 
difficult to be customized to account for users’ needs.  

2. Auction-based mechanisms. Auction-based mechanisms induce passengers to bid for the service. Passengers with higher values 
have higher priority to be served (Zhao et al., 2015; Nguyen, 2013; Cheng et al., 2014; Kleiner et al., 2011; Kamar and Horvitz, 
2009; Asghari et al., 2016; Asghari and Shahabi, 2017; Shen et al., 2016; Ma et al., 2018; Zheng et al., 2019; Luo, 2019; Hsieh et al., 
2019; Shi et al., 2020). The Vickrey-Clarke-Groves (VCG) mechanism is an example of this type (Vickrey, 1961; Clarke, 1971; 
Groves, 1973). However, the VCG mechanism is not budget-balanced and may not be financially sustainable without external 
investment (Parkes et al., 2001). Recently, researchers further modified the VCG mechanisms. For example, researchers have 
applied deficit control mechanisms to address the revenue shortage problem (Zhao et al., 2014; Lloret-Batlle et al., 2017; Zhang 
et al., 2018; etc.). Although passengers can customize the service through reporting their personalized valuations, their mobility 
preferences associated with the FMR (e.g., detour tolerance) have not been considered in the existing research. 

2.1.3. User types in ridesharing  

1. Scheduled passengers. Many passengers may schedule the ridesharing service because they know their schedules in advance, for 
example, the commuters and those who have scheduled business, events, or long-distance travels. In a system where all passenger 
requests are scheduled in advance, the matching plan can be pre-determined with less computational constraint. Mechanisms have 
been developed to handle such scheduled requests (Zhao et al., 2015; Nguyen, 2013; Cheng et al., 2014; Zheng et al., 2019; Hsieh 
et al., 2019). These mechanisms are offline and static and do not need to handle dynamically occurring passenger requests.  

2. On-demand passengers. Other passengers may send on-demand requests because they do not report their travel plans until the “last 
minute” (Daganzo and Ouyang, 2019). In the literature, researchers primarily focused on the mechanism for dynamic ridesharing 
(Kleiner et al., 2011; Luo, 2019; Zhang et al., 2017; 2018; Shen et al., 2016; Shi et al., 2020), in which passengers send on-demand 
requests for immediate car usage. Compared with mechanisms for scheduled passengers, on-demand mechanisms are more difficult 
to design because: 1) The mechanism results must be dynamically obtained; 2) The obtainment of mechanism results should be 
quickly responsive, since on-demand passengers require prompt responses to their requests for service. 

The prior work has focused on either scheduled or spontaneous passengers, but little work has accounted for both types simul-
taneously. For the FMR, it is possible that a scheduled rider may share a ride with a spontaneous passenger if both of their personalized 
mobility preferences are satisfied. When designing mechanisms for mixed types of passengers, the incentive for early scheduling needs 
to be incorporated. Those passengers (e.g., commuters) using the FMR service regularly and frequently can receive a discount, because 
the early scheduled trips are easier to accommodate and can be coordinated to reduce the system cost. In order to achieve system-wide 
optimization using passengers’ prior information, the mechanism should be able to provide incentives for passengers who schedule the 
service earlier (aka. the “scheduling preferability” property in our proposed mechanism design). 
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2.1.4. Solution algorithms for ridesharing mechanisms 
Certain mechanism design problems (e.g., VCG mechanism) for ridesharing are NP-hard and can be computationally challenging 

(Lloret-Batlle et al., 2017). Although several heuristic algorithms in the literature (Rückert et al., 2019; Hua and Qi, 2019; Haferkamp 
and Ehmke 2020) can optimally match vehicles and passengers and optimize the routing sequence, they barely maintain some 
desirable mechanism design properties (e.g., incentive compatibility) (Nisan and Ronen 2007). Much research either focused on small- 
scale mechanism design problems or simplified their mechanisms to reduce the computational complexity.  

1. Small-scale mechanisms. Several auction-based mechanisms proposed by the researchers (Cheng et al., 2014; Kamar and Horvitz, 
2009; Masoud et al., 2017b; Yan et al., 2021, etc.) are inherently computationally challenging. Some studies developed prevalent 
algorithms (e.g., branch and cut, local-search-based heuristics) (Masoud et al., 2017b; Nguyen, 2013). However, we are not aware 
of these studies investigating the performance of their algorithms in solving large-scale ridesharing problems.  

2. Simplified mechanisms. Some researchers simplified their mechanisms to handle the computational challenge. For example, the 
parallel mechanism in Kleiner et al. (2011) is restricted to the simplified dual-ridesharing, i.e., one passenger and one driver sharing 
the ride. Kamar and Horvitz (2009) developed a local VCG-based pricing scheme which computes the VCG payment of agents only 
among the agents that share the same carpool. Masoud and Lloret-Batlle (2016) simplified the optimization of many-to-many 
ridesharing to one-to-many ridesharing cases. Zhang et al. (2020) developed two greedy algorithms to maximize liquidity and 
utility, respectively, in obtaining their mechanism. Yan et al. (2021) proposed a pricing scheme to ensure the ride-sharing solution 
to be stable, system-wide optimal, and financially sustainable, but did not prove the property of “incentive compatibility”. Some 
other researchers (Asghari and Shahabi, 2017; Zhang et al., 2018) use greedy or approximate algorithms for matching and routing 
to reduce the computational complexity. However, the simplified mechanism may not fully capture the complex characteristics of 
real-world ridesharing services and thus may result in sub-optimal solutions. 

2.2. Our previous work 

This paper is built upon our previous research. One of our recent publications (Bian and Liu, 2019a) developed a new mechanism 
for the scheduled FMR service. After that, in Bian et al. (2020), we extended the mechanism for the application in the on-demand 
scenario with the aid of rolling horizon planning (RHP) approach. However, these two articles studied the mechanisms for the 
scheduled and on-demand trip request separately, without considering mixed scheduled and on-demand passengers. Consequently, the 
incentive objectives of promoting passengers to early schedule the service as well as incentivizing regular commuters to use the FMR 
service have not been considered. In addition, although the mechanism proposed in Bian et al. (2020) is able to handle on-demand 
passenger requests, the mechanism is offline and static, under which, once the matching plan and routing sequence is determined, 
it will never be changed to accommodate newly occurred passengers’ requests. This is because the mechanism lacks a dynamic re- 
optimization approach to re-routing vehicles to accommodate newly occurred passenger requests. Therefore, the mechanism sus-
tains a relatively high vehicle empty seat rate and transportation cost (see Section 6 for demonstration). 

We also developed a new heuristic algorithm, solution pooling algorithm (SPA), to solve the mechanism design problem in our 
previous work (Bian and Liu, 2019b; Bian et al., 2020). The SPA was proven to satisfy individual rationality and incentive compat-
ibility (Bian and Liu, 2019b). Nevertheless, two other incentive objectives (financial sustainability and scheduling preferability) were 
not addressed yet. Also, the SPA did not address dynamic re-optimization of matching and routing in the online hybrid mechanism 
considering mixed scheduled and on-demand passengers, which is more challenging than the offline static mechanism. 

2.3. Knowledge gaps and intended research contributions 

Based on the literature review, we identify the following knowledge gaps that this proposed research aims to address:  

• Knowledge Gap 1: Mobility-Preference-Based Mechanism. Existing mechanisms (rule-based or auction-based mechanisms) did not 
fully account for passengers’ personalized mobility preferences, such as passengers’ maximum willing-to-pay prices, arrival 
deadlines, tolerance of inconvenience attributes (e.g., detour, tolerable number of shared passengers) which can significantly 
influence travelers’ choice of ridesharing (BBC news, 2016; Li et al., 2020; Daganzo et al., 2020; Fielbaum and Alonso-Mora, 2020). 
The existing mechanisms may fail to incentivize passengers to share the ride because the provided incentives may not necessarily 
satisfy their mobility preferences.  

• Knowledge Gap 2: User Types. Existing mechanisms are designed for either scheduled or on-demand passengers. None of the 
previous studies specifically accounted for mixed types of passengers. Also, the incentive objective of incentivizing more regular 
passengers (e.g., commuters) to use the service and promoting passengers to early schedule the service has not been fully studied in 
the literature.  

• Knowledge Gap 3: Solutions Algorithms. Existing research developed algorithms to solve small-scale or simplified mechanism 
design to circumvent the computational complexity. To our best knowledge, no previous research has addressed such a complex 
dynamic ridesharing mechanism design problems with computationally efficient solution algorithms for large scale instances or 
validated the capability of heuristic algorithms to sustain the above-mentioned important mechanism design properties for 
ridesharing. 

To address these knowledge gaps, this paper brings the following contributions: 
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• This paper designs an online hybrid mechanism for mixed types of passengers accounting for their personalized mobility prefer-
ences. The online hybrid mechanism simultaneously achieves four incentive objectives: 1) promoting passengers to participate by 
satisfying their mobility preferences, 2) promoting passengers to truthfully report their mobility preferences, 3) incentivizing the 
service provider to be financially sustainable, 4) promoting passengers to early schedule the service and incentivizing more regular 
commuters to use the FMR service.  

• This paper develops a more advanced algorithm, SPACL, which improves the original SPA developed in Bian and Liu, 2019b. A 
closed loop is added to the original SPA to ensure the properties of “preference-based individual rationality”, “scheduling pref-
erability” and “financial sustainability” (detailed in Section 5). The simulation results show that the improved SPA, i.e., SPACL, 
outperforms the original SPA and the commercial solver CPLEX in term of both the solution quality and computational speed for 
large-scale problems. 

3. Description of the system 

3.1. Information revelation 

For scheduled service, passengers can report the arrival deadline (θi
AD), the maximum tolerable detour time (θi

EIVT), and the 
maximum tolerable number of shared riders (θi

NR). We use θi = {θi
AD, θi

EIVT, θi
NR} to denote scheduled passengers’ mobility preference. 

For on-demand service, in addition to the scheduled passengers’ mobility preferences, passengers can report another parameter, the 
maximum willing-to-pay (WTP) price, to bid for the service, because unlike the scheduled service, on-demand service requires vehicles 
to be in an “on-call state”, ready for providing the service within a very short time. Sometimes, either the number of vehicles or time is 
insufficient to serve all passengers. The concept of the auction-based mechanisms has been proposed by many other studies (Kleiner 
et al., 2011; Zhang et al., 2017; Zhang et al., 2018; Asghari et al., 2016; Shi et al., 2020; etc.). We use αi = {αi

AD, αi
EIVT, αi

NR, αi
p} to 

denote the on-demand passengers’ mobility preferences, where αi
AD is the arrival deadline, αi

EIVT is the maximum tolerable detour 
time, αi

NR is the tolerable number of shared passengers, and αi
p is the maximum WTP price. 

3.2. Events’ sequence of the hybrid mechanism 

There is a key difference between scheduled service and on-demand service. In scheduled service, passengers do not report the 
maximum WTP price but will be notified of a maximum possible price, upon which the passenger can accept the offer or not, while in 
on-demand service, passengers can bid for the service by reporting the maximum WTP price and the final price will never exceed the 
reported maximum WTP price. Based on this difference, the event sequences of scheduled service and on-demand service are also 
different, as clarified below. 

For scheduled service, the event sequence is as follows.  

(1) A passenger types in the train departure location (i.e., the transit hub) and time.  
(2) The application interface will show a price that will never be exceeded by the final price. The passenger can accept the offer or 

not. This highest price is the intermediate price detailed in Section 4.  
(3) If the passenger accepts the offer, he can input the mobility preferences. If passengers do not key in these mobility preferences, 

the system deems that they do not have the requirements on these attributes.  
(4) The request is received. The service ensures that each passenger whose request is sent will be served.  
(5) When the service is approaching (e.g., 60 min before the train departure time), the system consolidates and processes all 

passengers’ requests.  
(6) Passengers are notified of the pickup time and the final price. The drivers are notified of the pickup sequence and the latest 

arrival time. 

Note that the mechanism for the scheduled service has a drawback. In the second event of the scheduled service, the system will 
determine a maximum possible price that will never be exceeded by the final price for a specific passenger, and given this price, the 
passenger can accept or reject the offer. This possibly leads to loss of demand for those passengers whose actual WTP prices are higher 
than the final prices but lower than the given maximum prices. The possible reduced amounts in price and discount are quantified 
based on simulation examples in Section 6 and Appendix D. To avoid such demand loss, we suggest estimating the reduced/discounted 
price based on historical prices in nearby locations or based on simulation if historical data is not available. The system could place this 
estimated price along with the maximum possible price in the application interface to help the passenger decide whether to accept the 
offer or not. With the estimated price shown to the passenger, the proposed mechanism could avoid loss of demand to the maximum 
extent. 

For on-demand service, the event sequence is as follows.  

(1) A passenger types in the request information, including train departure location (i.e., the transit hub) and time as well as his 
mobility preferences. When the mobility preferences are not reported by the passenger, the system can set default reasonable 
values.  

(2) The request is sent. 
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(3) When a passenger’s response deadline (e.g., 1 min after the request is sent) is reached, the system consolidates all passengers’ 
requests sent within the time interval between the first passenger’s requesting time and his response deadline, conducts routing 
optimization, and calculates the prices. Note that if the on-demand request’s requirements are too strict to be satisfied (e.g., the 
maximum will-to-pay price is 0.1 dollar), the request will be rejected.  

(4) Passengers are notified of the estimated pickup time and the final price. The drivers are notified of the updated pickup sequence. 

3.3. Mechanism implementation by rolling horizon planning (RHP) approach 

We use the RHP approach (Fig. 1), which is widely used to handle dynamic ridesharing problem (Agatz et al., 2010; Kleiner et al., 
2011; Agatz et al., 2011), to implement the mechanism. Passenger requests 1, 4, 5, and 7 in Fig. 1 schedule the service in advance. The 
matching plan and routing sequence are optimized at time Ts and passengers will receive a response shortly. Two vehicles are dis-
patched to serve the four passengers. The optimal matching plan and routing sequence is “V1 → P1 → P4 → H” and “V2 → P7 → P5 → 
H” (the dash line; V: vehicle, P: passenger, H: the transit hub). After scheduled passengers’ requests are processed, the system starts to 
receive passengers’ on-demand requests. Each on-demand request has a response deadline because passengers are impatient to wait 
too long for the response of the system. If the system response time is too long, passengers may not have enough time to arrive at the 
transit hub. The rolling horizon approach cuts a succession of time slices for processing emerging passengers’ requests. Each time slice 
starts when a passenger request occurs after the last time slice and ends at the response deadline of this passenger request regardless of 
other subsequent requests that may occur. For example, in Fig. 1, after the first time slice, Passenger 6’s request is the first request, and 
thus the second time slice starts at Passenger 6’s request time and ends at its response deadline. The system will simultaneously process 
all passengers’ requests when each time slice ends. The matching plan and routing sequence are re-optimized: “V1 → P2 → P1 → P4 → 
P3 → H” and “V2 → P6 → P7 → P8 → P5 → H” (the solid line). The system also calculates the exact prices of the passenger requests that 
occur within the time slice. 

There are three vehicle states. The first vehicle state is empty and without assigned passenger requests. This type of vehicles is able 
to provide the FMR service immediately. The second type of vehicles have already been dispatched and instructed to pick up pas-
sengers in a specific sequence. These vehicles with assigned passengers may still have empty seats for additional emerging passengers. 
The third type of vehicles are not available immediately since they may have other unfinished dropping off tasks but will finish within a 
short time. The times and the locations when and where these vehicles will be available can be estimated and are treated as known 
parameters. Thus, the inputs of the vehicle information include the available location, available time, number of passengers in the 
vehicle, passengers who are already assigned to this vehicle, and remaining seat capacity. 

3.4. Assumptions 

We clarify the assumptions of this paper as follows. 

Fig. 1. Rolling horizon planning (RHP) approach to implementation of the mechanism.  
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• We assume that the travel time between two locations is deterministic.  
• Each passenger is rational with the goal of maximizing his utility when choosing their report strategies.  
• It is assumed that passengers have no incentive to misreport the train departure location (i.e., the transit hub) and time.  
• There are sufficient vehicles that can serve all scheduled passengers, and every scheduled passenger will be responded and all those 

who accept the offer will be served.  
• This paper considers a single transit hub for the FMR matching, routing, and pricing. If multiple transit hubs exist in the nearby 

area, the mechanism is designed separately for different transit hubs. 

4. The online hybrid mechanism 

This section introduces the online hybrid mechanism. For the notation except specified in the text, please refer to Appendix A. 

4.1. Intermediate pricing 

Let us firstly introduce the intermediate pricing layer, which will be incorporated into the online hybrid mechanism. Note that the 
intermediate price is not the final price but an intermediate variable to determine the final price. This intermediate price plays the role 
of dividing line of the scheduled passengers’ prices and the on-demand passengers’ prices. A scheduled passenger’s price will always be 
less than the intermediate price while an on-demand passenger’s price will be always higher than the intermediate price. Therefore, 
the mechanism can promote passengers to schedule the service early and provide an incentive for regular commuters to use the service. 
Another function of this intermediate price is to avoid unreasonably low prices so that the mechanism can be financially sustainable. 
We suggest that intermediate pricing layer apply the traditional taxi pricing scheme (Taxi calculator, 2018), with an adjustment factor 
based on passengers’ urgency as follows (Formula (1)). 

ipg
(
rtg
)
=

{
cf + dr × dg, if rtg < Ts (scheduled)
cf + UG

(
Δtg
)
× dr × dg, if rtg⩾Ts (on demand) (1)  

where Ts is the deadline to receive scheduled passengers’ requests, rtg is the request time, cf is a constant initial fee, dg is Passenger(s) 
g’s travel distance of direct shipment to the transit hub without detouring, dr is the distance rate, and UG(Δtg) > 1 is the urgency 
coefficient, a monotone decreasing function of Δtg, which is the time difference between the train departure time DTg and the request 
time rtg (Δtg = DTg – rtg). In order to differentiate scheduled and on-demand passengers’ prices, we use ipg(rtg− ) to represent scheduled 
passenger(s) g’s intermediate price and use ipg(rtg+) to denote on-demand passenger(s) g’s intermediate price, where rtg− is scheduled 
passenger(s) g’s request time earlier than time Ts and rtg+ is on-demand passenger(s) g’s request time later than time Ts. The inter-
mediate price is a monotone increasing function of a passenger’s request time. 

4.2. Matching plan and routing sequence 

This section introduces how to determine the matching plan and routing sequence considering mixed scheduled and on-demand 
passengers. First, we build a static optimization model of preliminary matching and routing for scheduled service. Then, as on- 
demand passengers’ requests occur, a re-optimization model is developed for dynamic re-matching and re-routing. 

4.2.1. Preliminary optimization for scheduled service 
The preliminary optimization model is formulated by Formulas (2)–(14). The notation in the optimization model is presented in 

Appendix A (a. notation in the preliminary optimization). 
Objective function: 

max
∑

i∈PS
VAi − fs(X) (2)  

where VAi is passenger i’s value, and fs(X) is the transportation cost. In Formula (2), 
∑

i∈PSVAi is a constant. The reason is as follows. 
Under the mechanism for the scheduled service, before the completed request is sent, passengers must accept or reject the offer given 
the maximum possible price and an estimated final price in the application interface after they key in the origin and destination as well 
as their mobility preference. Thereafter, the matching and routing plan is optimized only for the scheduled passengers who accept the 
offers. Passengers who do not participate the service will never be involved in the optimization for matching and routing. The 
scheduled passengers who accepted the offers must be served (Formula (6)), and thus all passengers’ valuations are independent of all 
decision variables and their summation (

∑
i∈PSVAi) is a constant. This indicates that the objective function of Formula (2) is equivalent 

to Formula (3). 

minfs(X) =
∑

k∈VS

∑

i∈PS

∑

j∈PS
xsijkcij +

∑

k∈VS

∑

i∈PS
yskidcki +

∑

k∈VS

∑

i∈PS
zskichi (3)  

Subject to 
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yskj +
∑

i∈PS
xsijk = wskj for all k ∈ VS, j ∈ PS (4)  

zski +
∑

j∈PS
xsijk = wski for all k ∈ VS, i ∈ PS (5)  

∑

k∈VS
wski = 1 for all i ∈ PS (6)  

∑

i∈PS
yski⩽1 for all k ∈ VS (7)  

∑

i∈PS
wskinpi⩽Qk for all k ∈ VS (8)  

∑

i∈PS

∑

j∈PS
xsijktij +

∑

i∈PS
yskitki +

∑

i∈PS
zskiti0⩽wkg

(
θAD

g − Ts
)

+
(
1 − wkg

)
M for all g ∈ PS, k ∈ VS (9)  

IVTi =
∑

k∈VS

∑

j∈PS
xsijk
(
IVTj + tij

)
+
∑

k∈VS
zskiti0 for all i ∈ PS (10)  

IVTi − ti0⩽θEIVT
i for all i ∈ PS (11)  

∑

j∈PS

∑

k∈VS
wsjknpj⩽wski

(
θNR

i + npi
)
+(1 − wski)M for all i ∈ PS, k ∈ VS (12)  

xsijk, yski, zski,wski = {0, 1} for all i, j ∈ PS, k ∈ VS (13)  

IVTi⩾0 for all i ∈ PS (14) 

Formula (3) specifies the objective function that minimizes the transportation cost. Formula (4) and Formula (5) form each ve-
hicle’s routing sequence. Formula (6) represents that each passenger must be served. Formula (7) ensures that each vehicle cannot be 
dispatched more than once. Formula (8) is the vehicle capacity constraint, stipulating that the vehicle capacity should not be exceeded. 
Formula (9) avoids late arrival. Formula (10) formulates each passenger’s total time spent at the vehicle after pickup. This formula can 
also prevent illegal sub-tours. Formula (11) ensures that each passenger’s tolerable detour time is never exceeded. Formula (12) is the 
constraint that each passenger’s tolerable number of shared passengers is not exceeded. Formula (13) means that the decision variables 
xsijk, yski, zski, wski are all binary. Formula (14) ensures that each passenger’s travel time in the vehicle is non-negative. 

This model is a nonlinear programming, but can be reformulated as a linear mixed integer programming. In this model, only the 
constraint of Formula (10) is nonlinear. We use the following reformulation method. 

We introduce a new variable usijk so that usijk = xsijk × IVTj and thus Formula (10) can be rewritten as 

IVTi =
∑

k∈VS

∑

j∈PS

(
usijk + xsijktij

)
+
∑

k∈VS
zskiti0 for all i ∈ PS (15) 

In order to ensure uijk = xsijk × IVTj, we introduce two linear constraints, Formula (16) and Formula (17). 

0⩽usijk⩽IVTj for all i, j ∈ PS, k ∈ VS (16)  

IVTj −
(
1 − xsijk

)
M⩽usijk⩽xsijkM, for all i, j ∈ PS, k ∈ VS (17)  

where “M” is a positive number that is sufficiently large. 
This reformulated model is denoted as 
Model MS0 
Objective function: Formula (3) 
Constraints: Formulas (4)–(9), (11)–(17). 
Note that if there are not sufficient vehicles to serve the demand, it will lead the preliminary optimization model to be infeasible. 

We propose two strategies to avoid the possible infeasibility.  

(1) When the passenger demand exceeds the vehicle supply for the scheduled service, the system may use a surging pricing scheme 
to increase the maximum possible price (i.e., the intermediate price) to reduce the demand. The surging pricing scheme has 
been studied by many researchers (Liu and Li, 2017; Wei et al., 2019; Ma et al., 2020; Ke et al., 2020) and is beyond the scope of 
this paper.  

(2) In the scheduled service, the system will receive passengers’ requests early enough before the train departure time at the transit 
hub, so the service provider has sufficient time to allocate more vehicle resource in advance. The service provider could reserve 
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vehicles for regular commuters for the first priority and single-time scheduled passengers for the second priority. If the vehicle 
fleet size is still not enough to serve the scheduled passengers’ demand, the system could stop receiving scheduled passengers’ 
requests when vehicles’ total supply capacity is reached, and the passengers who send requests after the supply capacity is 
reached will be notified that no reserved vehicles are available in the current time and area, and they will be advised to schedule 
another time slot or send on-demand requests. 

4.2.2. Re-optimization for on-demand service 
Based on the RHP approach, the mechanism re-optimizes the matching plan and routing sequence at the end of each time slice. The 

re-optimization methodology makes no difference among time slices. We build a re-optimization model below, which is denoted as 
“Mts0”, for each time slice. The notation is presented in Appendix A (b. notation in the re-optimization model). 

The objective of the model is to maximize passengers’ cumulative values beyond the service provider’s minimum acceptable prices 
minus the total transportation cost (Formula (18)) 

max
∑

i∈Pts

SVi − TC(X) (18)  

where SVi is a passenger’s surplus value beyond the service provider’s minimum acceptable price, which is defined as the intermediate 
price here. That is 

SVi = VAi − ipi
(
rt+i
)∑

k∈Vts

wki (19)  

where VAi is passenger i’s value: 

VAi = αp
i

∑

k∈Vts

wki (20) 

If the passenger is served (
∑

k∈Vts
wki=1), his value equals his maximum WTP price, αi

p, and his surplus value is VAi – ipi. Otherwise, 
∑

k∈Vts
wki= 0, his value equals “0” and his surplus value is “0” as well. 

TC(X) represents the transportation cost, which is formulated by Formula (21) 

TC(X) =
∑

k∈Vts

∑

i∈Pts

∑

j∈Pts

xijkcij +
∑

k∈Vts

∑

i∈Pts

ykidcki +
∑

k∈Vts

∑

i∈Pts

zkichi +
∑

k∈Vts

cvk

(

1 −
∑

i∈Pts

zki

)

(21)  

Subject to 

ykj +
∑

i∈Pts

xijk = wkj for all k ∈ Vts, j ∈ Pts (22)  

zki +
∑

j∈Pts

xijk = wki for all k ∈ Vts, i ∈ Pts (23)  

∑

k∈Vts

wki⩽1 for all i ∈ Pts (24)  

∑

i∈Pts

yki⩽1 for all k ∈ Vts (25)  

∑

i∈Pts

wkinpi⩽Qk for all k ∈ Vts (26)  

IVTi =
∑

k∈Vts

∑

j∈Pts

xijk
(
IVTj + tij

)
+
∑

k∈Vts

zkiti0 for all i ∈ Pts (27)  

IVTi − ti0⩽αEIVT
i for all i ∈ Pts (28)  

NPIVk +
∑

j∈Pts

wkjnpj⩽wki
(
αNR

i + npi
)
+(1 − wki)M for all i ∈ Pts, k ∈ Vts (29)  

∑

i∈Pts

wkinpi⩽RNRk +
∑

i∈Pts

δkinpi for all k ∈ Vts (30)  

∑

i∈Pts

∑

j∈Pts

xijktij +
∑

i∈Pts

ykitki +
∑

i∈Pts

zkiti0⩽wkg

(
αAD

g − ATk

)
+
(
1 − wkg

)
M for all g ∈ Pts, k ∈ Vts (31) 
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∑

i∈Pts

∑

j∈Pts

xijktij +
∑

i∈Pts

ykitki +
∑

i∈Pts

zkiti0⩽min(RIVTk,DLSk − ATk) for all k ∈ Vts (32)  

wki⩾δki for all i ∈ Pts, k ∈ Vts (33)  

xijk, yki, zki,wki = {0, 1} for all i, j ∈ Pts, k ∈ Vts (34)  

IVTi⩾0 for all i ∈ Pts (35) 

Formulas (22), (23), (25), (27), (28), (34), and (35) in model Mts0 achieve identical constraints with Formulas (4), (5), (7), (10), 
(11), (13), and (14) in model MS0, respectively. Formula (24) indicates that each passenger request will either be served by at most one 
vehicle or be rejected. For on-demand service, unlike scheduled service, not necessarily all passengers can be served, because number 
of available vehicles or the remaining time to the arrival deadline may not be sufficient. Thus, we change the constraint from Formula 
(6) to Formula (24). Formula (26) ensures that the remaining seat capacity of each vehicle (Qk) will not be exceeded. Formula (29) is to 
ensure that those passengers’, who have not been picked up yet but will be served, maximum tolerable number of shared riders should 
not be exceeded. Formula (30) is to ensure that passengers’, who are already in the vehicle, maximum tolerable number of shared 
riders should not be exceeded. Formula (31) avoids late arrival for those passengers who have not been picked up but will be served. 
Formula (32) avoids late arrival for those passengers who are already picked up by the vehicles and ensures that the detour time is 
within these in-vehicle passengers’ tolerance. Formula (33) indicates that once a passenger request is assigned to a vehicle, this vehicle 
must pick up the passenger(s) and this passenger(s) will not be transferred to other vehicles. 

Similar to model MS0, model Mts0 has a nonlinear constraint (Formula (27)), which can be linearized (Formulas (36)–(38)) in the 
same way. 

IVTi =
∑

k∈Vts

∑

j∈Pts

(
uijk + xijktij

)
+
∑

k∈Vts

zkiti0 for all i ∈ Pts (36) 

Fig. 2. An example to calculate scheduled passengers’ prices.  
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0⩽uijk⩽IVTj for all i, j ∈ Pts, k ∈ Vts (37)  

IVTj −
(
1 − xijk

)
M⩽uijk⩽xijkM, for all i, j ∈ Pts, k ∈ Vts (38) 

Thus, this model is denoted as 
Model Mts0 
Objective function: Formula (18) 
Constraints: Formulas (22)–(26) and (28)–(38) 

4.3. Hybrid pricing schemes 

4.3.1. The pricing scheme for scheduled passengers 
The pricing scheme is determined by a set of optimization models, MSg, for all passenger requests g∈PS. 
Model MSg 
Objective function: Formula (3) 
Constraints: Formulas (4)–(9), (11)–(17), and (39) 
∑

i∈Pts

wskinpi⩽wskgnpg +
(
1 − wskg

)
M, for all k ∈ VS (39) 

Compared with model MS0, model MSg has an additional constraint (Formula (39)) that passenger(s) g does not share the trip with 
other riders. Let X*

MSg 
and X*

MS0 
represent the optimal solutions of models MSg and MS0, respectively. Each passenger request’s price can 

be formulated by Formula (40). 

psg = ipg

(
rt−g
)
− fs

(
X*

MSg

)
+ fs

(
X*

MS0

)
(40) 

Fig. 2 gives a simple example to demonstrate how to calculate scheduled passengers’ prices. Note that in Fig. 2, only X*
MS0 

is the 
optimal matching plan and routing sequence that will be adopted. X*

MS1
, X*

MS2
, and X*

MS3 
are used to calculate the three passengers’ 

prices, respectively, which will never be used for matching and routing. 

4.3.2. The pricing scheme for on-demand passengers 
When the end of each time slice is approaching, the mechanism needs to determine the prices of passenger requests emerging 

within this time slice. We define a set “POts” to denote the passenger requests sent within time slice ts. It is obvious that POts ∈ Pts. Before 
we give the pricing scheme for on-demand passengers, we reformulate the objective function (Formula (18)) of model Mts0 to an 
equivalent form (Formula (41)) so as to formulate the pricing scheme. Thus, Formula (41) is the objective function of model Mts0 as 
well. 

max
∑

i∈Pts

SVi − TC(X) =
∑

i∈Pts

(

VAi − ipi
(
rt+i
)∑

k∈Vts

wki

)

− TC(X)

⇔ max
∑

i∈Pts

(

VAi − ipi
(
rt+i
)∑

k∈Vts

wki

)

− TC(X)+
∑

i∈Pts

ipi
(
rt+i
)

= max fo(X) =
∑

i∈Pts

VAi − TC(X) +
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

(41) 

Then, we construct a set of new optimization models, which is denoted as Mtsg, g∈POts, to calculate the prices of all passengers’ 
requests. Model Mtsg can be mathematically defined as 

Model Mtsg 
Objective function: Formula (41) 
Constraints: Formulas (22)–(26), (28)–(38), and (42). 

wkg = 0, for all k ∈ Vts (42) 

We use “X*
Mtsg

” and “X*
Mts0

” to represent the optimal solutions of model Mtsg (g∈POts) and model Mts0, respectively. Then the price of 
passenger request g is calculated by Formulas (43) 

pog = fo
(

X*
Mtsg

)
− fo

(
X*

Mts0

)
+VAg

(
X*

Mts0

)
(43)  

where “fo()” is the objective function of model Mts0 (Formula (41)), and “VAg

(
X*

Mts0

)
” is Passenger(s) g’s value given the optimal 

matching plan and routing sequence X*
Mts0

. Specifically, VAg

(
X*

Mts0

)
= αp

i
∑

k∈Vts
w*

ki based on Formula (20) (wki* is the value of decision 
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variable wki in the optimal solution X*
Mts0

). 
Fig. 3 displays a simple example to calculate on-demand passengers’ prices. In Fig. 3, Passenger 1 is an existing passenger who has 

already been assigned to the vehicle and whose price has already been given prior to this time slice. Passengers 2 and 3 send on- 
demand request within the current time slice ts. The mechanism only needs to calculate Passengers 2’s and 3’s prices. Note that in 
Fig. 3, only X*

Mts0 
is the adopted matching plan and routing sequence. X*

Mts2 
and X*

Mts3 
are used to calculate the two passengers’ prices, 

respectively, which will never be used for matching and routing. 

4.4. Theoretical analysis for incentive objectives 

This section uses theoretical analysis to demonstrate how the four incentive objectives can be achieved by mechanism properties 
under the proposed mechanism, as shown in Table 1. Proofs of some propositions are listed in Appendix B. 

Proposition 1. For scheduled service, the final price is always smaller than or equal to the intermediate price: 

psg⩽ipg

(
rt−g
)

The proof is presented in Appendix B. 

Definition 1. (Preference-based individual rationality) If a mechanism is preference-based individual rational, for any passenger 
either scheduling the service or sending an on-demand request, all of the personalized requirements will always be satisfied (i.e. the 
following four conditions are satisifed): 

Fig. 3. An example to calculate on-demand passengers’ prices.  

Table 1 
Incentive objectives and mechanism properties.  

Incentive objectives Mechanism properties Related 
Propositions 

Promoting passengers for participation by satisfying their mobility preferences Preference-Based Individual Rationality (Definition 1) Proposition 2 
Promoting passengers to truthfully report their mobility preferences Preference-Based Incentive Compatibility (Definition 

2) 
Proposition 3 

Incentivizing the service provider to be financially sustainable Financial Sustainability (Definition 4) Proposition 4 
Promoting passengers, especially regular commuters, to early schedule the 

service 
Scheduling Preferability (Definition 5) Proposition 8  
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Condition (1) All passengers are able to arrive before their deadlines: ARTg ≤ θg
AD or αg

AD (ARTg is Passenger(s) g’s arrival deadline).  
Condition (2) All passengers’ tolerable detour time will never be exceeded: EIVTg ≤ θg

EIVT or αg
EIVT (EIVTg is Passenger(s) g’s detour 

time).  
Condition (3) All passengers’ tolerable number of shared riders will never be exceeded: NSRg ≤ θg

NR or αg
NR (NSRg is the number of 

passengers sharing the ride with Passenger(s) g)  
Condition (4) All passengers’ prices will never exceed their maximum WTP prices: psg and pog ≤ VAg 

Proposition 2. The hybrid mechanism is preference-based individual rational. 

Proof. The first three conditions are always satisfied because of the constraints of the optimization models MS0 and Mts0, as shown in 
Table 2. 

No constraints in the optimization model are imposed to satisfy Condition (4) in Definition 1, and thus we need to use the following 
method to prove the validity of Condition (4) in Definition 1. We prove it for scheduled and on-demand passengers, separately. 

For scheduled service, we discuss two cases based on a passengers’ choice to accept the offer or not.  

(1) If the passenger(s) does not accept the choice, then his value and the price are both zero: 

VAg = psg = 0    

(2) If the passenger(s) accepts the offer, the passenger(s) will be served, and his value is deemed to be no less than the intermediate 
price (otherwise he will not accept the offer): 

VAg⩾ipg

(
rt−g
)

Based on Proposition 1, we have 

psg⩽ipg

(
rt−g
)

Since VAg ≥ ipg(rtg− ) in this case, we have 

psg⩽ipg

(
rt−g
)

⩽VAg 

For on-demand service, based on Formula (43), we have 

VAg

(
X*

Mts0

)
− pog = VAg

(
X*

Mts0

)
−
(

fo
(

X*
Mtsg

)
− fo

(
X*

Mts0

)
+ VAg

(
X*

Mts0

))

= fo
(

X*
Mts0

)
− fo

(
X*

Mtsg

)

Compared with model Mts0, each model Mtsg (g∈POts) has an additional constraint (Formula (42)). This indicates that 

fo
(

X*
Mts0

)
⩾fo
(

X*
Mtsg

)

Thus, 

VAg

(
X*

Mts0

)
− pog = fo

(
X*

Mts0

)
− fo

(
X*

Mtsg

)
⩾0 

We proved that both scheduled and on-demand passengers’ mobility preferences are always satisfied, and thus the mechanism is 
preference-based individual rational. □ 

Definition 2. (Preference-based incentive compatibility) Truthful reporting of the mobility preference is a passenger’s dominant 
strategy. Misreporting the mobility preference will cause at least one of the following consequences:  

(1) Late arrival: ARTg > θg
AD or αg

AD.  
(2) His maximum tolerable detour time will be exceeded: EIVTg > θg

EIVT or αg
EIVT.  

(3) His maximum tolerable number of shared riders will be exceeded: NSRg > θg
NR or αg

NR. 

Table 2 
Constraints to satisfy passengers’ mobility preferences.  

Conditions in Definition 1 Scheduled passengers 

(1) Formulas (9), (31), and (32) 
(2) Formulas (11), (28), and (32) 
(3) Formulas (12), (29), and (30)  
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(4) His utility, defined as the value minus the actual paid price (Usg = VAg – psg and Uog = VAg – pog) will never increase. 

A case demonstration of the property “preference-based incentive compatibility” is presented in Appendix E. 

Proposition 3. The hybrid mechanism is preference-based incentive compatible. 

Proof. It is equivalent to prove that under the circumstance in which any passenger misreports any mobility preferences, if the first 
three consequences do not happen, then the fourth consequence must happen. Thus, we only need to prove that if 1) the passenger does 
not arrive late, 2) his maximum tolerable detour time is not exceeded, and 3) his maximum tolerable number of shared riders is not 
exceeded, then the passenger’s utility will never increase. 

Firstly, we prove that the mechanism for scheduled service is incentive compatible. 
Suppose that Passenger(s) g misreports any of the mobility preferences θg’ = {θg’AD, θg’EIVT, θg’NR} instead of the truthful values θg =

{θg
AD, θg

EIVT, θg
NR}. We denote the changed matching and routing plan as X’*

MS0 
(the optimal solution to model MS0

′ changed from model 
MS0 due to the passenger’s misreport) given that the three above-mentioned conditions are satisfied though the passenger misreports 
any mobility preferences. In the planX’*

MS0
, arrival deadline constraint (Formula (9)), maximum tolerable detour time constraint 

(Formula (11)), and maximum tolerable number of shared rides constraint (Formula (12)) are all satisfied. All other constraints of the 
model MS0 are naturally satisfied given the plan X’*

MS0
. Thus, X’*

MS0
is still feasible to the model MS0. 

Model MSg does not change regardless of Passenger(s) g’s report, because in model MSg, constrained by Formula (39), Passenger(s) g 
does not share the trip with others and his mobility preferences will be always satisfied regardless of his report. Thus, the optimal 
solution of model MSg is constant (X’*

MS0
). 

Then, if Passenger(s) g misreports the mobility preferences, his price becomes to 

psg’ = ipg

(
rt−g
)
− fs

(
X*

MSg

)
+ fs

(
X’*

MS0

)

Then, the scheduled passenger’s utility (Usg) becomes to 

Us’
g = VAg − psg’ = VAg − ipg

(
rt−g
)
+ fs

(
X*

MSg

)
− fs

(
X’*

MS0

)

As explained above,X’*
MS0 

is feasible to model MS0. X*
MS0 

is optimal to model MS0. Thus 

fs
(

X’*
MS0

)
≥ fs

(
X*

MS0

)

Then 

Usg’ = VAg − ipg

(
rt−g
)
+ fs

(
X*

MSg

)
− fs

(
X’*

MS0

)
≤ VAg − ipg

(
rt−g
)
+ fs

(
X*

MSg

)
− fs

(
X*

MS0

)
= Usg  

where Usg is Passenger(s) g’s utility given that the mobility preferences are truthfully revealed. 
Thus, if a passenger misreports mobility preferences for the scheduled service, the passenger’s utility will never increase. 
Secondly, we prove that the mechanism for on-demand service is preference-based incentive compatible. Suppose that Passenger(s) 

g misreports any of the mobility preferences αi’ = {αi’AD, αi’EIVT, αi’NR, αi’p} instead of the truthful values αi = {αi
AD, αi

EIVT, αi
NR, αi

p}. 
Then, the optimization model Mts0 changes to Mts0

′, and the optimal matching plan and routing sequence changes to X’*
Mts0 

from X*
Mts0 

(the optimal plan given that Passenger(s) g truthfully reports the mobility preferences). 
Then, if Passenger(s) g misreports the mobility preferences, the system will mistake his actual value VAg(X) for VAg’(X), where 

VAg(X) = αp
i
∑

k∈Vts
wki and VAg’(X) = α

′p
i
∑

k∈Vts
wki based on Formula (20), given the solution X. The objective function of Mts0 becomes 

fo′

(X) =
∑

i∈Pts ,i∕=g

VAi(X)+VA
′

g(X) − TC(X) +
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

However, model Mtsg does not change because in model Mtsg, constrained by Formula (42), Passenger(s) g is never served regardless 
of his report of the mobility preferences. 

Thus, his price becomes to 

po’
g = fo

(
X*

Mtsg

)
− fo’

(
X’*

Mts0

)
+VA’

g

(
X’*

Mts0

)

Then the on-demand passenger’s utility (Uog) becomes 

Uo’g = VAg

(
X’*

Mts0

)
− pog’  

= VAg

(
X’*

Mts0

)
− fo

(
X*

Mtsg

)
+ fo’

(
X’*

Mts0

)
− VA’

g

(
X’*

Mts0

)
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= VAg

(
X’*

Mts0

)
− fo

(
X*

Mtsg

)
+
∑

i∈Pts ,i∕=g

VAi

(
X’*

Mts0

)
+VA’

g

(
X’*

Mts0

)
− TC

(
X’*

Mts0

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

w’*
ki

)

− VA’
g

(
X’*

Mts0

)

= − fo
(

X*
Mtsg

)
+
∑

i∈Pts

VAi

(
X’*

Mts0

)
− TC

(
X’*

Mts0

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

w’*
ki

)

= fo
(

X’*
Mts0

)
− fo

(
X*

Mtsg

)

where w’*
ki is the value of the decision variable of wki in the solution X’*

Mts0
. 

If Passenger(s) g’s preferences are all satisfied in the plan X’*
Mts0

, then X’*
Mts0 

is feasible to model Mts0. X*
Mts0

is optimal to Mts0, and thus 
we have 

fo
(

X’*
Mts0

)
≤ fo

(
X*

Mts0

)

Therefore, we have 

Uog’ = fo
(

X’*
Mts0

)
− fo

(
X*

Mtsg

)
≤ fo

(
X*

Mts0

)
− fo

(
X*

Mtsg

)
= VAg

(
X*

Mts0

)
− pog = Uog  

where “Uog” is Passenger(s) g’s utility if he truthfully reveals the mobility preferences. This indicates that any on-demand passenger’s 
utility will never increase due to misreporting the mobility preferences if their mobility preferences are all satisfied. □ The 
Appendix E gives a detailed example to demonstrate the property “preference-based incentive compatibility”, showing that misreport 
will never help gain larger utility given that the mobility preferences are satisfied. 

Definition 3. (Transition solution from model MS0 to model MSg for scheduled service) Transition solution for scheduled service, 
denoted as Yg = TSg(X) for g ∈ PS, maps a feasible solution X of the model MS0 to a feasible solution Yg of the model MSg. The 
pseudocode of this transition solution is presented in Algorithm 1 (see Appendix C). 

Descriptively, if Passenger(s) g does not share the trip with others in X , then the transition solution remains the same as X: Yg = X; 
otherwise, shown in Fig. 4, in the transition solution TSg(X), another vehicle with the lowest dispatching cost replaces the original 
vehicle to serve Passenger(s) g. The definition of transition solution is used to prove some properties (Propositions 5 and 10). 

Proposition 4. Suppose that X is any feasible solution of model MS0, and Yg = TSg(X). Then we have 

fs(X) ⩾fs
(
Yg
)

− dcg − chg 

where dcg is the maximum possible dispatching cost to pick up Passenger(s) g. 
For the derailed proof, please refer to Appendix B. 

Definition 4. (Financial sustainability) If a mechanism is financially sustainable, the collected prices are sufficient to cover the total 
transportation cost: 

Fig. 4. Transition solution from model MS0 to model MSg.  

Z. Bian et al.                                                                                                                                                                                                            



Transportation Research Part C 138 (2022) 103585

16

∑

g
pg⩾TC   

Proposition 5. If each passenger’s intermediate price is no less than 2(dcg+chg), the scheduled service is financially sustainable. If ipg(rtg− ) 
≥ 2(dcg+chg), then 

∑

g∈PS
psg⩾fs

(
X*

MS0

)

where fs
(

X*
MS0

)
is the transportation cost given the solution X*

MS0 
based on Formula (3). 

Proof. Let Yg* = TSg(X*
MS0

) (Definition 3). Yg* is feasible to model MSg while X*
MSg 

is optimal to model MSg. Then 

fs
(

Y*
g

)
⩾fs
(

X*
MSg

)

Based on Proposition 4, we have 

fs
(

X*
MS0

)
⩾fs
(

Y*
g

)
− dcg − chg 

Therefore, 

fs
(

X*
MS0

)
⩾fs
(

X*
MSg

)
− dcg − chg 

Based on Formula (40), we have 

psg = ipg

(
rt−g
)
− fs

(
X*

MSg

)
+ fs

(
X*

MS0

)

⩾ipg

(
rt−g
)
− dcg − chg 

Given the condition ipg(rtg− ) ≥ 2(dcg+chg), we have 

psg⩾ipg

(
rt−g
)

− dcg − chg⩾dcg + chg 

This indicates that a scheduled passenger’s final price is no less than the minimum transportation cost for driving him to the transit 
hub. 

Now consider a plan X0, in which all passengers do not share the trip with others. Then, the transportation cost of X0 is 

fs(X0) =
∑

g∈PS

∑

k∈VS
ysksdckg +

∑

g∈PS
chg 

In addition, since dcg is maximum possible dispatching cost to pick up Passenger(s) g, then 

Fig. 5. Transition solution from model Mts0 to model Mtsg.  
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∑

k∈VS
yskgdckg⩽dcg 

Then, 

fs(X0) =
∑

g∈PS

∑

k∈VS
ysksdckg +

∑

g∈PS

(
chg
)
⩽
∑

g∈PS

(
dcg + chg

)

In addition, X0 is feasible to model MS0 and X*
MS0 

is optimal to model MS0. Then 

fs
(

X*
MS0

)
⩽fs(X0)⩽

∑

g∈PS

(
dcg + chg

)
⩽
∑

g∈PS
psg 

indicating that the scheduled service is financially sustainable if the condition ipg(rtg− ) ≥ 2(dcg+chg) is satisfied. □ 

We do not give detailed proof for the property of financial sustainability for the on-demand service here, but we draw the 
conclusion that as long as the intermediate is sufficiently high, the on-demand service will be financially sustainable, this is because on- 
demand passengers’ prices are always no less than scheduled passengers’ prices (please refer to Proposition 8). 

Definition 5. (Transition solution from model Mts0 to model Mtsg in on-demand service) The definition of this transition solution Yg =

TOg(X) for on-demand service can be found in Bian et al. (2020): in the transition solution Yg, Passenger(s) g is simply removed from the 
service plan X. The pseudocode to obtain the transition solution is presented in Algorithm 2. The difference between the transition 
solutions for scheduled service and for on-demand service can be straightforwardly differentiated from the comparison of Figs. 4 and 5. 

Proposition 6. For any g∈POts when Yg = TOg(X), we have 

TC
(
Yg
)

⩽TC(X)

where the TC(X) is the transportation cost given the plan X. 
The proof is listed in Appendix B. 

Proposition 7. For any g∈POts, when Yg = TOg(X), we have 
∑

i∈Pts\g

VAi(X) =
∑

i∈Pts

VAi
(
Yg
)

This proposition is proved in Appendix B. 

Definition 7. (Scheduling preferability) If the mechanism is scheduling preferable, then any passenger’s utility of scheduling the 
service is greater than or equal to that of sending an on-demand request. Mathematically, we have 

Usg = VAg − psg⩾Uog = VAg − pog   

Proposition 8. The mechanism is scheduling preferable. 

Proof. If we can prove the validity of the following inequations in Table 3, Proposition 8 is proved. 
Proof of inequation (a): 
Proposition 2 proved that 

Usg = VAg − psg⩾ 0 for any g ∈ PS 

Proof of inequation (b): 
If the passenger sends an on-demand request, but he is rejected by the service, then VAg(X*

Mts0
) = 0, and pog = 0 based on Formula 

(43) and thus Uog = 0. Thus, in this case we have 

Usg⩾Uog = 0 for any g ∈ POts 

Proof of inequation (c): 
If the passenger sends an on-demand request, and he is successfully assigned to a vehicle, then, based on Formula (43), the price is 

pog = fo
(

X*
Mtsg

)
− fo

(
X*

Mts0

)
+VAg

(
X*

Mts0

)

Table 3 
Conditions to prove Proposition 8.  

Utility of scheduling the service Utility of sending an on-demand request 

(a) Usg ≥ 0 Rejected by the service (b) Uog = 0 ≤ Usg 

Successfully assigned to a vehicle (c) Uog ≤ Usg  
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Let Y*
g = TOg

(
X*

Mts0

)
. Yg* is feasible to model Mtsg and X*

Mtsg 
is optimal to model Mtsg. Thus, 

fo
(

X*
Mtsg

)
⩾fo
(

Y*
g

)

Then, we have 

pog = fo
(

X*
Mtsg

)
− fo

(
X*

Mts0

)
+VAg

(
X*

Mts0

)

⩾fo
(

Y*
g

)
− fo

(
X*

Mts0

)
+VAg

(
X*

Mts0

)

in which 

fo
(

Y*
g

)
=
∑

i∈Pts

VAi

(
Y*

g

)
− TC

(
Y*

g

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

fo
(

X*
Mts0

)
=
∑

i∈Pts

VAi

(
X*

Mts0

)
− TC

(
X*

Mts0

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

Based on the definition of the transition solution (Definition 5) in on-demand service, except the difference, 
∑

k∈Vts
wkg = 0 in Yg* 

and 
∑

k∈Vts
wkg = 1 in X*

Mts0
, all of other elements in 

∑
i∈Pts

ipi
(
rt+i
)(

1 −
∑

k∈Vts
wki
)

are identical. Then we have 

pog⩾fo
(

Y*
g

)
− fo

(
X*

Mts0

)
+VAg

(
X*

Mts0

)

= ipg

(
rt+g
)
+

(
∑

i∈Pts

VAi

(
Y*

g

)
−
∑

i∈Pts\g

VAi

(
X*

Mts0

)
)

+
(

TC
(

X*
Mts0

)
− TC

(
Y*

g

))

Based on Propositions 6 and 7, respectively, we have 

TC
(

X*
Mts0

)
− TC

(
Y*

g

)
⩾0  

and 
∑

i∈Pts

VAi

(
Y*

g

)
−
∑

i∈Pts\g

VAi

(
X*

Mts0

)
= 0 

Thus, we have 

pog ⩾ipg

(
rt+g
)

In Proposition 1, we proved that 

psg⩽ipg

(
rt−g
)

. 

Since ipg is a monotone increasing function of a passenger’s request time rtg and rtg+ > rtg− , thus we have 

ipg

(
rt+g
)

⩾ipg

(
rt−g
)

Thus, 

pog ⩾ipg

(
rt+g
)

⩾ipg

(
rt−g
)

⩾psg 

Suppose that αg
p is Passenger(s) g’s WTP price if he is served. Then 

VAg

(
X*

Mts0

)
= VAg

(
X*

MS0

)
= αp

g  

because in this case the passenger(s) is served in both scheduled and on-demand service. 
Thus, we have 

Uog

(
X*

Mts0

)
= VAg

(
X*

Mts0

)
− pog⩽VAg

(
X*

MS0

)
− psg = Usg

(
X*

MS0

)
□   
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5. Solution approach for large-scale problems 

This section introduces an efficient heuristic algorithm for large-scale problems. For the notation except specified in the text, please 
refer to Appendix A. 

5.1. Review of the original solution pooling approach (SPA) 

Since the models for the FMR mechanism design problem are NP-hard Vehicle Routing problems (VRP), large-scale problems are 
difficult to be exactly solved. In our previous work, we developed a novel heuristic algorithm SPA (Bian and Liu, 2019b; Bian et al., 
2020). SPA generates a large solution pool for each model. When the system requires the mechanism results, SPA selects the best 
feasible solution from each pool. SPA is still applicable for the dynamic FMR in this paper. The optimization models that need to be 
solved for scheduled ridesharing and on-demand ridesharing are MS0 & MSg (for all g ∈ PS) and Mts0 & Mtsg (for all g ∈ POts for each 
time slice ts), respectively. Let XS0 and Xts0 represent the solution pools of model MS0 and Mts0, respectively, and let XSg and Xtsg 
denote the solution pools of model MSg and Mtsg, respectively. We let XS0*, XSg*, Xts0*, and Xtsg* to represent the best feasible solutions 
in solution pools XS0, XSg, Xts0, and Xtsg, respectively. The solutions XS0* and Xts0* replace the real optimal solutions X*

MS0 
and X*

Mts0 
of 

the models MS0 and Mts0 to be adopted as the matching plan and routing sequence for scheduled service and on-demand service, 
respectively. The solutions XSg* and Xtsg*, instead of the real optimal solutions X*

MS0 
and X*

Mts0 
of the models MSg and Mtsg, are used to 

determine the scheduled passengers’ and on-demand passengers’ prices, respectively, based on Formulas (40) and (43). Based on Bian 
and Liu (2019b), if the solution pool XSg (Xtsg) is included in XS0 (Xts0), then the mechanism is preference-based individual rational, 
and if the generation of solution pools XS0 (Xts0) and XSg (Xtsg) is independent of passengers’ report of mobility preferences, then the 
mechanism is preference-based incentive compatible. The original SPA algorithm for the dynamic FMR problem in this paper can be 
described as follows.  

• Step 1. Generate an initial solution pool, XS (Xts), for model MS0 (Mts0).  
• Step 2. Use Algorithm 1 (2) to get all transition solutions of each solution in the pool XS (Xts): XSgi = TSg(XSi) (Xtsgi = TOg(Xtsi)), 

where XSi (Xtsi) is the ith solution in the pool XS (Xts). The solution pool of model MSg (Mtsg), XSg (Xtsg), consists of these transition 
solutions: XSg = {XSgi, for all i} (Xtsg = {Xtsgi, for all i}).  

• Step 3. Combine solution pools XS and XSg (for all g ∈ PS) to get the final solution pool XS0: XS0 = {XS, XSg (for all g ∈ PS)}. 
(Combine solution pools Xts and Xtsg (for all g ∈ POts) to get the final solution pool Xts0: Xts0 = {Xts, Xtsg (for all g ∈ POts)}).  

• Step 4. Select the highest-quality solution from each pool, XS0* = argmin {fs(X), X ∈ XS0} (Xts0* = argmax{fo(X), X ∈ Xts0}) and 
XSg* = argmin {fs(X), X ∈ XSg} (Xtsg* = argmax{fo(X), X ∈ Xtsg}). Then, calculate all passengers’ prices. 

Fig. 6 gives the straightforward flow chart of the original algorithm. For the detailed introduction of the original SPA, please refer to 
Bian and Liu (2019b). 

Fig. 6. Original Solution Pooling Approach (SPA).  
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However, SPA has the following shortcomings in solving the mechanism design problem for the dynamic FMR in this paper:  

(1) SPA sometimes obtains relatively low-quality solutions within a short computing time (e.g. a few seconds), as shown in the 
simulation results. This is because SPA does not use passengers’ actual mobility preferences, but uses virtual values instead to 
generate solution pools, so that the generation of solutions pools (XS0, XSg, Xts0, and Xtsg) is independent of passengers’ report 
of their mobility preferences so as to sustain “incentive compatibility” (Bian and Liu, 2019b).  

(2) SPA cannot necessarily sustain the properties of “financial sustainability” and “scheduling preferability”. The reason is given 
below. 

The mechanism is not necessarily financially sustainable. Let us go back to the proof of Proposition 5. In the proof, we have 

fs
(

Y*
g

)
⩾fs
(

X*
MSg

)
, where Yg* is the gth transition solution of X*

MS0 
from model MS0 to model MSg, Y*

g = TSg

(
X*

MS0

)
. This is because Yg* is 

a feasible solution of model MSg and X*
MSg 

is the optimal solution of model MSg. In the SPA algorithm, X*
MS0 

is replaced by XS0*, which is 
the best feasible solution selected from the pool XS0: XS0* = argmin {fs(X), X ∈ XS0}. Also, X*

MSg 
is replaced by XSg*, the best feasible 

solution in the pool XSg: XSg* = argmin {fs(X), X ∈ XSg}. We let YSg* be the gth transition solution of the solution XS0*: YSg* =

TSg(XS0*). However, unlike fs
(

Y*
g

)
⩾fs
(

X*
MSg

)
, we do not necessarily have fs(YSg*) ≥ fs(XSg*). This is because YSg* is not necessarily in 

the solution pool XSg, and thus YSg* is possible to be superior to the best solution in XSg (i.e. XSg*). Thus, we cannot necessarily ensure 
the property of “financial sustainability”. 

The mechanism is not necessarily scheduling preferable. In the proof of inequation (c) in Proposition 8, we have fo
(

X*
Mtsg

)
⩾fo
(

Y*
g

)
, 

where Y*
g = TOg

(
X*

Mts0

)
, because Yg* is feasible to model Mtsg while X*

Mtsg 
is optimal to model Mtsg. In the SPA algorithm, X*

Mts0 
is 

replaced by Xts0*, which is the best solution in Xts0: Xts0* = argmax {fo(X), X ∈ Xts0}. Also, X*
Mtsg 

is replaced by Xtsg*, the best feasible 
solution in the pool Xtsg: Xtsg* = argmax {fo(X), X ∈ Xtsg}. We let Ytsg* be the gth transition solution of the solution Xts0*: Ytsg* =

TOg(Xts0*). However, unlike fo
(

X*
Mtsg

)
⩾fo
(

Y*
g

)
, we do not necessarily have fo(Xtsg*) ≥ fo(Ytsg*). This is because Ytsg* is not necessarily 

in the solution pool Xtsg, and thus Ytsg* is possible to be superior to the best solution in Xtsg (i.e. Xtsg*). Thus, we cannot necessarily 
ensure the property of “scheduling preferability”. 

5.2. Improved SPA 

The improved SPA algorithm, namely Solution Pooling Approach with Closed Loop (SPACL), has the two following improvements 
compared with the original SPA.  

(1) The improved SPA obtains higher quality matching plan and routing sequence than the original SPA does. The generation of 
solution pools (XS0, XSg, Xts0, and Xtsg) in the improved SPA depends on passengers’ reported mobility preferences, while the 
original SPA is “blind to” (independent of) passengers’ reported mobility preferences when generating the solution pools. That 
is why the improved SPA may obtain higher quality matching plan and routing sequence than the original SPA does.  

(2) The improved SPA overcomes the incapability of the original SPA to sustain the properties of “financial sustainability” and 
“scheduling preferability”. In summary, the fundamental reason why original SPA cannot necessarily sustain the property of 
“financial sustainability” is that it is possible that the transition solution of XS0*, YSg*, is not in the solution pool XSg (YSg*∕∈
XSg). Similarly, the fundamental reason why original SPA cannot necessarily sustain “scheduling preferability” is that it is 
possible that Ytsg* is not in the solution pool Xtsg (Ytsg*∕∈ Xtsg). Thus, the improved SPA will add a closed loop to ensure that the 
transition solutions of XS0* and Xts0* are in the solution pools XSg and Xtsg, respectively: YSg*∈ XSg and Ytsg*∈ Xtsg, so that the 
properties “financial sustainability” and “scheduling preferability” are sustained. 

However, due to the two improvement strategies, SPACL does not necessarily hold the property of “preference-based incentive 
compatibility”. This is because the generation of solution pools depends on passengers’ report of their mobility preferences given the 
two improvement strategies above, while “preference-based incentive compatibility” requires that solution pool generation must be 
independent of passengers’ report of their mobility preferences (Bian and Liu, 2019b). We sacrifice “preference-based incentive 
compatibility” due to the following reasons. 

In large-scale problems, it would be extremely challenging to simultaneously guarantee the “incentive compatibility” property, the 
solution quality, and computational efficiency. As demonstrated by the experimental results, the solution quality obtained by the 
original SPA is significantly lower than SPACL for large-scale examples although SPA is able to achieve “incentive compatibility”. 
SPACL, though sacrifices the property of “incentive compatibility”, ensures high-quality solutions, high computational speed, as well 
as the other three mechanism properties satisfied, i.e., preference-based individual rationality, financial sustainability, and scheduling 
preferability. We also consider proposing strategies in our future work to prevent passenger manipulating the system even without the 
property “incentive compatibility”. 

In Bian and Liu (2019b), it was proved that, in the SPA algorithm, when the solution pools for all models are completely inde-
pendent of passengers’ report of mobility preferences, then the mechanism can guarantee the property of “incentive compatibility”. 
Thus, the basic idea of possible strategies for preventing manipulation is to fix the solution pools for scheduled service to the maximum 
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extend and generate the solution pools for on-demand service as randomly as possible. 
For scheduled service, a large portion of passengers could be commuters. After the service is implemented for a while, it is possible 

to estimate recurrent passenger requests, and thus we can keep a fixed solution pool corresponding to the optimization model for each 
time slot in the mechanism. Thus, we could maintain the property of “incentive compatibility” in most scenarios if the solution pools 
are mostly fixed. In the future work, we may develop a learning algorithm that preserves high-quality solutions for each solution pool 
based on historical data so that the mechanism could sustain the property “incentive compatibility” for large-scale problems. 

For on-demand service, passengers’ requests and mobility preferences are more difficult to predict. Thus, the strategy is to generate 
solution pools as randomly as possible so that passengers are difficult to anticipate the results of misreporting while truthfully 
reporting ensures their mobility preferences always satisfied given that the “preference-based individual rationality” always holds for 
SPACL (Proposition 9). In fact, SPACL has already incorporated this strategy because the solution pools in SPACL are generated by a 
Tabu Search algorithm that generates neighborhood solutions randomly in each iteration. 

We develop a numerical example to demonstrate how SPACL could prevent passengers misreporting in Appendix E. 
In summary, Table 4 presents the three solution approaches (exact algorithms, SPA, and SPACL) in sustaining the four important 

properties, preference-based individual rationality, preference-based incentive compatibility, financial sustainability, and scheduling 
preferability. 

The steps of the SPACL are presented below. The flow chart of SPACL is shown in Fig. 7. The pseudocodes of the sub-algorithms 
used in SPACL are presented in “Algorithms 1, 2, 3, and 4” (See Appendix C). The pseudocodes of the main algorithm of SPACL to 
obtain the mechanism results for scheduled and on-demand service are presented in Algorithms 5 and 6 (See Appendix C), respectively.  

• Step 1. Use Algorithm 3 (4) to generate an initial solution pool, XS (Xts), for model MS0 (Mts0). When generating the initial solution 
pool, the algorithm uses passengers’ reported mobility preferences as input. 

Table 4 
Properties held by exact algorithms, SPA, and SPACL.  

Algorithms Mechanism design properties 

Preference-based individual rationality Preference-based incentive compatibility Financial sustainability Scheduling preferability 

Exact algorithms √ (Proposition 2) √ (Proposition 3) √ (Proposition 4) √ (Proposition 8) 
SPA √ (Proved in Bian and Liu, 2019b) √ (Proved in Bian and Liu, 2019b) × ×

SPACL √ (Proposition 9) × √ (Proposition 10) √ (Proposition 11) 

Note: “√” represents that the property is proved; “×” represents that the property cannot be proved but does not necessarily mean this property does 
not hold. 

Fig. 7. Flow chart of SPACL.  
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• Step 2. Use Algorithm 1 (2) to get all transition solutions of each solution in the pool XS (Xts): XSgi = TSg(XSi) (Xtsgi = TOg(Xtsi)), 
where XSi (Xtsi) is the ith solution in the pool XS (Xts). The solution pool of model MSg (Mtsg), XSg (Xtsg), consists of these transition 
solutions: XSg = {XSgi, for all i} (Xtsg = {Xtsgi, for all i}).  

• Step 3. Combine solution pools XS and XSg (for all g ∈ PS) to get the solution pool XS0: XS0 = {XS, XSg (for all g ∈ PS)}. (Combine 
solution pools Xts and Xtsg (for all g ∈ POts) to get the solution pool Xts0: Xts0 = {Xts, Xtsg (for all g ∈ POts)}).  

• Step 4. Find the best solution from the solution pool XS0 (Xts0), XS0* = argmin {fs(X), X ∈ XS0} (Xts0* = argmax{fo(X), X ∈ Xts0}).  
• Step 5. If XS0*∕∈ XS (if Xts0*∕∈ Xts), duplicate XS0* into the pool XS (duplicate Xts0* into the pool Xts) and then go to Step 6, 

otherwise go to Step 7.  
• Step 6. Use Algorithm 1 (2) to get the transition solutions of XS0* (Xts0*): YSg* = TSg(XS0*), for all g ∈ PS (Ytsg* = TOg(Xts0*), for all 

g ∈ POts). Then put YSg* (Ytsg*) into the solution pools XSg (Xtsg). Return to Step 4.  
• Step 7. Find the best solution from the pool XSg (Xtsg): XSg* = argmin {fs(X), X ∈ XSg} (Xtsg* = argmax{fo(X), X ∈ Xtsg}).  
• Step 8. Output XS0* (Xts0*) as the matching plan and routing sequence. Passengers’ prices are determined by Formula (44) (45). 

psg = ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

0

)
(44)  

pog = fo
(

Xts*
g

)
− fo

(
Xts*

0

)
+ VAg

(
Xts*

0

)
(45) 

In Step 1 in this SPACL, Algorithm 3 (4) uses the passengers’ reported mobility preferences as input to generate the initial solution 
pool XS (Xts) in order to improve the solution quality. Steps 5 and 6 can ensure YSg*∈ XSg and Ytsg*∈ Xtsg so that the mechanism can 
hold “financial sustainability” and “scheduling preferability”. 

5.3. Theoretical properties of the improved SPA 

This section theoretically proves that SPACL sustains “preference-based individual rationality”, “financial sustainability”, and 
“scheduling preferability”. 

Proposition 9. The hybrid mechanism obtained by SPACL is preference-based individual rational. 
The proof is presented in Appendix B. 

Table 5 
Simulation parameter setting.  

Simulation parameters Values or methods for setting the values 

Train departure time 9:00 am 
Time to stop receiving scheduled requests (Ts) 8:00 am 
Scheduled and on-demand passengers’ arrival deadlines (θi

AD and 
αi

AD) 
Randomly and uniformly generate from 8:40 am to 8:55 am 

Number of scheduled requests 10 
Number of on-demand requests 60 
Number of passengers in each request (npi) 1 
Passenger origins Uniformly distributed in an annular area (0.5-mile-radius inner circle and 5-mile-radius 

outer circle) 
On-demand passengers’ requesting time (rti) Shown as Fig. 8 
On-demand passengers’ response deadline (RDi) depending on the 

request urgency 
tnow + max (0.5, 3 – (DTi – rti)/30 × 2.5) 
tnow: the current time 
DTi: the train departure time 
rti: the request time 

Number of emerging vehicles before re-optimization (emts) emts = max(⌈ents/2 × (1 + rand) ⌉, 4 )

ents: number of emerging requests within time slice ts 
rand: a uniform distributed number between 0 and 1 

Number of vehicles that are not immediately available ⌈rand × 0.5 × emts⌉ (available within 5 × rand minutes) 
Vehicle locations (xi, yi) The coordinate (xi, yi) is uniformly distributed in the annular area where passenger origins 

are generated 
Travel distance between two locations (dij) Using Euclidean distance 
Transportation cost (cij) cij = 0.5dij 

Travel time between two locations (tij) tij = 2.5
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅(
xvi − xvj

)2
+
(
yvi − yvj

)2
√

+pt 
xvi = xi + ε and yvi = yi + ε 
ε ~ N(µ = 0, σ2 = 0.1) 
pt = 2 

Passengers’ maximum WTP prices (αi
p) αi

p = 3ci0 + εi 

ci0: transportation cost to travel to the transit hub directly 
εi ~ N(µ = 4, σ2 = 1) 

Tolerable number of shared riders (θi
NR and αi

NR) ⌈5 × rand⌉ 
Tolerable detour time (θi

EIVT and αi
EIVT) 5 + 15 × rand 

Parameters of the intermediate price cf = 1.5, dr = 1, UG(Δtg) = 1.6 – Δtg/100  
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Proposition 10. The scheduled service is financially sustainable if each passenger’s intermediate price is no less than 2(dcg+chg) under the 
mechanism obtained by the SPACL algorithm. If ipg(rtg− ) ≥ 2(dcg+chg), then 

∑

g∈PS
psg⩾fs

(
XS*

0

)

where psg is obtained by Formula (44):psg = ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

0
)
.

The proof is presented in Appendix B. 

Proposition 11. The mechanism obtained by SPACL is scheduling preferable 
The proof is presented in Appendix B. 

6. Simulation experiments 

Simulation experiments are randomly generated by a computer. We generate a small-scale simulation experiment and 21 medium- 
and large-scale simulation examples. Note that the simulation examples achieve the purpose of test only and the developed meth-
odologies can be adapted for practical application as well. 

6.1. Small-scale simulation 

6.1.1. Simulation setting 
We assume that a train will depart from a certain train station at 9:00 am. Passengers can schedule the FMR service one hour before 

the train departure time (before 8:00 am). Passenger requests sent after 8:00 am will be treated as on-demand requests. We use the 
same setting method of simulation parameters for on-demand service as that in Bian et al. (2020) so that the designed mechanism and 
algorithm can be fairly compared with those in Bian et al. (2020). Table 5 presents the values or methods for setting the values of the 
simulation parameters. For the detailed setting of simulation examples, please refer to Bian et al. (2020). 

6.1.2. Simulation results 
Fig. 9 displays the simulation results for the scheduled service and partial on-demand service in the rolling horizon. We give the 

following clarifications for this figure. The mechanism results include matching plan and routing sequences and prices. The mechanism 
result for the scheduled service is present in Fig. 9(a). Vehicle 1, Vehicle 2, and Vehicle 3 cannot pick up any more additional pas-
sengers because some assigned passengers’ maximum tolerable numbers of shared riders are reached. Thus, the routing plan of these 
three vehicles will never change in the future and the routes are removed from the planning horizon. Other vehicles (Vehicles 4 and 5) 
which can pick up additional passengers are remained in the planning horizon (see Fig. 9 (b)), rendering the possibility that scheduled 
passengers share the trip with subsequent on-demand passengers. After the scheduled service is determined, on-demand passenger 
requests occur. Fig. 9(b) shows the emerging passenger requests sent within the first time slice. Vehicle 4 has already arrived at a 
scheduled passenger’s origin, and is serving or waiting for this passenger. The estimated remaining serving time is 1.34 min. The 
system deems that this vehicle will be available to be dispatched for picking up additional passengers after this “1.34 min”. The end of 
the first time slice is 8:03:25 AM, which reaches one passenger’s response deadline. The system conducts re-optimization and cal-
culates the prices of emerging requests. The re-optimization results and the emerging passengers’ prices are presented in Fig. 9(c). 
Then, the system continues to receive and process on-demand passengers’ requests and obtain mechanism results. 

Table 6 summarizes the results of scheduled service and all time slices of the on-demand service, including the start of time slice, the 
length of time slice, number of passenger requests, number of served passenger requests, collected price, transportation cost, and the 
total profit. We discuss the following findings from Table 6: 

Fig. 8. Set of on-demand passengers’ requests.  
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Fig. 9. The mechanism result presented on the rolling horizon.  
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(1) The length of time slice decreases as the time approaches to the train departure time. This is commensurate with the rule of 
determining the time slice length. When passengers are more urgent to catch the train at the transit hub, the response time 
should be close enough so that these passengers can have less waiting time, leading to a shorter time slice, and vice versa.  

(2) Under this mechanism, totally 64 passengers are served among the 70 passengers requested. Six passengers are not served. 
There are two possible reasons: 1) the passenger requirements are so strict that they cannot be satisfied by the service; and 2) 
available vehicles are insufficient to serve all passengers.  

(3) For each time slice, the collected prices can always cover the transportation cost. Totally 398.90 dollars are collected from the 
64 passengers, which covers the 92.04-dollar transportation costs. The total profit in this simulation is 306.86 dollars, making 
the mechanism financially sustainable. 

Fig. 10 presents the on-demand passengers’ price information. There are five lines in this figure, from high to low representing 
passengers’ maximum WTP prices, paid prices, the intermediate prices for on-demand service, the intermediate prices for scheduled 
service, and the prices if the passengers schedule the service in advance. From this figure, we can draw two conclusions. 

Table 6 
Summary of the mechanism results.  

Service types Start of time 
slice (AM.) 

Time slice 
length 
(minutes) 

Number of new 
passenger requests 

Number of 
served 
passengers 

Collected 
price ($) 

Transportation 
cost ($) 

Total 
profit ($) 

Scheduled service Before 8:00 Enough long 10 10 34.11  13.79  20.31 
On-demand 

service: time 
slices 1–14 

1 8:00:25 3.00 8 8  54.24  11.24  42.99 
2 8:04:04 2.66 13 13  81.91  17.84  64.06 
3 8:06:46 2.44 9 9  66.84  16.38  50.46 
4 8:10:11 2.15 4 4  23.81  4.95  18.86 
5 8:12:43 1.94 3 3  24.02  7.02  17.00 
6 8:15:21 1.72 5 4  26.16  0.73  25.43 
7 8:17:05 1.58 3 2  20.62  7.40  13.22 
8 8:19:19 1.39 4 4  23.10  2.90  20.20 
9 8:21:31 1.21 4 4  21.51  3.70  17.81 
10 8:23:24 1.05 1 0  0.00  0.00  0.00 
11 8:25:48 0.85 1 0  0.00  0.00  0.00 
12 8:26:56 0.76 1 1  2.81  0.05  2.76 
13 8:30:16 0.50 3 2  19.78  6.03  13.75 
14 8:32:11 0.50 1 0  0.00  0.00  0.00    

Total 70 64  398.90  92.04  306.86  

Fig. 10. On-demand passengers’ price information.  
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(1) Passengers’ maximum WTP prices are no less than the actual paid price. This property can always be satisfied for any passenger 
in any scenario, because we proved the property “preference-based individual rationality”, which ensures that passengers’ 
mobility preferences can always be satisfied.  

(2) If these on-demand passengers schedule the service early, they will be charged with a lower price. Thus, passengers have the 
incentive to schedule the service instead of sending on-demand requests. In Proposition 8, we have proved that on-demand price 
(the green line in Fig. 10) is always greater than or equal to the intermediate price for on-demand service (the red line in 
Fig. 10), the intermediate price for on-demand service is never less than the intermediate price for the scheduled service (the 
light blue line in Fig. 10), and the intermediate price for scheduled service is never less than the price of scheduling the service 
(the purple line in Fig. 10). This is commensurate with Fig. 10. 

Table 7 displays the performance of the three algorithms, CPLEX solver, SPA, and SPACL, for this small-scale numerical example. 
We find that, except the second time slice, in which the SPA algorithm obtains a lower objective function value (the bold number) than 
the other two algorithms, the three algorithms can obtain the exactly identical objective function values for all of the other time slices. 
In this small-scale numerical example, the solver CPLEX obtains the exactly optimal solutions for all time slices. Thus, we can conclude 
that both SPA and SPACL can obtain very high-quality solutions for small-scale mechanism design problems. For the computational 

Table 7 
Comparison of algorithm performances.  

Time 
slices 

Problem scale Objective function value 
(Formula (43)) 

Computing time (seconds) 

Number of 
passengers 

Number of available 
vehicles 

CPLEX SPA SPACL CPLEX SPA SPACL 

Optimization Calculating 
prices 

Total 

1 10 8  81.27  81.27  81.27  1.80  14.80  16.61  3.04  1.28 
2 18 13  140.77  139.73  140.77  25.87  168.95  194.82  6.69  2.40 
3 11 11  86.86  86.86  86.86  3.00  20.68  23.68  4.07  1.67 
4 8 8  59.23  59.23  59.23  2.14  6.31  8.45  1.89  0.93 
5 9 8  67.69  67.69  67.69  1.59  3.61  5.20  1.68  0.81 
6 13 10  98.34  98.34  98.34  1.58  8.35  9.93  2.73  1.19 
7 9 8  70.28  70.28  70.28  1.81  3.66  5.47  1.54  0.79 
8 11 10  90.51  90.51  90.51  1.57  5.97  7.55  2.48  1.10 
9 11 9  85.46  85.46  85.46  1.70  6.02  7.72  2.14  1.00 
10 7 8  51.89  51.89  51.89  0.88  0.66  1.55  0.78  0.50 
11 5 8  33.25  33.25  33.25  0.67  0.85  1.52  0.73  0.58 
12 5 8  33.87  33.87  33.87  0.56  0.66  1.22  0.79  0.58 
13 5 8  31.39  31.39  31.39  0.61  2.05  2.66  1.08  0.77 
14 4 10  24.25  24.25  24.25  0.67  0.75  1.42  0.93  0.73  

Table 8 
Comparison between the online hybrid mechanism and the offline static mechanism (small-scale problem).  

Time slices Number of served passenger 
requests 

Number of additional dispatched 
vehicles 

Collection price ($) Transportation cost 
($) 

Total Profit ($) 

ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM 

Scheduled service 10 10 5 5  34.11  34.11  13.79  13.79  20.31  20.31 
1 8 8 3 4  54.24  48.99  11.24  13.20  42.99  35.79 
2 13 13 5 6  81.91  82.09  17.84  20.84  64.06  61.26 
3 9 9 4 5  66.84  72.70  16.38  17.67  50.46  55.03 
4 4 3 1 1  23.81  19.63  4.95  4.22  18.86  15.41 
5 3 3 2 2  24.02  24.02  7.02  7.02  17.00  17.00 
6 4 3 0 2  26.16  21.35  0.73  6.14  25.43  15.20 
7 2 2 2 2  20.62  20.62  7.40  7.40  13.22  13.22 
8 4 4 1 2  23.10  24.50  2.90  6.59  20.20  17.90 
9 4 4 1 3  21.51  25.00  3.70  6.66  17.81  18.34 
10 0 0 0 0  0.00  0.00  0.00  0.00  0.00  0.00 
11 0 0 0 0  0.00  0.00  0.00  0.00  0.00  0.00 
12 1 1 0 1  2.81  4.81  0.05  2.05  2.76  2.76 
13 2 2 2 2  19.78  19.78  6.03  6.03  13.75  13.75 
14 0 0 0 0  0.00  0.00  0.00  0.00  0.00  0.00 
Total 64 62 26 35  398.90  397.60  92.04  111.63  306.86  285.97 

ONHBM: the online hybrid mechanism. 
OFFSM: the offline static mechanism. 
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speed, the solver CPLEX can obtain the mechanism results very quickly within a short time for all time slices except the second time 
slice with the largest scale, in which CPLEX spends 194.82 s solving the mechanism design problem. By comparison, SPA is faster than 
the CPLEX solver in obtaining the mechanism results for all time slices. The longest time spent by SPA is only 6.69 s. However, in 
contrast, the SPACL is even faster than CPLEX solver and SPA. The longest computing time is only 2.40 s among the 14 time slices. We 
also use the medium- and large-scale simulations to compare the three solution approaches in Section 6.2. 

In order to demonstrate the superiority of the online hybrid mechanism (ONHBM), we compare it with the static offline mechanism 
(OFFSM) proposed in our previous work (Bian et al., 2020), in terms of the number of served passenger requests, number of dispatched 
vehicles, collected price, transportation cost, and profit. The comparison results are presented in Table 8. In the static offline mech-
anism, once the matching plan and routing sequence is determined, it will never be changed to accommodate newly occurred pas-
sengers’ requests. In this small-scale simulation, 64 passengers are served under the ONHBM mechanism, two more than that under the 
OFFSM mechanism. Under the ONHBM mechanism, totally 26 vehicles are dispatched to serve the 64 passengers. In contrast, the 
OFFSM mechanism will dispatch 35 vehicles to serve the 62 passengers. It seems that ONHBM mechanism can ensure a higher vehicle 
occupancy rate than the OFFSM mechanism by dispatching less vehicles and serve more passengers. The two mechanisms do not make 
a significant difference in the total collected prices. However, the ONHBM mechanism induces 92.04-dollar transportation cost, saving 
nearly 20 dollars’ transportation cost compared with the OFFSM mechanism. Thus, ONHBM mechanism makes more profit than the 
OFFSM mechanism (ONHBM $306.86 versus OFFSM $285.97). The possible reason why OFFSM is outperformed by ONHBM is that 
OFFSM lacks a dynamic re-optimization approach to re-matching and re-routing to accommodate newly occurred passenger requests, 
and therefore, OFFSM sustains a relatively high vehicle empty seat rate and transportation cost. 

6.2. Medium- and large-scale simulation examples 

We generate 10 medium-scale and 11 large-scale simulation examples to compare CPLEX, SPA, and SPACL. For the medium-scale 
examples, the numbers of scheduled passenger requests (ns) increase from 15 to 60 by the interval of 5. For the large-scale examples, 
the numbers of scheduled passenger requests (ns) increase from 100 to 200 by the interval of 10. The total numbers of on-demand 
requests are set to 6 times of scheduled passengers (6 × ns) in both medium- and large-scale examples. The numerical example is 
denoted as “Sns_Ono”, where ns is the number of scheduled passengers and no is the number of on-demand passengers. For example, 
“S15_O90” represents the numerical example with 15 scheduled passengers and 90 on-demand passengers. 

6.2.1. Results of medium-scale simulation examples 
The setup of the data for the medium-scale simulation examples is identical with that of the small-scale simulation in Section 6.1. 

The medium-scale simulation examples are run at a Dell computer with processor Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 8 
GB RAM. We set the maximum computing time of CPLEX, SPA, and SPACL in solving the optimization model Mts0 to 30 s (excluding 
the pre-processing time), which is deemed as the maximum allowable response time of the algorithm in the on-demand ridesharing 
scenario. 

Table 9 displays the performance of CPLEX, SPA, and SPACL (the bold numbers indicate the best performance). We record the 
number of time slices in which each solution approach gets the best solutions among the three algorithms. When the scale of the 
simulation example is relatively small (e.g., S15_O90 and S20_O120), CPLEX can obtain the best solutions with the highest frequency 
compared with the other two algorithms, SPA and SPACL. However, with the scale increasing, SPACL has the highest frequency in 

Table 9 
Comparison of algorithm performances for medium-scale examples.  

Simulation examples Number of time slices Number of time slices in which 
the algorithm gets the best 
solutions among the three 
algorithms 

Summation of objective function 
values in all time slices (Formula (43)) 

Average computing time of all 
time slices (seconds) 

CPLEX SPA SPACL CPLEX SPA SPACL CPLEX SPA SPACL 

S15_O90 16 14 10 14 1263.92  1257.32  1263.86  79.52  3.46  1.46 
S20_O120 16 16 9 13 1825.53  1813.58  1825.05  145.40  4.21  1.66 
S25_O150 19 16 7 18 2260.06  2266.94  2279.16  130.61  4.89  1.90 
S30_O180 19 12 7 19 2592.99  2623.18  2638.72  242.02  7.01  2.58 
S35_O210 20 16 7 18 2660.06  2777.68  2805.57  242.90  7.16  2.60 
S40_O240 19 12 8 18 2918.82  3068.04  3097.90  347.39  10.17  3.57 
S45_O270 20 13 5 19 2893.43  3152.47  3195.27  367.98  9.33  3.28 
S50_O300 23 16 6 23 2 failures  3999.90  4052.24  356.32  9.76  3.62 
S55_O330 20 10 6 18 2 failures  3557.25  3613.09  569.00  14.06  4.81 
S60_O360 22 13 7 21 3 failures  4646.67  4714.43  562.66  14.08  4.66  
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obtaining the best solutions compared with CPLEX and SPA. The algorithm SPA has the lowest frequency in obtaining the best solutions 
for all examples, because it is either outperformed by CPLEX for relatively small-scale examples or outperformed by SPACL for 
relatively large-scale examples. This conclusion can also be reflected by the summation of objective function values presented in 
Table 9. We should note that when the scales of the simulation example become large enough, the solver CPLEX is unable to obtain a 
feasible solution within a reasonable amount of time. That is why the table shows the number of time slices in which CPLEX fails to 
obtain a feasible solution in the column “summation of objective function values in all time slices”. In the simulation examples, 
S50_O300, S55_O330, and S60_O360, CPLEX has 2, 2, and 3 failures to obtain feasible solutions, respectively. In Table 9, we also 
compare the three solution approaches in terms of the average computing times of all time slices for all simulation examples. We find 
that SPACL has the fastest computing speed compared with CPLEX and SPA. The longest average computing time of SPACL is only 4.81 
s, which is sufficiently prompt for on-demand ridesharing. In contrast, CPLEX’s computing time is so long that it is not practical for 
implementation. 

Table 10 
Performances of solution approaches in obtaining mechanism results in the time slice with the largest-scale problem (medium-scale examples).  

Simulation examples The largest problem scale among all time slices Computing time (seconds) Objective function value 
(Formula (43)) 

Number of passengers Number of vehicles CPLEX (for optimization only) SPA SPACL CPLEX SPA SPACL 

S15_O90 21 16  10004.61  8.85  3.12  166.89  162.69  166.86 
S20_O120 27 21  64.34  10.39  3.97  215.57  213.02  215.35 
S25_O150 25 21  10019.33  13.90  4.57  189.78  187.99  189.50 
S30_O180 31 27  10009.29  17.61  5.85  251.04  248.00  248.08 
S35_O210 34 27  10014.28  23.56  7.01  270.67  265.15  271.76 
S40_O240 41 38  10010.03  33.86  12.43  326.95  319.49  326.12 
S45_O270 45 37  10154.67  38.38  13.57  355.46  348.44  356.06 
S50_O300 50 44  10044.84  41.84  15.43  415.07  408.57  418.56 
S55_O330 52 41  10016.17  48.35  16.65  403.02  396.70  407.29 
S60_O360 65 37  10040.55  47.94  15.14  534.03  529.49  540.26  

Table 11 
Comparison of algorithm performances for large-scale examples.  

Simulation examples Number of time slices Summation of objective function values in all time slices 
(Formula (43)) 

Average computing time of all time slices 
(seconds) 

SPA SPACL SPA SPACL 

S100_O600 26  6286.88  6618.39  11.04  3.01 
S110_O660 25  7029.30  7371.41  15.07  3.93 
S120_O720 25  7901.25  8232.93  18.41  4.57 
S130_O780 27  9445.48  9878.94  18.04  3.96 
S140_O840 27  8195.45  8724.90  22.70  4.64 
S150_O900 29  10061.43  10637.58  24.24  4.23 
S160_O960 28  10395.75  11138.64  26.75  4.96 
S170_O1020 28  10241.04  10942.21  32.86  5.93 
S180_O1080 28  11052.41  11847.49  33.83  6.19 
S190_O1140 28  10391.50  11351.90  43.05  7.27 
S200_O1200 26  12267.05  13197.67  51.01  9.34  

Table 12 
Performances of solution approaches in obtaining mechanism results in the time slice with the largest-scale problem (large-scale examples).  

Simulation 
examples 

The largest problem scale among all time 
slices 

Computing time (seconds) Objective function value 
(Formula (43)) 

Number of passengers Number of vehicles CPLEX (for optimization only) SPA SPACL CPLEX SPA SPACL 

S100_O600 87 31  10039.08  51.75  9.16 662.66  621.53  692.25 
S110_O660 103 50  10090.17  107.61  26.44 Failure  827.36  866.32 
S120_O720 103 54  10097.07  124.99  26.92 Failure  802.78  832.58 
S130_O780 104 51  10095.10  94.18  17.71 Failure  826.71  855.84 
S140_O840 107 48  10093.67  136.68  20.03 Failure  835.89  888.35 
S150_O900 135 45  10197.00  172.22  20.96 Failure  919.76  1069.98 
S160_O960 143 53  10315.57  207.29  35.17 Failure  1043.25  1182.45 
S170_O1020 155 62  10720.36  246.38  37.45 Failure  1105.57  1253.25 
S180_O1080 139 54  10288.52  201.35  30.30 Failure  1026.67  1154.91 
S190_O1140 161 58  10620.93  260.99  40.40 Failure  1138.53  1303.59 
S200_O1200 152 62  10738.39  255.35  45.76 Failure  1123.82  1257.26  
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In each simulation example, the problem scale varies in different time slices. We select the time slice with the largest-scale problem 
in each simulation example for additional analysis. The maximum computing time of the CPLEX solver in solving an optimization 
model is extended to 10,000 s to verify the solution quality obtained by the proposed SPACL algorithm. Table 10 presents the com-
parison results of the three solution approaches in terms of computing speed and solution qualities (the bold numbers indicate the best 
performance). 

In terms of computational speed, CPLEX is very slow in solving the optimization models (Mts0) in the time slice with the largest- 
scale problem for all simulation examples except the example S20_O120, which is solved by CPLEX for 64.34 s. All other examples 
cannot be exactly solved by CPLEX within 10,000 s. Compared with CPLEX, SPA is much faster in obtaining the mechanism results. The 
maximum computing time of SPA for all medium-scale examples do not exceed 50 s. However, this amount of time is still not prompt 
enough for practical application. The SPACL is even much faster than SPA. The maximum computing time of SPACL to get the 
mechanism result for the largest-scale problem (S55_O330 with 52 passengers and 41 vehicles) is only 16.65 s. 

In terms of the solution quality, when the problem scale is relatively small (e.g., examples with scale less than 41 passengers × 38 
vehicles), the quality of solutions obtained by CPLEX solver is slightly higher than that of the proposed SPACL, but the gap is extremely 
small. The largest gap is only 1.18%, which occurs in the example S30_O180. As the problem scale increases (e.g., problem scale 
greater than 45 passengers × 37 vehicles), SPACL begins to outperform the CPLEX solver in terms of the solution quality. For the 
comparison between SPA and SPACL in terms of the solution quality, it seems that SPACL always outperforms SPA. 

6.2.2. Results of large-scale simulation examples 
In the large-scale simulation examples, we decrease the number of vehicles to emts = max(⌈ents/4 × (1 + rand) ⌉, 2 ) (ents is number 

of emerging requests within time slice ts, and rand is a uniform distributed number between 0 and 1) so that we can investigate the 
algorithm performance under the scenario with limited vehicle recourses. CPLEX is not applied to run each whole simulation example, 
because the CPLEX cannot obtain a high-quality solution within reasonable amount of time based on the medium-scale experiment 
results. We only use CPLEX to run for the time slice with the largest-scale problem and set the maximum running time as 10,000 s to 
solve the optimization model Mts0. The large-scale simulation examples are run at a more advanced Dell computer with processor Intel 
(R) Core(TM) i7-10510U CPU @ 1.80 GHz and 32 GB RAM. 

Table 11 displays the performance of SPA and SPACL (the bold numbers indicate the best performance) in obtaining the mechanism 
results for all large-scale simulation examples. It is straightforward that SPACL outperforms SPA in terms of both computational speed 
and solution quality. In addition, we select the time slice with the largest-scale problem in each simulation example for comparative 
analysis. The maximum computing time of the CPLEX solver in solving an optimization model is set to 10,000 s. Table 12 presents the 
comparison results of the three solution approaches to the time slice with the largest problem scale from the 11 large-scale simulation 
examples (the bold numbers indicate the best performance). From the results, we find that SPACL has a higher performance than 
CPLEX and SPA in terms of both computational time and solution quality. When the problem scale is sufficiently large (e.g., problem 
scale greater than 103 passengers × 50 vehicles), the CPLEX solver is unable to return a feasible solution within 10,000 s, while SPACL 

Table 13 
Comparison between the online hybrid mechanism and the offline static mechanism (medium- and large-scale problems).  

Simulation examples Total number of served 
passengers 

Total number of 
dispatched vehicles 

Total collected prices 
($) 

Total transportation 
cost ($) 

Total profit ($) 

ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM ONHBM OFFSM 

S15_O90 102 102 40 51  581.51  594.66  134.90  153.95  446.61  440.71 
S20_O120 131 131 52 60  730.21  754.31  170.41  195.50  559.80  558.81 
S25_O150 169 165 66 77  955.75  926.61  215.81  237.37  739.94  689.24 
S30_O180 204 204 77 92  1103.41  1113.04  237.32  270.13  866.09  842.91 
S35_O210 245 242 91 101  1336.06  1295.47  282.69  298.99  1053.37  996.48 
S40_O240 272 268 104 118  1453.28  1433.78  306.99  336.23  1146.29  1097.55 
S45_O270 308 305 116 126  1680.07  1664.92  345.62  370.54  1334.45  1294.38 
S50_O300 340 338 122 142  1771.69  1769.82  351.52  389.01  1420.17  1380.81 
S55_O330 378 374 139 149  1996.39  1983.26  393.96  418.49  1602.43  1564.77 
S60_O360 413 413 148 168  2206.73  2213.69  433.69  475.33  1773.04  1738.36 
S100_O600 661 652 235 241  3412.68  3356.09  698.05  702.66  2714.63  2653.43 
S110_O660 718 716 259 269  3723.91  3732.58  745.87  767.20  2978.04  2965.38 
S120_O720 805 794 292 303  4128.31  4080.33  821.01  832.68  3307.30  3247.65 
S130_O780 868 855 308 316  4470.99  4428.96  866.58  883.03  3604.41  3545.93 
S140_O840 941 934 335 345  4835.45  4859.57  938.63  982.17  3896.82  3877.40 
S150_O900 1010 991 357 371  5258.74  5139.42  1003.46  1014.97  4255.28  4124.45 
S160_O960 1038 1018 367 376  5372.38  5290.93  1035.34  1057.18  4337.04  4233.75 
S170_O1020 1127 1124 402 417  5775.72  5808.23  1104.01  1158.49  4671.71  4649.74 
S180_O1080 1195 1169 427 436  6159.51  6022.49  1189.47  1190.34  4970.04  4832.15 
S190_O1140 1267 1244 446 454  6528.99  6421.65  1230.35  1232.72  5298.64  5188.93 
S200_O1200 1327 1318 464 477  6837.29  6815.57  1256.19  1305.60  5581.10  5509.97 

ONHBM: the online hybrid mechanism. 
OFFSM: the offline static mechanism. 
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is able to obtain mechanism results within 50 s for all large-scale problems. We believe that the computing time can be further reduced 
by using more advanced computational resource and the parallel computing technique. 

From the experimental results, we give the recommendation of algorithm adoption based on the three algorithms’ computational 
speed and capability of sustaining the four mechanism properties. For small-scale problems (e.g., problem scale smaller than 10 
passengers × 10 vehicles), the CPLEX solver is recommended as the solution approach because CPLEX is efficient in solving small-scale 
problems and can simultaneously guarantee the four mechanism design properties as CPLEX solver can get exact solutions. For 
medium-scale problems (e.g., scales between “10 passengers × 10 vehicles” and “30 passengers × 25 vehicles”), SPA is recommended 
as the solution approach because SPA is fast in solving medium-scale problems and most importantly can sustain the property of 
“preference-based individual rationality” and “preference-based incentive compatibility” which are the most two important properties 
in mechanism design theory. For large-scale problems (e.g., scales greater than “30 passengers × 25 vehicles”), the property “incentive 
compatibility” is very difficult to hold when SPA may not efficiently solve the problem within acceptable time, and thus SPACL is 
recommended as the solution approach, which is much more efficient compared with SPA and CPLEX for large-scale problems. 

At last, we compare the online hybrid mechanism with the offline static mechanism for the medium- and large-scale simulation 
examples in Table 13 (the bold numbers indicate the better performance). First, the online hybrid mechanism dispatches fewer vehicles 
to serve no less passengers than the static offline mechanism does. This is because, under the online hybrid mechanism, the vehicle 
routing plan is adjusted dynamically to accommodate new passengers’ requests in real time, while, under the static offline mechanism, 
the matching plan and routing sequence will never be changed after the vehicle is dispatched, and thus newly occurred passengers will 
not be served by these dispatched vehicles. The real-time accommodation of newly occurred passengers saves dispatched vehicles and 
serves more passengers. Therefore, the online hybrid mechanism can achieve a lower vehicle empty seat rate than the static offline 
mechanism. Second, from the comparison in total collected prices, we cannot easily tell which mechanism collects higher prices. 
However, the online hybrid mechanism significantly saves the transportation cost, and thus makes more profits compared with the 
static offline mechanism. 

7. Conclusions 

This paper designed an online hybrid mechanism with four incentive objectives for the FMR service involving mixed scheduled and 
on-demand passengers. We proposed and proved four properties, namely “preference-based individual rationality”, “preference-based 
incentive compatibility”, “financial sustainability”, and “scheduling preferability”, to achieve the four incentive objectives, respec-
tively. We proved that the improved SPA algorithm successfully sustains the properties of “preference-based individual rationality”, 
“financial sustainability”, and “scheduling preferability” in obtaining large-scale mechanism results. From the simulation results, we 
can draw the two major conclusions: 1) Compared with the static offline mechanism proposed in our previous work, the proposed 
online hybrid mechanism can serve more passengers, reduce vehicle dispatches, achieve lower vehicle empty seat rate, save trans-
portation cost, and make more profits; 2) The improved SPA outperforms the commercial solver CPLEX and the original SPA in 
obtaining the mechanism results in terms of both solution quality and computational speed, especially for large-scale simulation 
examples. 
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Appendix A. Notation 

See Tables 14a–14c. 
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Table 14b 
Notation in the re-optimization model.  

Sets 
Pts Set of nts passenger requests, Pts = {1, 2, … , nts}. These passengers include all scheduled and on-demand passengers who send requests before the end of 

the time slice ts but have not been picked up yet, but exclude those whose matching plan will not change anymore because the vehicle cannot pick up more 
passengers since the vehicle seats are all occupied or some shared riders’ maximum tolerable numbers of shared riders are reached. 

Vts Set of m available vehicles to serve passenger requests, Vts = { nts + 1, nts + 2, … , nts + mts}. These vehicles include all three types introduced in Section 
3.3.  

Variables 

xijk =

{
1 Vehicle k travels from Passenger(s) i’s location to Passenger j’s location
0 Otherwise k ∈ Vts, i, j ∈ Pts 

yki =

{
1 Vehicle k will serve Passenger(s) i next
0 Otherwise k ∈ Vts , i ∈ Pts 

zki =

{
1 Passenger(s) i is the last to be served by Vehicle k before traveling to the transit hub
0 Otherwise k ∈ Vts, i ∈ Pts 

wki =

{
1 Passenger(s) i is served by Vehicle k
0 Otherwise k ∈ Vts , i ∈ Pts  

Parameters 
dcki The dispatching cost of Vehicle k to serve the next passenger (s) i. 
chi The transportation cost to directly drive passenger(s) i to the transit hub (i∈Pts) 
cvk If Vehicle k is already dispatched before the current time slice, then cvk equals the transportation cost of this vehicle to travel from the vehicle location to 

the transit hub. Otherwise, cvk = 0. 
Qk The remaining seat capacity of Vehicle k before the re-optimization. 
ATk The time when Vehicle k will be available. 
DLSk The latest arrival time of Vehicle k. This deadline is determined only by the passengers who are already picked up by the vehicle before the re- 

optimization. For example, Vehicle k already has two passengers in it. If these two passengers’ arrival deadlines are dl1 and dl2, then, DLSk = min (dl1, dl2). 
Passengers who are not picked up by the vehicle do not affect DLSk. 

RNRk The maximum allowable number of additional riders that Vehicle k can pick up. This parameter is determined by the number of passengers who will be 
served before re-optimization, as well as the requirements of the passengers, who are already in the vehicle, on the number of co-riders. For example, if 
one passenger is already picked up by Vehicle k, this passenger’s maximum tolerable number of co-riders is 3, and another passenger must be picked up as 
required in the previous routing plan, then RNRk = 2, indicating that this vehicle can pick up two additional passengers at most. 

NPIVk The number of passengers already picked up by Vehicle k 

(continued on next page) 

Table 14a 
Notation in the preliminary optimization model.  

Sets 
PS Set of ns scheduled passenger requests (at location nodes), PS = {1, 2, … , ns} 
VS Set of ms vehicles available for dispatching for scheduled passenger requests, VS = {ns + 1, ns + 2, … , ns + ms } 
H The transit hub (node), H = {0}  

Variables 

xsijk =

{
1 Vehicle k travels from Passenger(s) i’s location to Passenger j’s location
0 Otherwise k ∈ VS, i, j ∈ PS 

yski =

{
1 Passenger(s) i’s request is the first pickup task assigned to Vehicle k
0 Otherwise k ∈ VS, i ∈ PS 

zski =

{
1 Passenger(s) i is the last to be served by Vehicle k before traveling to the transit hub
0 Otherwise k ∈ VS, i ∈ PS 

wski =

{
1 Passenger(s) i is served by Vehicle k
0 Otherwise k ∈ VS, i ∈ PS 

X X = {xsijk, yski, zski, wski}, representing a matching plan and routing sequence 
IVTi Travel time spent in a vehicle. 
NRi Number of passengers sharing the trip with Passenger(s) i.  

Parameters 
npi Number of passengers in request i. 
dcki The estimated dispatching cost of Vehicle k to pick up Passenger(s) i. 
cij The transportation cost to travel from node i to node j (i, j∈PS) 
chi The transportation cost from passenger location i to the transit hub (i∈PS) 
tij The travel time from location i to location j, i ∈ VS ∪ PS and j∈PS ∪ H. 
Qk Vehicle k’s seat capacity. 
θi

AD Latest arrival time. 
θi

NR Tolerable number of shared passengers. 
θi

EIVT The maximum tolerable detour time (i.e., extra travel time spent in a vehicle beyond the direct shipment time).  
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Table 14c 
All other notation.  

Notation Explanation 
POts The set of passenger requests sent within time slice ts 
ents Number of passenger requests sent in time slice ts. That is ents = |POts| 
Ts The time to process all scheduled passengers’ requests and to start to receive on-demand requests 
ipg The intermediate price specified in Formula (1) 
cf The constant initial fee in the intermediate price ipg 

dr The distance rate to determine the intermediate price ipg 

dg Passenger(s) g’s travel distance of direct shipment from the origin to the transit hub 
DTg The train departure time 
rtg Passenger(s) g’s request time 
Δtg The time difference between the train departure time DTg and the request time rtg (Δtg = DTg – rtg) 
UG(Δtg) The urgency coefficient, a monotone increasing function of Δtg 

rtg− Scheduled passenger(s) g’s request time: rtg = rtg− if rtg < Ts 
rtg+ On-demand passenger(s) g’s request time: rtg = rtg+ if rtg ≥ Ts 
ipg(rtg− ) Scheduled passenger(s) g’s intermediate price 
ipg(rtg+) On-demand passenger(s) g’s intermediate price 
psg Scheduled passenger’s final price formulated by Formula (40) 
pog On-demand passenger’s final price Formula (43) 
MS0 The optimization model for schedule service, defined by Formulas (3)–(9) and (11)–(17) 
MSg A series of models used in the scheduled passengers’ price calculation formula (Formula (40)), defined by Formulas (3)–(9), (11)–(17), and (39) 
Mts0 The re-optimization model for on-demand service for one time slice (time slice ts), defined by Formulas (18), (22)–(26), and (28)–(38) 
Mtsg A series of models used in the on-demand passengers’ price calculation formula (Formula (43)), defined by Formulas (41), (22)–(26), (28)–(38), and (42) 
fs(X) Objective function value model MS0 given the plan X for the scheduled service (Formula (3)) 
fo(X) Objective function value of model Mts0 for the on-demand service (Formula (41)) 
TSg(X) Obtain the gth transition solution from model MS0 to Model MSg, g ∈ PS 
TOg(X) Obtain the gth transition solution from model Mts0 to Model Mtsg, g ∈ POts 

dcg The maximum possible dispatching cost to pick up Passenger(s) g 

X*
MS0 

The theoretical optimal solution of model MS0 

X*
MSg 

The theoretical optimal solution of model MSg 

X*
Mts0 

The theoretical optimal solution of model Mts0 

X*
Mtsg 

The theoretical optimal solution of model Mtsg 

XS0 The solution pool of model MS0 

XSg The solution pool of model MSg 

Xts0 The solution pool of model Mts0 

Xtsg The solution pool of model Mtsg 

XS The initial solution pool of model MS0 

Xts The initial solution pool of model Mts0 

X0 A solution for scheduled service, in which all passengers do not share the trip with any other passengers. In other words, passengers take the non- 
ridesharing service and are shipped to the transit hub directly. 

XS0* The best feasible solution in solution pool XS0 

XSg* The best feasible solution in solution pool XSg 

Xts0* The best feasible solution in solution pool Xts0 

Xtsg* The best feasible solution in solution pool Xtsg 

YSg* The gth transition solution of XS0* for scheduled service: YSg* = TSg(XS0*) 
Ytsg* The gth transition solution of Xts0* for on-demand service: Ytsg* = TOg(Xts0*) 
XS0i ith solution in the solution pool XS0 

Xts0i ith solution in the solution pool Xts0 

XSi ith solution in the initial solution pool XS 
XSgi ith solution in solution pool XSg, which is the transition solution of XSi0: XSgi = TSg(XSi0) 
Xtsi ith solution in the initial solution pool Xts 
Xtsgi ith solution in solution pool Xtsg, which is the transition solution of Xtsi0: Xtsgi = TOg(Xtsi0)  

Table 14b (continued ) 

RIVTk The maximum allowable travel time for Vehicle k to reach the transit hub, which is determined by the maximum tolerable in-vehicle travel times of the 
passengers who are already in Vehicle k. For example, Vehicle k has already picked up two passengers. The two passengers have already stayed in the 
vehicle for 5 and 8 min, respectively. Their maximum tolerable travel times spent in vehicles are 15 and 20 min, respectively. Then RIVTk = min (15 – 5, 
20 – 8) = 10 min. 

δki The indicator parameter: if Vehicle k is already dispatched to pick up passenger(s) i, δki = 1; otherwise δki = 0. 
αi

AD Arrival deadline of on-demand request i. 
αi

NR Maximum tolerable number of shared passengers of on-demand request i. 
αi

EIVT Maximum tolerable detour time of on-demand request i. 
αi

p WTP price of on-demand request i. 
VAi The value of on-demand request i. If he is served, his value is equal to his maximum WTP price: VAi = αi

p; otherwise, his value is zero: VAi = 0.  
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Appendix B. Proofs of Propositions 

Proposition 1. For scheduled service, the final price is always smaller than or equal to the intermediate price: 

psg⩽ipg

(
rt−g
)

Proof. The scheduled passengers’ prices are given by Formula (40): 

psg = ipg

(
rt−g
)
− fs

(
X*

MSg

)
+ fs

(
X*

MS0

)

Compared with model MS0, each model MSg (g∈PS) has an additional constraint (Formula (39)). This indicates that the optimal 
solution (X*

MS0
) to model MS0 has a smaller objective value than that (X*

MSg
) of MSg. That is 

fs
(

X*
MSg

)
⩾fs
(

X*
MS0

)

Thus 

psg⩽ipg

(
rt−g
)

□   

Proposition 4. Suppose that X is any feasible solution of model MS0 and Yg = TSg(X). Then we have 

fs(X) ⩾fs
(
Yg
)
− dcg − chg  

where dcg is the maximum possible dispatching cost to pick up Passenger(s) g. 

Proof. If 
∑

i∈PS\gwskinpi = 0 in X, then Yg = X based on Algorithm 1, and thus 

fs(X) = fs
(
Yg
)

⩾fs
(
Yg
)

− dcg − chg 

If 
∑

i∈PS\gwskinpi > 0, we can find k that wskg = 1. In the transition solution Yg, Vehicle k’ is dispatched to pick up Passenger(s) g. 

Then dcg⩾dck′ g, since dcg is the maximum possible dispatching cost to pick up Passenger(s) g. Based on triangle inequality assumption, 
we have the following cases:  

• If there exist i and j that xigk = 1 and xgjk = 1, then fs(X) −
(
fs
(
Yg
)

− dcg − chg
)

⩾fs(X) −
(
fs
(
Yg
)

− dck’g − chg
)

= cig +

cgj − cij⩾ 0  
• If zkg = 1 and there exists i that xigk = 1, then fs(X) −

(
fs
(
Yg
)

− dcg − chg
)

⩾fs(X) −
(
fs
(
Yg
)

− dck’g − chg
)

= cig + chg − chi⩾ 0.
• If ykg = 1 and there exists j that xgjk = 1, then fs(X) −

(
fs
(
Yg
)

− dcg − chg
)

⩾fs(X) −
(
fs
(
Yg
)

− dck’g − chg
)

= dckg +

cgj − dckj⩾ 0.

Thus, 

fs(X) ⩾fs
(
Yg
)
− chg □   

Proposition 6. If Yg = TOg(X), for any g∈POts, we have 

TC
(
Yg
)

⩽TC(X)

where the TC(X) is the transportation cost given the plan X. 

Proof. If 
∑

k∈Vts
wkg = 0 in X, then Yg = X. Thus 

TC
(
Yg
)

= TC(X).

If 
∑

k∈Vts
wkg = 1, there exists k that wkg = 1. Let ΔTC = TC(X) – TC(Yg). Based on triangle inequality assumption, we have the 

following cases:  

(1) If there exist i and j that xigk = 1 and xgjk = 1, then ΔTC = cig + cgj − cij⩾ 0.
(2) If zkg = 1 and there exists i that xigk = 1, then ΔTC = cig + chg − chi⩾ 0.
(3) If ygk = 1 and there exists j that xgjk = 1, then ΔTC = dckg + cgj − dckj⩾ 0.
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(4) If ygk = 1, zgk = 1, and Vehicle k has already been dispatched before the current time slice, then ΔTC = dckg + chg − cvk > 0.
(5) If ygk = 1, zgk = 1, and Vehicle k has not been dispatched before the current time slice, then ΔTC = dckg + chg > 0.

Thus, 

TC
(
Yg
)

⩽TC(X). □   

Proposition 7. If Yg = TOg(X), for any g∈POts, we have 
∑

i∈Pts\g

VAi(X) =
∑

i∈Pts

VAi
(
Yg
)

Proof. If 
∑

k∈Vts
wkg = 0, Yg = X, and thus 

∑
i∈Pts

VAi(X) =
∑

i∈Pts
VAi
(
Yg
)
. Since 

∑
k∈Vts

wkg = 0, VAg(X) = 0. Thus 
∑

i∈Pts\g

VAi(X) =
∑

i∈Pts

VAi
(
Yg
)

If 
∑

k∈Vts
wkg = 1 in X, then Passenger(s) g is served in X. Then, 

VAg(X) = αp
g 

Passenger(s) g is not served in Yg. All of other served passengers in X are still served in Yg. Thus 
∑

i∈Pts

VAi(X) =
∑

i∈Pts

VAi
(
Yg
)
+ αp

g  

⇒
∑

i∈Pts\g

VAi(X)+ αp
g =

∑

i∈Pts

VAi
(
Yg
)
+αp

g  

⇒
∑

i∈Pts\g

VAi(X) =
∑

i∈Pts

VAi
(
Yg
)

□   

Proposition 9. The hybrid mechanism obtained by SPACL is preference-based individual rational. 

Proof. The first three conditions in Table 1 are always satisfied because XS0* is feasible to the model MS0 and Xts0* is a feasible 
solution of model Mts0* satisfying the constraints specified by the passengers (Formulas (9), (11)–(12), (28)–(32)). 

No constraint in the optimization model is imposed to satisfying Condition (4) , and thus we need to use the following method to 
prove the validity of Condition (4). We prove it for scheduled and on-demand passengers, separately. 

For scheduled service, we discuss two cases based on a passengers’ choice to accept the offer or not given the intermediate price.  

(1) If the passenger(s) does not accept the choice, then his value and the price are both zero: 

VAg = psg = 0    

(2) If the passenger(s) accepts the offer, the passenger(s) will be served, and his value is no less than the intermediate price: 

VAg⩾ipg

(
rt−g
)

Based on Formula (44), we have 

psg = ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

0

)

XS0* is the best solution in the pool XS0. Based on Algorithm 5, the main algorithm of SPACL to obtain the mechanism for scheduled 
service, we have XSg*∈ XSg ⊆ XS0. Thus we have 

fs
(

XS*
g

)
⩾fs
(
XS*

0

)

psg⩽ipg

(
rt−g
)

Since VAg⩾ipg

(
rt−g
)

in this case, we have 
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psg⩽ipg

(
rt−g
)

⩽VAg 

For on-demand service, based on Formula (45), we have 

VAg
(
Xts*

0

)
− pog = VAg

(
Xts*

0

)
− fo

(
Xts*

g

)
+ fo

(
Xts*

0

)
− VAg

(
Xts*

0

)

= fo
(
Xts*

0

)
− fo

(
Xts*

g

)

Xts0* is the best solution in the pool Xts0, and Xtsg* is included in the pool Xts0 based on Algorithm 6. Thus, we have 

VAg
(
Xts*

0

)
− pog = fo

(
Xts*

0

)
− fo

(
Xts*

g

)
⩾ 0 

We proved that all passengers’, both scheduled and on-demand, mobility preferences are always satisfied under the mechanism 
obtained by SPACL. Thus, SPACL can hold “preference-based individual rationality”. □ 

Proposition 10. The scheduled service is financially sustainable if each passenger’s intermediate price is no less than 2(dcg+chg) under the 

mechanism obtained by the SPACL algorithm. If ipg

(
rt−g
)

⩾ 2
(
dcg + chg

)
, then 

∑

g∈PS
psg⩾fs

(
XS*

0

)

where psg is obtained by Formula (44):psg = ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

0
)
. 

Proof. Let YSg* be the gth transition solution of XS*
0 : YS*

g = TSg(XS*
0). Based on the SPACL algorithm, YSg* is always in the pool XSg. 

XSg* is the best solution in XSg. Thus, we have 

fs
(

YS*
g

)
⩾fs
(

XS*
g

)

Based on Proposition 4, we have 

fs
(
XS*

0

)
⩾fs
(

YS*
g

)
− dcg − chg 

Therefore, 

fs
(
XS*

0

)
⩾fs
(

XS*
g

)
− dcg − chg 

Based on Formula (44), we have 

psg = ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

0

)

⩾ipg

(
rt−g
)

− fs
(

XS*
g

)
+ fs

(
XS*

g

)
− dcg − chg  

= ipg

(
rt−g
)

− dcg − chg 

Given the condition ipg

(
rt−g
)

⩾ 2
(
dcg + chg

)
, we have 

psg⩾ipg

(
rt−g
)

− dcg − chg⩾ + chg 

In the proof of Proposition 5, we already proved that 

fs(X0)⩽
∑

g∈PS

(
dcg + chg

)

where X0 is a solution in which all passengers do not share the trip with others. Based on Algorithm 3, X0
′s solution quality is not higher 

than any solution in the pool XS0 while XS0* is the best solution in XS0. Then we have 

fs
(

X*
MS0

)
⩽fs(X0)⩽

∑

g∈PS

(
dcg + chg

)

Again, due to psg⩾dcg + chg, we have 

fs
(

X*
MS0

)
⩽fs(X0)⩽

∑

g∈PS

(
dcg + chg

)
⩽
∑

g∈PS

(
psg
)
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indicating that the scheduled service is financially sustainable under the mechanism obtained by the SPACL algorithm if the 
condition ipg(rtg− ) ≥ 2(dcg+chg) is satisfied. □ 

Proposition 11. The mechanism obtained by SPACL is scheduling preferable 

Proof. We prove the inequations in Table 3. 
Proof of inequation (a): 
Based on Proposition 9, we have 

Usg = VAg − psg⩾ 0 for any g ∈ PS 

Proof of inequation (b): 
If the on-demand passenger request is rejected in Xts0* obtained by SPACL, then VAg(Xts0*) = 0. Thus, based on Formula (45), we 

have 

pog = fo
(

Xts*
g

)
− fo

(
Xts*

0

)
+ VAg

(
Xts*

0

)
= fo

(
Xts*

g

)
− fo

(
Xts*

0

)

Since passenger(s) g is not served in Xts0*, based on Definition 5 (transition solution from model Mts0 to model Mtsg), we have 

Xts*
0 = Yts*

g = TOg
(
Xts*

0

)

Based on the SPACL algorithm, Ytsg*∈ Xtsg. Xtsg* is the best solution in Xtsg. Thus, we have 

fo
(

Yts*
g

)
⩽fo
(

Xts*
g

)

Moreover, Xtsg*∈ Xtsg ⊆ Xts0 based on the SPACL algorithm, and Xts0* is the best solution in Xts0. Thus, we have 

fo
(

Yts*
g

)
⩽fo
(

Xts*
g

)
⩽fo
(
Xts*

0

)

Since Xts0* = Ytsg*, we have 

fo
(

Yts*
g

)
= fo

(
Xts*

g

)
= fo

(
Xts*

0

)

Thus, we have 

pog = fo
(

Xts*
g

)
− fo

(
Xts*

0

)
= 0 

Thus, the utility is 

Uog = VAg
(
Xts*

0

)
− pog = 0 ⩽Usg 

Proof of inequation (c): 
As we discussed above, the algorithm SPACL ensures fo(Ytsg*) ≤ fo(Xtsg*). Thus, based on Formula (45), the price of an on-demand 

passenger request 

pog = fo
(

Xts*
g

)
− fo

(
Xts*

0

)
+ VAg

(
Xts*

0

)

⩾fo
(

Yts*
g

)
− fo

(
Xts*

0

)
+ VAg

(
Xts*

0

)

in which 

fo
(

Yts*
g

)
=
∑

i∈Pts

VAi

(
Yts*

g

)
− TC

(
Yts*

g

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

fo
(
Xts*

0

)
=
∑

i∈Pts

VAi
(
Xts*

0

)
− TC

(
Xts*

0

)
+
∑

i∈Pts

ipi
(
rt+i
)
(

1 −
∑

k∈Vts

wki

)

Based on the definition of the transition solution (Definition 5) in on-demand service, except the difference, 
∑

k∈Vts
wkg = 0 in fo 

(Ytsg*) and 
∑

k∈Vts
wkg = 1 in fo(Xts0*) (because Passenger(s) g is not served in Ytsg* but is served in Xts0*), all of other elements in 

∑
i∈Pts

ipi
(
rt+i
)(

1 −
∑

k∈Vts
wki
)

are identical. Then we have 

pog⩾fo
(

Yts*
g

)
− fo

(
Xts*

0

)
+VAg

(
Xts*

0

)

= ipg

(
rt+g
)
+

(
∑

i∈Pts

VAi

(
Yts*

g

)
−
∑

i∈Pts\g

VAi
(
Xts*

0

)
)

+
(
TC
(
Xts*

0

)
− TC

(
Xts*

0

) )

Z. Bian et al.                                                                                                                                                                                                            



Transportation Research Part C 138 (2022) 103585

37

From Propositions 6 and 7, respectively, we have 

TC
(
Xts*

0

)
− TC

(
Yts*

g

)
⩾0  

and 
∑

i∈Pts

VAi

(
Yts*

g

)
−
∑

i∈Pts\g

VAi
(
Xts*

0

)
= 0 

Thus, we have 

pog ⩾ipg

(
rt+g
)

In Proposition 9, we proved that psg⩽ipg

(
rt−g
)

if psg is obtained by Formula (44). In addition, based on Formula (1), 

ipg

(
rt+g
)

⩾ipg

(
rt−g
)

. Thus, we have 

pog ⩾ipg

(
rt+g
)

⩾ipg

(
rt−g
)

⩾psg 

In this case the passenger(s) is served in both of the scheduled and on-demand service. Then VAg(Xts0*) = αi
p = VAg(XS0*). 

Thus, we have 

Uog = VAg
(
Xts*

0

)
− pog = αp

i − pog⩽αp
i − psg = VAg

(
XS*

0

)
− psg = Usg □   

Appendix C. Pseudocode of algorithms 

Algorithm 1. (Obtain the transition solutions Yg = TSg(X) from model MS0 to model MSg)   

Input a solution X = {xsijk, yski, zski, wski}; 
Duplicate X to Yg: Yg = X, and then made the following modifications in Yg; 
Find k that wskg = 1; 
If 
∑

i∈PS\gwskinpi > 0 
If yskg = 0 or zskg = 0 

If yskg = 1 
Identify j that xsgjk = 1; 
Set xsgjk = 0; 
Set yskj = 1; 

Else 
If zskg = 1 

Identify i that xsigk = 1; 
Set xsigk = 0; 
Set zski = 1; 

Else 
Identify i that xsigk = 1; 
Set xsigk = 0; 
Identify j that xsgjk = 1; 
Set xsgjk = 0; 
Set xsijk = 1; 

End if 
End if 
Set wskg = 0, yskg = 0, zskg = 0; 
k’ = argmin

l∈VS\k

(
dclg
)
; 

Let Vehicle k’ to serve Passenger(s) g: wsk’g = 1, ysk’g = 1, zsk’g = 1; 
End if 
Output Yg.   

Algorithm 2. (Obtain the transition solutions Yg = TOg(X) from model Mts0 to model Mtsg)   

Input a solution X = {xijk, yki, zki, wki}; 
Duplicate X to Yg: Yg = X, and then made the following modifications in Yg; 
If 
∑

k∈Vts
wkg = 1 

Identify k that wkg = 1; 
If 
∑

i∈Pts\gwkinpi > 0 

(continued on next page) 
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(continued ) 

If ykg = 0 or zkg = 0 
If ykg = 1 

Identify j that xgjk = 1; 
Set xgjk = 0; 
Set ykj = 1; 

Else 
If zkg = 1 

Identify i that xigk = 1; 
Set xigk = 0; 
Set zki = 1; 

Else 
Identify i that xigk = 1; 
Set xigk = 0; 
Identify j that xgjk = 1; 
Set xgjk = 0; 
Set xijk = 1; 

End if 
End if 

End if 
Set wkg = 0, ykg = 0, zkg = 0; 

End if 
Output Yg.   

Algorithm 3. (Generate an initial solution pool, XS, for model MS0)   

Set the total number of iterations (NI), number of neighborhood solutions (CN) for each iteration, 
number of solutions in the pool XS (NS); 

Set ni = 0; % The index of the current iteration; 
Set Xcurrent = X0; % Record an initial solution X0 as the current solution. In X0, all passengers do not 

share the trip with others; 
Set fcurrent = fs(Xcurrent) ; % Record the objective function value of Xcurrent (Formula (3)); 
Set Xbest = X0; % Record the best solution found; 
Set fbest = fs(Xbest) ; % Record the objective function value of Xbest; 
Set an empty tabu list: TL = ∅; 
Set XS = {X0, X0, … , X0}; % Initialize the solution pool XS with NS identical solutions (X0); 
Do while ni < NI 

ni = ni + 1; 
Generate CN Xcurrent’s neighborhood solutions X = {X1, X2,…, XCN}; 
{X(1), X(2),…, X(CN)} = sort(X, ‘ascend’); 
If fs(X(1)) < fbest 

Xbest = X(1); 
fbest = fs(X(1)); 

End if 
k = 1; 
Do while X(k)∈ TL 

k = k + 1; 
End do 
Xcurrent = X(k); 
Put X(k) into the tabu list TL; 
j = 1; 
Do while fs(X(j)) < max {fs(XSi), XSi ∈ XS} 

XSmax = argmax {fs(XSi), XSi ∈ XS}; 
XSmax = X(j); % Replace the worst solution in XS with X(j) 
j = j + 1; 

End do 
End do 
Output XS;   

Algorithm 4. (Generate an initial solution pool, Xts, for model Mts0)   

Set the total number of iterations (NI), number of neighborhood solutions (CN) for each iteration, 
number of solutions in the pool Xts (NS); 

Set ni = 0; % The index of the current iteration; 
Set Xcurrent = Xinitial; 
Set fcurrent = fo(Xcurrent); % Record the objective function value of Xcurrent (Formula (41)); 
Set Xbest = Xinitial; % Record the best solution found; 
Set fbest = fo(Xbest); % Record the objective function value of Xbest; 
Set the tabu list as empty: TL = ∅; 

(continued on next page) 
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(continued ) 

Set Xts = {Xinitial, Xinitial, … , Xinitial} % Initialize the solution pool Xts with NS identical solutions 
(Xinitial); 

Do while ni < NI 
ni = ni + 1; 
Generate CN Xcurrent’s neighborhood solutions X = {X1, X2,…, XCN}; 
{X(1), X(2),…, X(CN)} = sort(X, ‘descend’); 
If fo(X(1)) > fbest 

Xbest = X(1); 
fbest = fo(X(1)); 

End if 
k = 1; 
Do while X(k)∈ TL 

k = k + 1; 
End do 
Xcurrent = X(k); 
Put X(k) into the tabu list TL; 
j = 1; 
Do while fo(X(j)) > min {fo(Xtsi), Xtsi ∈ Xts} 

Xtsmin = argmin {fo(Xtsi), Xtsi ∈ Xts}; 
Xtsmin = X(j); % Replace the worst solution in Xts with X(j) 
j = j + 1; 

End do 
End do 
Output Xts;   

Algorithm 5. (Main algorithm of SPACL to obtain the mechanism for scheduled service)   

Input XS obtained by Algorithm 3; 
For g ∈ PS 

Ygi = TSg(XSi), for all XSi ∈ XS; %Algorithm 1 
XSg = {Ygi, for all i}; 

End for 
XS0 = {XS, XSg (for all g ∈ PS)}; % Combine all of these solution pools into XS0 
XS0* = argmin fs(XS0i), for all XS0i ∈ XS0; 

Do while XS0*∕∈ XS 
XS = {XS, XS0*}; % Duplicate the best solution XS0* to XS 
For g ∈ PS 

XSg = {XSg, TSg(XS0*)}; % Put the transition solution TSg(XS0*) into XSg 
End for 
XS0* = argmin fs(XS0i), for all XS0i ∈ XS0; 

End do 
For g ∈ PS 

XSg* = argmin fs(XSgi), for all XSgi ∈ XSg; 
psg = ipg(rtg− ) – fs(XSg*) + fs(XS0*); 

End for 
Output the best solution XS0* and prices ps = {ps1, ps2, … , psns};   

Table 15 
Reduced price amount and discount of the maximum price for the scheduled service.  

Simulation examples Average reduced amount ($) Average discount 

S15_O90  1.93  64.1% 
S20_O120  1.50  69.4% 
S25_O150  1.86  62.7% 
S30_O180  2.01  60.8% 
S35_O210  1.87  62.1% 
S40_O240  1.81  62.7% 
S45_O270  1.85  62.5% 
S50_O300  1.96  62.8% 
S55_O330  1.77  63.0% 
S60_O360  1.78  64.2% 
S100_O600  1.87  63.2% 
S110_O660  1.87  63.5% 
S120_O720  1.72  65.2% 
S130_O780  1.74  65.2% 
S140_O840  1.82  63.9% 
S150_O900  1.71  65.4% 
S160_O960  1.80  63.9% 
S170_O1020  1.69  65.0% 
S180_O1080  1.79  64.5% 
S190_O1140  1.74  64.9% 
S200_O1200  1.90  63.4%  
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Algorithm 6. (Main algorithm of SPACL to obtain the mechanism for on-demand service)   

Input Xts obtained by Algorithm 4; 
For g ∈ POts 

Ygi = TOg(Xtsi), for all Xtsi ∈ Xts; %Algorithm 2 
Xtsg = {Ygi, for all i}; 

End for 
Xts0 = {Xts, Xtsg (for all g ∈ POts)};% Combine all of these solution pools into Xts0 
Xts0* = argmax fo(Xts0i), for all Xts0i ∈ Xts0; 
Do while Xts0*∕∈ Xts 

Xts = {Xts, Xts0*}; % Duplicate the best solution Xts0* to Xts 
For g ∈ POts 

Xtsg = {Xtsg, TOg(Xts0*)}; % Put the transition solution TOg(Xts0*) in Xtsg 
End for 
Xts0* = argmax fo(Xts0i), for all Xts0i ∈ Xts0; 

End do 
For g ∈ POts 

Xtsg* = argmax fo(Xtsgi), for all Xtsgi ∈ Xtsg; 
pog = fo(Xtsg*) – fo(Xts0*) + VAg(Xts0*); 

End for 
Output the best solution Xts0* and prices po = {pog, for all g ∈ POts};   

Table 16a 
Value (maximum WTP price) assuming that the truthful maximum WTP price of a passenger is $3.00 and the tolerable number of shared riders is 1.  

αi
p (dollars) Value (maximum WTP price) (dollars) 

αi
NR = 0 (misreport) αi

NR ¼ 1 (truthful report) αi
NR = 2 (misreport) αi

NR = 3 (misreport) 

2.3 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.4 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.5 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (number of shared riders 

= 2) 
0.00 (number of shared riders 
= 2) 

2.6 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

2.7 (misreport) 0.00 (not served) 3.00 (number of shared riders =
1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

2.8 (misreport) 0.00 (not served) 3.00 (number of shared riders =
1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

2.9 (misreport) 0.00 (not served) 3.00 (number of shared riders =
1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

3.0 (truthful 
report) 

3.00 (number of shared riders 
= 0) 

3.00 (number of shared riders 
¼ 1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

3.1 (misreport) 3.00 (number of shared riders 
= 0) 

3.00 (number of shared riders =
1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

3.2 (misreport) 3.00 (number of shared riders 
= 0) 

3.00 (number of shared riders =
1) 

0.00 (number of shared riders 
= 2) 

0.00 (number of shared riders 
= 2) 

αi
NR: the passenger’s reported maximum tolerable number of shared riders. 

αi
p: the passenger’s reported maximum WTP price if served. 

Table 16b 
Paid price.  

αi
p (dollars) Actual paid price (dollars) 

αi
NR = 0 (misreport) αi

NR ¼ 1 (truthful report) αi
NR = 2 (misreport) αi

NR = 3 (misreport) 

2.3 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.4 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.5 (misreport) 0.00 (not served) 0.00 (not served) 2.46 (served) 2.46 (served) 
2.6 (misreport) 0.00 (not served) 0.00 (not served) 2.46 (served) 2.46 (served) 
2.7 (misreport) 0.00 (not served) 2.65 (served) 2.46 (served) 2.46 (served) 
2.8 (misreport) 0.00 (not served) 2.65 (served) 2.46 (served) 2.46 (served) 
2.9 (misreport) 0.00 (not served) 2.65 (served) 2.46 (served) 2.46 (served) 
3.0 (truthful report) 2.95 (served) 2.65 (served) 2.46 (served) 2.46 (served) 
3.1 (misreport) 2.95 (served) 2.65 (served) 2.46 (served) 2.46 (served) 
3.2 (misreport) 2.95 (served) 2.65 (served) 2.46 (served) 2.46 (served) 

αi
NR: the passenger’s reported maximum tolerable number of shared riders. 

αi
p: the passenger’s reported maximum WTP price if served. 

Z. Bian et al.                                                                                                                                                                                                            



Transportation Research Part C 138 (2022) 103585

41

Appendix D. Scheduled service discount 

See Table 15. 

Appendix E. Preference-based incentive compatibility demonstration 

How can an exact algorithm hold “preference-based incentive compatibility”? 

Table 16c 
Utility (value – paid price).  

αi
p (dollars) Utility (value – paid price) (dollars) 

αi
NR = 0 (misreport) αi

NR ¼ 1 (truthful report) αi
NR = 2 (misreport) αi

NR = 3 (misreport) 

2.3 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.4 (misreport) 0.00 (not served) 0.00 (not served) 0.00 (not served) 0.00 (not served) 
2.5 (misreport) 0.00 (not served) 0.00 (not served) − 2.46 (mobility preferences not 

satisfied) 
− 2.46 (mobility preferences not 
satisfied) 

2.6 (misreport) 0.00 (not served) 0.00 (not served) − 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

2.7 (misreport) 0.00 (not served) 0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

2.8 (misreport) 0.00 (not served) 0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

2.9 (misreport) 0.00 (not served) 0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

3.0 (truthful 
report) 

0.05 (mobility preferences 
satisfied) 

0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

3.1 (misreport) 0.05 (mobility preferences 
satisfied) 

0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

3.2 (misreport) 0.05 (mobility preferences 
satisfied) 

0.35 (mobility preferences 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

− 2.46 (mobility preferences not 
satisfied) 

αi
NR: the passenger’s reported maximum tolerable number of shared riders 

αi
p: the passenger’s reported maximum WTP price if served 

Table 17a 
Results of SPACL upon misreporting maximum WTP price.  

Reported maximum WTP price Request is rejected The passenger is served 

Utility decreases Utility does not change Utility increases 

Misreport to $8 Frequency out of 100 simulations 76 20 4 0 
Average utility change (dollars) − 9 0.204 0 0 

Misreport to $10 Frequency out of 100 simulations 0 89 10 1 
Average utility change (dollars) − 9 − 0.264 0 0.068  

Table 17b 
Results of SPACL upon misreporting maximum tolerable shared riders.  

Reported maximum tolerable shared riders Request is 
rejected 

The passenger is served 

Mobility preference is not 
satisfied 

Mobility preference is satisfied 

Utility 
decreases 

Utility does not 
change 

Utility 
increases 

Misreport to 
0 

Frequency out of 100 
simulations 

100 0 0 0 0 

Average utility change 
(dollars) 

− 9 0 0 0 0 

Misreport to 
2 

Frequency out of 100 
simulations 

0 91 9 0 0 

Average utility change 
(dollars) 

0 − 5.939 − 0.172 0 0  

Z. Bian et al.                                                                                                                                                                                                            



Transportation Research Part C 138 (2022) 103585

42

We select a passenger in the numerical example to demonstrate that misreporting certain preferences will not increase the pas-
sengers’ utilities if the mechanism is obtained by an exact algorithm. We assume that this passenger may misreport maximum tolerable 
number of shared riders (αi

NR) and/or maximum WTP price (αi
p). His truthful maximum tolerable number of shared riders is 1 and 

truthful maximum WTP price is $3.00. The following three tables present the mechanism results based on his reported αi
NR and αi

p. 
Table 16a is the passenger’s value, which is the maximum WTP price depending on whether he is served and whether the mobility 

preference is satisfied. If the passenger is severed and the mobility preference is satisfied (here, the maximum tolerable number of 
shared riders is not exceeded), his maximum WTP price is $3.00; otherwise, his maximum WTP price is $0.00. 

Table 16b is the passenger’s actual paid price. If the passenger is served, he will be charged with a positive price; otherwise, the 
price is naturally $0.00. 

Table 16c presents the passenger’s utility given different combinations of reported αi
NR and αi

p. We can observe that truthful 
reporting can achieve the largest utility $0.35, and misreporting will never increase the utility. If the passenger misreports a lower 
maximum WTP price (αi

p), the passenger may be rejected to take the service, while if he is still served, the price will never be reduced. 
If the passenger misreports that he does not want to share the trip with any other rider, the paid price increases from $2.65 to $2.95, 
and thus this utility decreases from $0.35 to $0.05. If the passenger misreports that he could share the ride with 2 or 3 passengers, then 
he will share the trip with 2 passengers but his actual tolerable number of shared riders is “1”. Thus, the mobility preference is not 
satisfied and his maximum WTP price is deemed as $0.00. However, he still needs to pay a positive price $2.46, and thus his utility 
becomes negative. Misreporting other mobility preferences, such as the latest arrival time and maximum tolerable detour time have the 
same results. Based on the discussion above, it is demonstrated that falsifying certain preference will not increase passengers’ utilities. 

How much does SPACL sacrifice the property “preference-based incentive compatibility”? 
We also select a passenger in a numerical example (S100_O600) to quantify how much SPACL could sacrifice the property 

“preference-based incentive compatibility” and how SPACL prevents passengers from manipulating the mechanism. In this example, 
the passenger’ true maximum WTP price is $9.00 and true maximum tolerable number of shared riders is 1. We then assume that this 
passenger misreports the maximum WTP price to $8 and $10 or misreports the maximum tolerable number of shared riders to 0 and 2. 
SPACL is used to obtain the mechanism results for 100 replicated simulations. We record the frequency when the utility increases due 
to misreport. The results are presented in Tables 17a and 17b. 

If the passenger misreports the maximum WTP price to $10, the passenger gains larger utility for only once out of the 100 sim-
ulations. Also, if the passenger misreports the maximum WTP price to $8 or misreports the maximum tolerable number of shared riders 
to 0 and 2, we do not observe any times when the passenger’s utility increases. Table 17c presents the average change of the utility for 
the 100 simulation replications when the passenger adopts the four misreporting strategies. We can observe that the four misreporting 
strategies all lead to utility decrease compared with the strategy of truthful reporting. This indicates that even if SPACL does not hold 
“preference-based incentive compatibility”, passengers cannot anticipate the results upon misreporting the mobility preferences and 
thus cannot learn to manipulate the mechanism. 
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