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a b s t r a c t 

Ridesharing provides travelers with a low-cost and convenient first-mile mobility service. 

Our Part I paper designed a mechanism to incentivize more travelers to participate in the 

first-mile ridesharing service accounting for passengers’ personalized requirements on in- 

convenience attributes of ridesharing. In order to address the computational challenge of 

obtaining the mechanism for large-scale transportation networks, this paper develops a 

novel heuristic algorithm, called the Solution Pooling Approach (SPA) for efficiently solving 

large-scale mechanism design problems in the first-mile ridesharing context. This paper 

also extends the SPA to solve generalized mechanism design problems, analyzes specific 

circumstances under which the SPA can sustain the game-theoretic properties, including 

“individual rationality” and “incentive compatibility”, and identifies its limitations. For the 

particular application in first-mile ridesharing, the SPA maintains the properties of “indi- 

vidual rationality” and “incentive compatibility”. Numerical experimental results show that 

the SPA can address the complex first-mile ridesharing service mechanism design problem 

in a computationally viable and efficient manner. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

1. Introduction 

Americans take 11 billion trips annually on public transportation, a 40% increase since 1995 ( American Public Transporta-

tion Association, 2016 ). The American public transportation industry faces an ongoing challenge – transit hub accessibility.

This challenge is also known as the “first mile ” bottleneck. Several studies have found that travelers’ choice of public trans-

portation is significantly hindered by the accessibility to transit hubs ( Krygsman et al., 2004; Rietveld, 20 0 0 ). Ridesharing

provides travelers with a low-cost and convenient mobility service, and can reduce congestion on roads, emissions, and

parking demands ( Furuhata et al., 2013; Cici et al., 2014; Kuhr et al., 2017 ). Thus, ridesharing is a potential solution to ad-

dress first-mile transit accessibility ( Lesh, 2013; Shaheen and Chan, 2016; Alemi and Rodier, 2016; Masoud et al., 2017a; Bian

and Liu, 2017 ). 

In order to incentivize more travelers to participate in the first-mile ridesharing service, our Part I paper proposed an

incentive mechanism based on passengers’ personalized requirements on inconvenience attributes, including the number of 

shared co-riders, extra in-vehicle travel time due to detours, and extra waiting time at the transit hub due to early arrival.
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It is proved that the mechanism has the properties of “individual rationality” and “incentive compatibility”, respectively

indicating that passengers’ actual paid prices will never exceed their maximum willing-to-pay prices and that truthfully re-

porting the personalized requirements is passengers’ optimal strategy, if the mechanism is obtained by exact algorithms. The

mechanism needs to solve one optimization problem to obtain the optimal vehicle-passenger matching and vehicle routing

plan, as well as to solve n (the number of requests sent from passengers) different optimization models for calculating n

prices for all passenger requests. All optimization models in the mechanism are extensions of the vehicle routing problem

and thus are NP hard ( Lenstra and Kan, 1981 ), which cannot be solved exactly within polynomial time. Thus, obtaining the

desired mechanism has to address highly challenging computational complexity. Previous studies on truth-inducing mech-

anisms ( Kamar and Horvitz, 2009; Cheng et al., 2014; Zhao et al., 2014; Zhao et al., 2015; Asghari et al., 2016; Asghari

and Shahabi, 2017; Shen et al., 2016; Nguyen, 2013; Zhang et al., 2016; Kleiner et al., 2011; Lloret-Batlle et al., 2017; Masoud

et al., 2017b; Masoud and Lloret-Batlle, 2016; Ma et al., 2018 ) for ridesharing organization have not developed effective solu-

tion algorithms that can handle large-scale, complex, NP-hard, mechanism design models (particularly Vickrey-Clarke-Groves

prices, VCG, Vickrey, 1961; Clarke, 1971; Groves, 1973 ). Thus, this paper aims at addressing the challenging computational

issue of mechanism obtainment. 

When the scale of the problem is large, approximation or heuristic algorithms are more applicable to obtain the

mechanism. However, VCG-based mechanisms obtained by regular approximation or heuristic algorithms may no longer

be able to sustain the game theoretic properties of “individual rationality” and “incentive compatibility” ( Nisan and Ro-

nen, 2007 ); our mechanism is no exception. Several researchers developed some special approximation or heuristic algo-

rithms to maintain “individual rationality” and/or “incentive compatibility” in obtaining their mechanisms. For example,

Lehmann et al. (2002) proposed an approximately efficient mechanism for combinatorial auctions using a greedy algorithm;

Mu’Alem and Nisan (2008) , Parkes and Ungar (2001) and Dobzinski et al. (2010) developed approximation mechanisms

that are incentive compatible for combinatorial auctions; Nisan and Ronen (2007) proposed a second chance mechanism to

circumvent the problem, upon which participants can do no better than be truthful. Nevertheless, all of the methods are

designed specifically for combinatorial auctions. These algorithms have never been adapted to solve generalized mechanism

design models. 

Based on the discussion of the knowledge gap, this paper contributes to addressing these challenges by developing a

computationally efficient heuristic algorithm called the Solution Pooling Approach (SPA). The application of the SPA is not

limited to the mechanism design problem for first-mile ridesharing, but also can be spread to solve general mechanism

design problems. Firstly, this paper introduces the basic idea of the SPA to solve generalized mechanism design problems,

and analyzes specific circumstances under which the SPA is able to sustain game-theoretic properties, including “individual

rationality” and “incentive compatibility”. The limitations of the SPA are identified: if the SPA needs to sustain “incentive

compatibility”, it may sacrifice solution quality more significantly than traditional heuristic algorithms compared with ex-

act algorithms. Then, this paper designs a specific SPA to obtain the personalized-requirement-based mechanism for the

scheduled first-mile ridesharing service. We prove that the mechanism obtained by the SPA is still “individual rational”

and “incentive compatible”. Moreover, SPA can reduce the computational time by simultaneously handling all models in this

specific mechanism and does not need to solve all NP-hard problems one by one to obtain the mechanism. Numerical exam-

ples show that the SPA is more efficient than commercial solvers (e.g. ANTIGONE) and the conventional heuristic algorithms

(e.g. Hybrid Simulated Annealing–Tabu Search Algorithm and Hybrid Genetic Algorithm) with a minor sacrifice of solution

quality. 

This paper is structured as follows. Section 2 briefly introduces the basic idea of the SPA to solve generalized mechanism

design problems. Section 3 applies the SPA algorithm to solve the mechanism design problem for first-mile ridesharing

based on passengers’ personalized requirements. In Section 4 , numerical examples are provided to verify the effectiveness

of the SPA. Concluding remarks are made in Section 5 . 

2. Basic idea of SPA to solve generalized mechanism design problems 

This section proposes the generalized Solution Pooling Approach (SPA) to obtain results of generalized mechanisms for

large-scale complex problems. This section also presents the basic idea of the SPA as being able to sustain game-theoretic

properties, “individual rationality” and “incentive compatibility”, indicating that the SPA is not limited to the mechanism for

the first-mile ridesharing but can also be adapted to solve other mechanism problems. The detailed design of the SPA for

the specific application in the first-mile ridesharing is presented in Section 3 . 

2.1. Generalized mechanism design problems 

The generalized mechanism design problem can be described by Fig. 1 . The market maker wants to design a mechanism

to incentivize participants’ collaboration to achieve a desirable objective (e.g. minimizing cost and maximizing the social

welfare). Participants are allowed to report their personalized information to the system. Let θ = { θ1 , θ2 , …, θn } denote all

participants’ reported information. Based on participants’ reported information, the mechanism needs to determine a plan

( X = O ( θ )) and an incentive function ( I i ). The plan (e.g. resource allocating plan, vehicle routing plan, matching plan, etc.)

aims to achieve the desirable objective usually by solving an optimization model. We denote this optimization model as

IP . Then the market maker will design an incentive function, which is denoted as p = I ( X, θ ), for individuals’ participation
i i 
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Fig. 1. Generalized mechanism design ( Mishra, 2008 ). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

based on the plan and participants’ reported information. The incentive function has various forms, such as discounts, bonus

points, credits, free service, etc. This paper typically uses customized pricing as an incentive form. 

2.2. A generalized individual rational and incentive compatible mechanism 

In order to achieve the market maker’s objective, the mechanism should 1) ensure that the participants are willing

to collaborate with each other and 2) prevent them from manipulating the mechanism by intentionally misreporting their

personalized information. These two considerations necessitate the properties of “individual rationality” and “incentive com- 

patibility”. “Individual rationality” indicates that the actual paid prices will never exceed participants’ maximum willing-to-

pay prices. “Incentive compatibility” requires that participants’ utilities (defined as the difference between the maximum 

willing-to-pay price and the actual paid price) can be maximized if they truthfully report their personalized information.

This section proposes a generalized individual rational and incentive compatible mechanism. The optimal plan is obtained

by solving the model IP . The pricing framework is calculated by designing and solving a series of models, including one

model IP 0 and n models IP g (corresponding to participant g ). Model IP 0 should be equivalent to the original optimization

model IP and thus the optimal solutions of models IP and IP 0 are identical. Models IP g are used to calculate the prices only

and do not have practical meaning. Both models IP 0 and IP g use participants’ reported information ( θ ) as input data and

both have maximizing objective functions. Then the pricing scheme is given by 

p g = g( X 

I P g ∗) − ( f ( X 

I P 0 ∗) − V g ( X 

I P 0 ∗)) (1) 

p g is participant g ’s price. X I P g ∗ is the optimal solution of model IP g , and g (.) is the maximizing objective function of the

model. X I P 0 ∗ is the optimal solution of model IP 0 with the maximizing objective function f (.). V g ( X ) is participant g ’s value,

which is defined as participant g ’s maximum willing-to-pay price in this paper, given the plan X . The objective function f (.)

includes summation of all participants’ values. 

f ( X ) = 

∑ 

i ∈ P 
V i (X ) + h (X ) (2) 

where h ( X ) is used to make the model IP 0 equivalent to the original model IP . 

This pricing scheme makes the mechanism “individual rational” if the following condition is always satisfied 

g( X 

I P g ∗) ≤ f ( X 

I P 0 ∗) (3) 

This is because participant g ’s utility is U g = V g ( X 
I P 0 ∗) – p g = f ( X I P 0 ∗) – g ( X I P g ∗) ≥ 0, if the condition above is satisfied. A

direct way of satisfying this condition is to design the model IP g that makes the objective function g ( X ) identical with f ( X )

and to let the feasible regions of models IP g (for each g ) be included in the feasible region of model IP 0 . That is 

g ( X ) = f ( X ) (4) 

C S I P g ⊆ C S I P 0 (5) 

where C S I P g and C S I P 0 are the feasible regions of models IP g and IP 0 , respectively. 

If model IP g is independent of participant g ’s report, then the mechanism is “incentive compatible”. 

If participant g misreports her personalized information, then we assume that the optimal solution of model IP 0 changes

from X I P 0 ∗ to Y I P 0 ∗, g ( X I P g ∗) remains constant because g ( X I P g ∗) is independent of participant g ’s report, and f ( X I P 0 ∗) changes

to 

f ′ ( Y I P 0 ∗) = 

∑ 

i ∈ P,i � = g 
V i ( Y 

I P 0 ∗) + V 

′ 
g ( Y 

I P 0 ∗) + h ( Y I P 0 ∗) 
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Then, the price becomes 

p ′ g = g( X 

I P g ∗) −
(

f ′ ( Y I P 0 ∗) − V 

′ 
g ( Y 

I P 0 ∗) 
)

= g( X 

I P g ∗) −
( ∑ 

i ∈ P,i � = g 
V i ( Y 

I P 0 ∗) + h ( Y I P 0 ∗) 

) 

Then participant g ’s utility becomes 

U 

′ 
g = V g ( Y 

I P 0 ∗) − p ′ g = 

( ∑ 

i ∈ P 
V i ( Y 

I P 0 ∗) + h ( Y I P 0 ∗) 

) 

− g( X 

I P g ∗) = f ( Y I P 0 ∗) − g( X 

I P g ∗) 

Y I P 0 ∗ may no longer be optimal for model IP 0 , indicating that the objective function of model IP 0 , f (.), will suffer from a

decrease caused by her misreporting. Thus, her utility U g = f ( X I P 0 ∗) − g( X I P g ∗) may decrease as well if she misreports her

personalized information. Therefore, truthful reporting is participants’ optimal strategy: 

U 

′ 
g = f ( Y I P 0 ∗) − g( X 

I P g ∗) ≤ f ( X 

I P 0 ∗) − g( X 

I P g ∗) = U g (6)

The famous Vickrey-Clarke-Groves ( Vickrey, 1961; Clarke, 1971; Groves, 1973 ) mechanism, which is widely applied in

various research fields ( Friedman and Parkes, 2003; Kamar and Horvitz, 2009; Samadi et al., 2012 , etc.), belongs to this

category and thus has the properties of “individual rationality” and “incentive compatibility”. 

2.3. SPA to the individual rational and incentive compatible mechanism 

If the optimization models in the mechanism are NP hard, they are difficult to be solved exactly within a reasonable

time when the problem scale is large. Many researchers ( Wang et al., 2016; Lin et al., 2016; Gupta et al., 2017; Chao et al.,

2017 , etc.) have sought heuristic or approximation algorithms to find a high-quality solution to their optimization problems

instead of an exact one. However, applying traditional heuristic or approximation algorithms may lose the properties of

“individual rationality” and “incentive compatibility”. Let us return to the generalized mechanism in Section 2.2 . The mech-

anism is “individual rational” if the condition g( X I P ε 
∗
) ≤ f ( X I P 0 ∗) (Formula (3) ) is always satisfied. However, if the solution

X I P 0 ∗ is obtained by a heuristic or approximation algorithm, the optimality of X I P 0 ∗ cannot necessarily be guaranteed, and

thus it is possible that f ( X I P 0 ∗) ≤ g( X I P g ∗) and U g < 0 . The property “individual rationality” is thus possibly violated. Similarly,

the mechanism obtained by heuristic or approximation algorithms may not be incentive compatible as well. Suppose that

X I P 0 ∗ is the optimal solution of model IP 0 if participant g truthfully reports his personalized information and the solution

becomes Y I P 0 ∗ (not necessarily optimal) if participant g misreports the information. If heuristic or approximation algorithms

are used to solve the model, it is possible that f ( Y I P 0 ∗) > f ( X I P 0 ∗) , because the optimality of X I P 0 ∗ cannot be guaranteed.

Thus, implied from Formula (6) , participants’ utilities may not be maximized even though they tell the truth. Similar con-

clusions have already been drawn by other researchers ( Mu’Alem and Nisan, 2008; Parkes and Ungar, 2001; Dobzinski et al.,

2010; Nisan and Ronen, 2007 ). 

Therefore, this paper proposes a special heuristic algorithm, namely the Solution Pooling Approach (SPA), to obtain the

mechanism, sustaining the properties of “individual rationality” and “incentive compatibility” under specific circumstances.

The SPA was inspired by the work of Bent and Hentenryck’s (2004) multiple plan approach and Gendreau et al.’s (1999) tabu

search algorithm organized around multiple solutions and an adaptive memory. The basic idea of the SPA can be described

as follows. Firstly, the algorithm generates high-quality solutions of models IP 0 and IP g (for all participants g ) as solution

pools. Then, the solutions of corresponding models with the highest qualities are selected from the solution pools. Let

X poo l I P 0 and X poo l I P g denote the solution pools of model IP 0 and IP g , respectively. Let X I P 0 ∗ and X I P g ∗ denote the optimal

solutions in the pools X poo l I P 0 and X poo l I P g , respectively. Then, X I P 0 ∗ is adopted as the matching and routing plan, and the

pricing scheme still adopts Formula (1) . 

When generating solution pools, if the condition g ( X I P g ∗) ≤ f ( X I P 0 ∗) (Formula (3) ) is still satisfied, the mechanism is “indi-

vidual rational”. If we use Formulas (4) and (5) to satisfy Formula (3) , the SPA can easily guarantee “individual rationality”.

Since the feasible regions of models IP g (for all g ) are included in the feasible region of model IP 0 , feasible solutions of

model IP g are feasible for model IP 0 as well. Solutions in pools X poo l I P g can be integrated into the solution pool X poo l I P 0 .

After the algorithm generates all of the solution pools X poo l I P g , all solutions in each pool X poo l I P g are combined into the so-

lution pool X poo l I P 0 (i.e. X poo l I P g ⊂ X poo l I P 0 , for any g ). Then, the optimal solution ( X I P 0 ∗) is selected from X poo l I P 0 , and each

X I P g ∗ is selected from X poo l I P g . Since we have X I P g ∗ ∈ X poo l I P g ⊂ X poo l I P 0 and X I P 0 ∗ is the optimal solution in X poo l I P 0 with

maximized objective f (.), f ( X I P g ∗) ≤ f ( X I P 0 ∗). Based on Formula (4) , g ( X I P g ∗) = f ( X I P g ∗) ≤ f ( X I P 0 ∗), and then “individual rationality”

can be guaranteed. 

The property “incentive compatibility” is naturally guaranteed as long as the generation of X poo l I P g (for each g ) is inde-

pendent of participant g ’s report and the X poo l I P 0 is pre-generated before participants’ personalized information is revealed.

If each X poo l I P g is independent of participant g ’s report, g ( X I P g ∗) in Formula (6) remains constant regardless of participant

g ’s report. Moreover, both X I P 0 ∗ and Y I P 0 ∗ in Formula (6) are selected from the pre-generated pool X poo l I P 0 . Since X I P 0 ∗ is the

optimal solution in X poo l I P 0 while Y I P 0 ∗ is not necessarily the optimal in X poo l I P 0 , f ( Y I P 0 ∗) ≤ f ( X I P 0 ∗) in Formula (6) can always

be satisfied. Thus, the mechanism obtained by the SPA is incentive compatible. 

The SPA is an efficient heuristic algorithm that can sustain the properties of “individual rationality” and “incentive com-

patibility” under the specific circumstances analyzed above, but it still has limitations. The SPA needs to pre-generate the
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Table 1 

Mathematical models for obtainment of the mechanism. 

Model denotations Objective functions Constraints Optimal solution Optimal objective function value 

IP 0 f ( X ): Formula (A2) Max Z 0 ( X ) C S I P 0 Formulas (A3) –(A12) X I P 0 ∗ Z ∗I P 0 
IP g for all g ∈ P g ( X ): Formula (A2) Max Z 0 ( X ) C S I P g Formulas (A3) –(A13) X I P g ∗ Z ∗I P g 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

solution pools for models IP 0 and IP g before participants report their personalized information in order to sustain “incentive

compatibility”, leading to a potential sacrifice of solution quality. The SPA has to significantly increase the number of solu-

tions in the pool in order to improve the solution quality, but this will consume more computer memory. In Section 4 , our

numerical examples are designed to test how much the SPA will sacrifice the solution quality in obtaining the mechanism

for first-mile ridesharing service. 

3. Application of SPA to solve the mechanism design problem for first-mile ridesharing 

This section details the SPA to the specific mechanism for the scheduled first-mile ridesharing service proposed in our

Part I paper. 

3.1. Mechanism design problem for first-mile ridesharing based on personalized requirements 

This subsection reviews the personalized-requirement-based mechanism design problem for a first-mile ridesharing ser- 

vice. Passengers near the transit hub book the first-mile ridesharing service in advance. The service provider dispatches a

fleet of vehicles to execute the pickup and drop-off tasks. Each request specifies a deadline before which passenger(s) must

arrive at the transit hub. In addition to the passengers’ pickup locations and the arrival deadlines, passengers are allowed to

report their personalized requirements on three inconvenience factors: the number of co-riders, extra in-vehicle travel time,

and extra waiting time at the transit hub. Before vehicles are dispatched, the system will determine an optimal vehicle-

passenger matching and vehicle routing plan X 

∗ and all passengers’ customized prices p = { p 1 , p 2 , …, p n }, which form the

mechanism M ( X 

∗, p ). The optimal matching and routing plan X 

∗ is obtained by solving an optimization model (denoted

as IP ) with the objective of minimizing passengers’ inconvenience cost and the service provider’s transportation cost. The

model IP is the formulated by Formulas ( A .1 , A .3 –A .12 ) in Appendix A . The pricing scheme is obtained by solving a series

of optimization models, including one model IP 0 and n models IP g for all g ∈ P , which are summarized in Table 1 . For the

notations and formulas, please refer to Appendix A . 

Note that model IP 0 is equivalent to model IP , and thus the optimal solutions of models IP 0 and IP are identi-

cal ( X I P 0 ∗ = X 

∗). The mechanism is denoted as M( X I P 0 ∗, p ) , where X I P 0 ∗ represents the optimal vehicle-passenger matching

and routing plan, and passengers’ prices p = { p 1 , p 2 ,..., p n } are calculated by 

p g = Z ∗I P g −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

(7) 

Note that models IP 0 and IP g have identical objective functions, and that the feasible region of model IP g is included in

the feasible region of model IP 0 because model IP g has an additional constraint (Formula A.13 ) compared with model IP 0 .

Thus, the mechanism is “individual rational” based on Formulas (4) and (5) . Moreover, the optimal solution is independent

of passenger(s) g ’s report of the parameters of αg 
NR , αg 

IVT , and αg 
WT (see notations in Appendix A ) because passenger(s) g ’s

inconvenience cost is zero and the value is a constant ( V 
g 
max ) if the passenger(s) is transported to the transit hub directly

without shared riders, no matter what values of αg 
NR , αg 

IVT , and αg 
WT the passenger(s) reports. Thus, the mechanism is

“incentive compatible”. For detailed proof of these two properties, please refer to our Part I paper. 

3.2. Identified challenges to obtain the mechanism 

The optimization models in the mechanism, including IP 0 and IP g ( g ∈ P ), are extensions of the classical vehicle routing

problem and thus are NP hard ( Lenstra and Kan, 1981 ). When the scale of the problem is large, exact algorithms face

difficulty in obtaining the optimal solution within a reasonable time. Heuristic algorithms are more applicable for large-

scale problems. When passengers send n requests, the mechanism M( X I P 0 ∗, p ) includes n + 1 NP hard optimization models,

including one optimization model IP 0 used to determine the optimal vehicle-passenger matching and vehicle routing plan

X I P 0 ∗ and n optimization models IP g ( g = 1, 2, …, n ) that are used to calculate all prices. Regular heuristic algorithms (e.g.

Simulated Annealing and Genetic Algorithm) are still time-consuming in solving these models one by one. Moreover, as

analyzed in Section 2.3 , if traditional heuristic algorithms are used to obtain the mechanism M( X I P 0 ∗, p ) , the properties

of “individual rationality” and “incentive compatibility” are not necessarily guaranteed. To overcome these challenges, we 

implement the SPA to obtain the mechanism M( X I P 0 ∗, p ) . 

3.3. SPA to the first-mile ridesharing mechanism 

The generation of X poo l I P 0 and X poo l I P g can be described as follows. First, the SPA generates an initial solution pool in

which all solutions are feasible for the optimization model IP (see Algorithm 1 ). We denote it as Xpool . Then solution
0 
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pools of models IP g ( g = 1, 2, …, n ) are obtained based on Xpool . We design a transition solution generation algorithm (see

Algorithm 2 ) to generate solution pools X poo l I P g of models IP g . All solutions in X poo l I P g for all g = 1, 2, …, n are combined into

the initial pool Xpool , and a new solution pool X poo l I P 0 of model IP 0 is generated. Finally, the optimal solutions are selected

from corresponding solution pools X poo l I P 0 and X poo l I P g . The matching and routing plan adopts the optimal solution selected

from the pool X poo l I P 0 . All passengers’ prices are calculated based on Formula (7) . 

The initial solution pool Xpool should be pre-generated and passengers’ reported personalized requirements ( αi 
NR , αi 

IVT ,

and αi 
WT ) on the three inconvenience attributes do not influence the generation of the solution pool so that the mechanism

obtained by the SPA is still incentive compatible (please refer to the proof of the incentive compatibility proposition of

the SPA in Section 3.4 ). Thus, we propose two strategies to improve the quality of the solution selected from the obtained

solution pool of IP 0 : 1) generate a large enough number of solutions in the solution pool Xpool and select the best solutions

from the pool; 2) randomly and periodically simulate virtual personalized requirements parameters ( αi 
NR , αi 

IVT , and αi 
WT )

that are used to direct the generation of solutions in a wide range and thereby guarantee the quality of the optimal solution.

A meta-heuristic algorithm, tabu search (TS) plays the role of solution generator. TS is able to avoid repeated generation of

identical solutions using a memory function ( Gendreau et al., 1994 ). Algorithm 1 gives the pseudocode of the solution pool

generation algorithm. 

Then we introduce the definition of the “transition solution”, which is also defined in our Part I paper. The “transition

solution” will be used to obtain solution pools X poo l I P g of model IP g for all g = 1, 2, …, n in the SPA algorithm. Let Y g = TRS g ( X )

be the g th transition solution from a feasible solution X of the model IP 0 . The transition process is generated as follows. Let

passenger(s) g go to the transit hub directly without any other shared riders, and let the broken routes re-connect. In Y g ,

since passenger(s) g is transported to the transit hub directly without shared riders, Formula ( A.13 ) is satisfied and Y g is a

feasible solution of model IP g . 

Fig. 2 shows an example of transition solution generation. Algorithm 2 shows how to get the transition solution. 

Algorithm 2 is used to get the g th transition solution Y i 
g of each X i ∈ Xpool: Y i 

g = TRS g ( X i ). Since Y i 
g (for all i ) are all

feasible to model IP g , the solution pool X poo l I P g consists of all Y i 
g . 
Algorithm 1 Generation of solution pool Xpool . 
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Algorithm 2 Obtain the transition solutions Y g = TRS g ( X ) and calculate the objective function Z 0 ( Y g ). 

Fig. 2. Example of the transition solution. 

 

 

 

 

Algorithm 3 is then developed to get the mechanism, including the optimal matching and routing plan and all passengers’

prices. Fig. 3 is the flow chart of the SPA, which indicates that the SPA can simultaneously handle all NP-hard models in the

mechanism and does not need to solve them one by one. 

3.4. Theoretical analysis of SPA 

The propositions of this mechanism, including “individual rationality” and “incentive compatibility”, are still valid if the

SPA is used to obtain the mechanism M( X I P 0 ∗, p ) . Before giving the proof of the propositions, we re-formulate the problems

based on the SPA. 
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In Algorithm 3 , X I P 0 ∗ is the optimal solution selected from the solution pool X pool I P 0 , and thus X I P 0 ∗ is also the optimal

solution of the optimization model below (Formulas (8) and (9) ). We denote this model as IPpool 0 . 

Z ∗I P 0 = max Z 0 (X ) (8)

Subject to, 

X ∈ X poo l I P 0 (9)

Similarly, X I P g ∗ is the optimal solution of the optimization model below, which is used for calculation of passenger(s) g ’s

customized price. We denote this model as IPpool g (Formulas (10) and (11) ) 

Z ∗I P g = max Z 0 ( X ) (10)

Subject to, 

X ∈ X poo l I P g (11)

Proposition 1. Individual Rationality 

If X I P 0 ∗ and X I P g ∗ are the optimal solutions of IPpool 0 and IPpool g , respectively, the mechanism M( X I P 0 ∗, p ) is individual

rational, i.e. the utility 

U g 

(
X 

I P 0 ∗, p g 
)

= V g 

(
X 

I P 0 ∗
)

− p g ≥ 0 , for any g ∈ P (12)
Algorithm 3 SPA to the mechanism. 
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Fig. 3. Flow chart of SPA in obtaining the mechanism. 

 

 

 

 

 

 

 

 

 

Proof. X I P 0 ∗ is the optimal solution of the model IPpool 0 , and thus Z 0 ( X 
I P 0 ∗) ≥ Z 0 (X ) for any X ∈ X poo l I P 0 . Since X I P g ∗ ∈

X poo l I P g ⊆ X poo l I P 0 , X I P g ∗ is a feasible solution of IPpool 0 . Thus Z 0 ( X 
I P 0 ∗) ≥ Z 0 ( X 

I P g ∗) . 

U g 

(
X 

I P 0 ∗, p g 
)

= V g 

(
X 

I P 0 ∗
)

− p g 

= V g 

(
X 

I P 0 ∗
)

− Z 0 
(
X 

I P g ∗
)

+ 

(
Z 0 

(
X 

I P 0 ∗
)

− V g 

(
X 

I P 0 ∗
))

= Z 
(
X 

I P 0 ∗
)

− Z 0 
(
X 

I P g ∗
)

≥ 0 

This suggests that the participants can always receive non-negative utility from the first-mile ridesharing service. �

Proposition 2. Incentive Compatibility 

The mechanism M( X I P 0 ∗, p ) is incentive compatible if the optimal matching and routing plan X I P 0 ∗ and the prices p are

obtained by the SPA. 

Proof. We assume that passenger(s) g misreports the parameters (personalized requirements, denoted as θ g ) in the value

function. 

We define V g 
′ (X ) = V 

g 
max − C ICN (NR g (X ) , IV T g (X ) , W T g (X ) , θ ′ 

g ) regardless of other passengers’ reporting strategies, where θ ′ 
g 

is the set of passenger(s) g ’s misreported values in θ g . 

Since X poo l I P 0 and X poo l I P g are all generated independently on all passengers’ reports of their personalized requirements, 

the solution pools X poo l I P 0 and X poo l I P g remain constant no matter how passengers report their requirements. Thus, the 

constraints of IPpool 0 and IPpool g remain constant regardless of passengers’ reporting strategies. If passenger(s) g misreports

the requirements, the optimization model IPpool 0 becomes IPpool 0 
′ : 

Z ∗
I P 0 

′ = max Z 0 
′ (X ) = 

∑ 

i ∈ P,i � = g 
V i ( X ) + V g 

′ 
( X ) − T C(X ) , s.t.X ∈ X poo l I P 0 

Other passengers’ values are calculated based on their actual report of personalized requirements regardless of the truth-

fulness. The optimal solution (denoted by X I P 0 
′ ∗) of IPpool 0 

′ is still feasible for IPpool 0 . We have Z 0 ( X 
I P 0 ∗) ≥ Z 0 ( X 

I P 0 
′ ∗) because

X I P 0 ∗ is the optimal solution of IPpool 0 and X I P 0 
′ ∗ is a feasible solution of IPpool 0 . Moreover, the model IPpool g never changes,

no matter what passenger(s) g reports. This is because 1) the constraints of IPpool g remains constant no matter how pas-

sengers report their requirements and 2) the objective function value is independent of passenger(s) g ’s report. Thus pas-

senger(s) g ’s price is 

p g 
′ = Z ∗I P g −

(
Z ∗

I P 0 
′ − V g 

′ 
(

X 

I P 0 
′ ∗
))
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The utility that passenger(s) g can receive is: 

U g 

(
X 

I P 0 
′ ∗, p g ′ 

)
= V g 

(
X 

I P 0 
′ ∗) − p g 

′ 

= V g 

(
X 

I P 0 
′ ∗) −

(
Z ∗I P g −

(
Z ∗

I P 0 
′ − V g 

′ (X 

I P 0 
′ ∗)))

= V g 

(
X 

I P 0 
′ ∗) −

(
Z ∗I P g −

( ∑ 

i ∈ P,i � = g 
V i 

(
X 

I P 0 
′ ∗) + V g 

′ (X 

I P 0 
′ ∗) − T C 

(
X 

I P 0 
′ ∗) − V g 

′ (X 

I P 0 
′ ∗)))

= 

∑ 

i ∈ P 
V i 

(
X 

I P 0 
′ ∗) − T C 

(
X 

I P 0 
′ ∗) − Z ∗I P g 

= Z 0 
(
X 

I P 0 
′ ∗) − Z ∗I P g 

≤ Z 0 
(
X 

I P 0 ∗
)

− Z ∗I P g 
= U g 

(
X 

I P 0 ∗, p g 
)

which indicates that the passenger receives the largest utility when telling the truth regardless of other passengers’ reporting

strategies. Therefore the mechanism is incentive compatible. �
Note that it is very difficult to develop approximate or heuristic algorithms to simultaneously guarantee “price non-

negativity” as well as “individual rationality” and “incentive compatibility”. The SPA algorithm is proven to be individual

rational and incentive compatible, but it may not guarantee the property of “price non-negativity”. However, the numerical

experimental results in Section 4 show that the SPA never obtains negative prices. 

4. Numerical experiment 

4.1. Design of numerical examples 

In our Part I paper, we developed a case study to interpret the results of the mechanism. However, it does not have

generality because it only contains two specific scenarios, in which passengers have two different reporting methods and

two types of value functions. Moreover, the scale of the problem in the case study is small: only ten passenger requests

are involved. Thus it is not possible to test the effectiveness of the proposed algorithm in obtaining the large-scale gener-

alized mechanism. In this paper, we develop thirteen numerical examples to test the proposed algorithm in obtaining the

mechanism M( X I P 0 ∗, p ) . In order to show the trend of experimental results with the scale of problems increasing, the num-

ber of passenger requests involved in the system increases from 4 to 52 by the interval of 4. Both horizontal and vertical

coordinates ( x i , y i ) of all passenger locations in numerical examples are generated uniformly from the interval [6, 12]. All

coordinates of the transit hubs are set to be (9, 9), approximately located in the center of all passengers. For convenience but

without losing generality, the transportation cost between two locations is proportional to the Euclidean distance: c ij = 2 d ij ,

where d ij is the distance between two locations. We determine that V i max = 3 + 3 d i 0 . The traveling time between two loca-

tions is not necessarily proportional to the distance. Thus, we use a different method to generate the travel time between

two locations. Virtual coordinates ( xv i , yv i ) of locations are generated, which satisfy: xv i = x i + ε and yv i = y i + ε . ε is normally

distributed with the mean of “0” and variance of “0.1”. ε is randomly generated by the computer. The travel time between

i and j is set to be t i j = 3 

√ 

( x v i − x v j ) 
2 + ( y v i − y v j ) 

2 
. 

Passengers’ personalized requirements ( αi 
NR , αi 

IVT , and αi 
WT , in any form) on the three inconvenience attributes can

be processed into an interval [0, 1], representing the strictness of the requirements. Since the passengers’ personalized

requirements are processed, we cannot use the value functions proposed in our Part I paper because the values of αi 
NR ,

αi 
IVT , and αi 

WT are no longer compatible with the value functions in the Part I paper. Thus, we propose another illustrative

value function (Formula (13) ), which is compatible with the processed values of αi 
NR , αi 

IVT , and αi 
WT , and will be used in

numerical examples to test the algorithm. 

V i = V 

i 
max −

(
αNR 

i 
N R i 

Q − n p i 
+ 

αIV T 
i ( IV T i − t i 0 ) 

t i 0 
+ 

αW T 
i 

W T i 

MD 

)(
V 

i 
max − c i 0 

2 

)
(13)

MD is the maximum difference among passengers’ arrival deadlines. Here MD = max 
i, j∈ P 

( D L i − D L j ) = 15, indicating that we

only optimize the matching and routing plan connecting to train schedules in which differences in passengers’ arrival dead-

lines do not exceed 15 min. We set the default values of αi 
NR , αi 

IVT , and αi 
WT to 0.1. In other words, if the passengers do not

report their requirements, the system will adopt the default values. We set half of the values αi 
NR , αi 

IVT , and αi 
WT to 0.1 as

the default values, indicating that half of passengers do not open the interface to place stricter personalized requirements

for the ridesharing service. The other half of the values αi 
NR , αi 

IVT , and αi 
WT are randomly generated from the uniform dis-

tribution interval [0, 1]. Formula (13) builds on the assumption that passengers are willing to pay a price at least equal to

the minimum transportation cost ( c i 0 ) if they are transported to the transit hub within the minimum travel time t i 0 ( V i ≥ c i 0 ,

if IVT i = t i 0 ). This is a reasonable assumption because if passengers drive themselves to the transit hub, they have to bear

the direct shipment cost ( c i 0 ). Note that we use this hypothetical function just to test the algorithm and the accuracy of

this value function has not been verified through practical survey. We will use another value function, in which passengers’
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attitude towards the price is stricter, in the sensitivity analysis to demonstrate the robustness of the proposed algorithm in

obtaining the mechanism under different conditions. 

4.2. Testing method and criteria 

This subsection compares the solution pooling approach (SPA) with an exact algorithm, commercial solvers, and selected

state-of-the-art heuristic algorithms. We use the enumeration algorithm (EA) as a representative of the exact algorithm to

solve small-scale problems (numerical examples with 4 and 8 passenger requests). Effective exact algorithms (e.g. branch

and bound) are not developed in this paper because they are difficult to adapt to generalized models with different objec-

tive functions. We use seven commercial solvers, ANTIGONE, ALPHAECP, BARON, COUENNE, LINDOGLOBAL, SBB, and SCIP

( https://neos-server.org/neos/solvers/index.html ), which are all able to solve mixed integer non-linear programming (MINLP)

models ( Bussieck and Vigerske, 2010 ) to obtain the mechanism results. For all the solvers, the maximum computing time in

solving one MINLP model is set to 3600 s. Among the seven solvers, ANTIGONE has the highest performance both in terms

of solution quality and computing speed. The possible reason is that ANTIGONE implements a spatial branch-and-bound

algorithm that utilizes MIPs for bounding. The MIP relaxation is generated from a reformulation of the MINLP. It employs a

large collection of convexification and bound tightening techniques ( Bussieck and Vigerske, 2010 ). For conciseness, we select

ANTIGONE to compare with the proposed SPA algorithm, but we attach the results of all seven solvers in Appendix B . Fi-

nally, it is difficult to test all state-of-the-art heuristic algorithms in the literature, but we select two representative heuristic

algorithms for comparison with our proposed SPA. We select Hybrid Simulated Annealing - Tabu Search algorithm (HSATS)

as a representative of local-search-based heuristic algorithms and select Hybrid Genetic and Local Search algorithm (HGLS)

as a representative of swarm evolutionary heuristic algorithms. Both HSATS ( Lin et al., 2016 ) and HGLS ( Wang, 2014 ) are

effective for solving the classic Traveling Salesman Problem (TSP). We modify the mutation structures (e.g. neighborhood

structure and crossover structure) to adapt the algorithms to the first-mile ridesharing matching and routing problem. The

algorithm comparison is based on the following criteria: 

1) Objective function values . We compare the performances of EA, ANTIGONE, HSATS, HGLS, and SPA in terms of the

objective function values of IP 0 for all numerical examples. 

2) Computing time . Computing time is used to measure the efficiency of an algorithm. This paper will compare the com-

puting time of ANTIGONE, HSATS, HGLS, and SPA in solving the optimization model IP 0 and calculating the prices. 

3) Mechanism properties . We will show the reliabilities of these algorithms to sustain two properties “individual rational-

ity” and “price non-negativity”. The property “incentive compatibility” is difficult to test and thus is not included in the

comparison. 

4) Service provider profitability . The experiment results will show if the price collected from passengers can cover the

transportation cost. 

4.3. Running conditions 

The algorithms, EA, HSATS, HGLS, and SPA, are programmed in Matlab R2014a. The commercial solvers are implemented

on the website of NEOS Solvers ( https://neos-server.org/neos/solvers/index.html ). All algorithms are implemented on a Dell

computer with processor Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz and 8GB RAM. 

4.4. Experiment results 

We first compare five solution approaches, EA, ANTIGONE, HSATS, HGLS, and SPA, in terms of objective function values

in solving model IP 0 . Table 2 presents the comparison results. The numerical examples are denoted by “N_x”, where “x” is

number of passenger requests. 

EA is able to solve only two small-scale problems (N_4 and N_8). When the number of passenger requests reaches “12”,

the computer registers a shortage of memory. 

The solver ANTIGONE can return a solution, not necessarily optimal, within one hour (3600 s) for numerical examples

with the numbers of passengers ranging from 4 to 28. The solution qualities obtained by ANTIGONE are very close to the

heuristic algorithms, HGLS, HSATS, and SPA, in solving the numerical examples with passengers fewer than and equal to 24.

When the number of passengers reaches “28”, the quality of the solution obtained by ANTIGONE is much lower than those

obtained by the heuristic algorithms: the objective function value obtained by ANTIGONE is 159.28, much lower than 186.47

of HGLS, HSATS, and SPA. When the number of passengers is larger than 28, ANTIGONE is unable to return a solution. 

All of the three heuristic algorithms HSATS, HGLS, and SPA are able to find solutions for all numerical examples. They

obtain the exact optimal solutions of numerical examples N_4 and N_8 as EA does. With the scale of the problem increasing,

the solution qualities of HSATS and HGLS are slightly higher than those of SPA in general. However, the differences between

SPA and HSATS and between SPA and HGLS are negligible. The maximum difference between SPA and HSATS/HGLS is only

1.55% (N_36). 

Table 3 shows the computing time for obtaining an optimal matching and routing plan and calculating prices, as well

as the total computing time spent by ANTIGONE, HSATS, HGLS, and SPA. The commercial solver ANTIGONE is much more

https://neos-server.org/neos/solvers/index.html
https://neos-server.org/neos/solvers/index.html
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Table 2 

Objective function values obtained by EA, ANTIGONE, HSATS, HGLS, and SPA. 

Numerical 

examples EA ANTIGONE HSATS HGLS 

SPA 

Objective function values Difference from HSATS (%) Difference from HGLS (%) 

N_4 24.56 24.56 24.56 24.56 24.56 0.00 0.00 

N_8 58.00 58.00 58.00 58.00 58.00 0.00 0.00 

N_12 81.52 81.52 81.52 81.52 0.00 0.00 

N_16 119.98 119.98 119.98 119.45 0.44 0.44 

N_20 139.89 139.89 139.89 139.86 0.02 0.02 

N_24 152.58 152.58 152.71 152.58 0.00 0.09 

N_28 159.28 186.47 186.47 186.47 0.00 0.00 

N_32 200.08 200.08 200.03 0.02 0.02 

N_36 259.67 259.67 255.71 1.55 1.55 

N_40 289.98 289.98 289.54 0.15 0.15 

N_44 302.17 302.17 301.28 0.30 0.30 

N_48 349.51 349.54 346.98 0.73 0.74 

N_52 380.77 379.63 377.70 0.81 0.51 

Note: the table only presents the data when the computer memory is sufficient and the computing time is less than or equal to one hour (3600 s). 

Table 3 

Computing time (in seconds) of ANTIGONE, HSATS, HGLS, and SPA. 

Numerical 

examples 

ANTIGONE HSATS HGLS SPA 

TO TP TT TO TP TT TO TP TT TO TP TT 

N_4 0.09 0.34 0.43 0.11 0.42 0.53 0.09 0.34 0.43 0.14 0.00 0.14 

N_8 1.95 5.46 7.41 1.23 8.94 10.17 0.73 5.87 6.60 1.47 0.35 1.82 

N_12 2278.09 > 3600 > 3600 3.70 42.47 46.17 2.61 31.34 33.95 4.79 1.24 6.03 

N_16 360 0.0 0 > 3600 > 3600 12.27 193.15 205.42 11.61 177.59 189.20 14.89 5.03 19.92 

N_20 360 0.0 0 > 3600 > 3600 16.86 298.28 315.14 20.57 380.14 400.71 19.93 7.15 27.08 

N_24 360 0.0 0 > 3600 > 3600 19.98 474.04 494.02 38.68 910.37 949.05 24.38 9.44 33.82 

N_28 360 0.0 0 > 3600 > 3600 26.82 694.69 721.51 66.40 1724.21 1790.61 35.32 12.22 47.54 

N_32 32.02 877.13 909.15 86.35 2665.13 2751.48 39.30 18.82 58.12 

N_36 32.33 1227.69 1260.02 101.23 3553.58 3654.81 46.83 25.43 72.26 

N_40 39.94 1646.68 1686.62 118.06 > 3600 > 3600 56.70 31.78 88.48 

N_44 45.18 2032.65 2077.83 141.86 > 3600 > 3600 66.88 37.94 104.82 

N_48 53.85 2652.70 2706.55 173.49 > 3600 > 3600 71.00 43.98 114.98 

N_52 59.37 3063.98 3123.35 189.85 > 3600 > 3600 89.96 59.70 149.66 

Annotation: TO, computing time in obtaining the optimal routing plan; TP, computing time in calculating the prices; TT, the total computing time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time-consuming than the three heuristic algorithms HSATS, HGLS, and SPA in getting the mechanism results for numerical

examples with more than 12 passengers. HSATS needs more than 30 0 0 s (50 min) to obtain the mechanism for the largest-

scale numerical example (N_52), and HGLS is unable to obtain the mechanism for the largest-scale numerical example

within one hour. In contrast, SPA is able to obtain the mechanism for all numerical examples within 3 min. This is because

both HSATS and HGLS need to solve n similar optimization models one by one to calculate the prices given that the number

of passenger requests is n , while SPA is able to solve these similar models simultaneously. Moreover, it can be inferred

from Fig. 4 that the computing complexity of SPA is lower than those of HSATS and HGLS. With the scale of problems

continuously increasing, the computing times of HSATS and HGLS increase faster than that of SPA. 

The mechanism obtained by the exact algorithm was proven, in our Part I paper, to have three properties: “individual

rationality”, “incentive compatibility”, and “price non-negativity”. We compare the ability of the four algorithms (EA, HSATS,

HGLS, and SPA) in maintaining these properties. ANTIGONE is not presented here because it is very time-consuming. Table 4

presents the percentages of individual rational and non-negative prices in the total number of prices using four algorithms

for all numerical examples. If the properties “individual rationality” and “price non-negativity” are strictly proved, the table

cell shows “proved”. Otherwise, only a percentage is shown in the table. Table 4 shows that the mechanism obtained by both

HSATS and HGLS are possibly not “individual rational”. In numerical examples N_24 and N_48, at least one passenger’s utility

is negative in the mechanism obtained by HSATS (the bold numbers are less than 100%). In the numerical example N_32, at

least one passenger’s utility is negative in the mechanism obtained by HGLS. Negative utilities indicate that these passengers

are unwilling to pay the prices. Our Part I paper and this paper respectively proved that the mechanisms obtained by EA

and SPA are always individual rational, and thus all passengers’ utilities are non-negative. Although we cannot strictly prove

that the mechanisms obtained by HSATS, HGLS, and SPA have the property of “price non-negativity”, the prices obtained via

the three algorithms are all non-negative in these numerical examples. The property “incentive compatibility” is not tested

because it is impossible to enumerate all combinations of passengers’ reported requirements, but the mechanism obtained
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Fig. 4. Computing time of HSATS, HGLS, and SPA for different numerical examples. 

Table 4 

Comparison results of the properties of “individual rationality” and “price non-negativity”. 

Numerical 

examples 

Percentage of “individual rational” prices Percentage of non-negative prices 

EA HSATS HGLS SPA EA HSATS HGLS SPA 

N_4 Proved (100) 100 100 Proved (100) Proved (100) 100 100 100 

N_8 Proved (100) 100 100 Proved (100) Proved (100) 100 100 100 

N_12 Proved 100 100 Proved (100) Proved 100 100 100 

N_16 Proved 100 100 Proved (100) Proved 100 100 100 

N_20 Proved 100 100 Proved (100) Proved 100 100 100 

N_24 Proved 91.7 100 Proved (100) Proved 100 100 100 

N_28 Proved 100 100 Proved (100) Proved 100 100 100 

N_32 Proved 100 96.9 Proved (100) Proved 100 100 100 

N_36 Proved 100 100 Proved (100) Proved 100 100 100 

N_40 Proved 100 Proved (100) Proved 100 100 

N_44 Proved 100 Proved (100) Proved 100 100 

N_48 Proved 97.9 Proved (100) Proved 100 100 

N_52 Proved 100 Proved (100) Proved 100 100 

Note: the table only presents the data when the computer memory is sufficient and the computing time is less than one hour (3600 s). 

 

 

 

 

 

 

 

 

 

 

by SPA has been proved to be incentive compatible ( Proposition 2 ), while the mechanism obtained by other heuristics (e.g.

HSATS and HGLS) is not incentive compatible based on the discussion in Section 2.3 . 

Table 5 shows that the profits (total price collected minus total transportation cost) are positive for all numerical exam-

ples in the mechanisms obtained by EA, HSATS, HGLS, and SPA. The mechanisms obtained by EA, HSATS, HGLS, and SPA are

all profitable for the service provider in all of the numerical examples. 

4.5. Sensitivity analysis 

Sensitivity analysis focuses on two aspects: 1) change of passengers’ value functions and 2) change of the strictness

of passengers’ requirements on inconvenience factors. The first aspect aims at testing the effectiveness of the mechanism

under different conditions, in which passengers have stricter attitudes towards the price. The second aspect is to study

the changing process of the matching and routing plan and the price when a passenger in one location places stricter

requirement on the inconvenience factors. 

1) Change of the value function 

Passengers’ attitudes towards the price are reflected by the value function. We use a different hypothetical value function

Formula (14) instead of Formula (13) to represent passengers’ stricter attitudes towards the price. Formula (14) assumes

that passengers’ lowest maximum willing-to-pay price is zero if they are transported to the transit hub directly, i.e. V ≥ 0,
i 
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Table 5 

Profit made by the ridesharing service provider. 

Numerical 

examples 

Profit made by the service provider (total price minus total transportation cost) 

EA HSATS HGLS SPA 

N_4 19.9 19.9 19.9 19.2 

N_8 35.2 35.2 35.2 35.2 

N_12 59.4 59.4 59.4 

N_16 79.8 79.8 80.8 

N_20 94.4 94.4 94.2 

N_24 113.5 112.7 106.9 

N_28 136.7 136.4 134.1 

N_32 145.0 147.8 144.4 

N_36 169.1 158.3 160.3 

N_40 194.7 191.2 

N_44 207.4 186.0 

N_48 239.1 227.0 

N_52 236.1 234.7 

Note: the table only presents the results when the computer memory is sufficient and the computing time is less than 

one hour (3600 s). 

Table 6 

Objective function values of IP0 obtained by EA, HSATS, HGLS, and SPA (value function: Formula (14) ). 

Numerical 

examples EA HSATS HGLS 

SPA 

Objective function values Difference from HSATS (%) Difference from HGLS (%) 

N2_4 26.17 26.17 26.17 26.17 0.00 0.00 

N2_8 48.00 48.00 48.00 48.00 0.00 0.00 

N2_12 71.21 71.21 71.21 0.00 0.00 

N2_16 98.56 98.56 98.56 0.00 0.00 

N2_20 130.83 130.83 130.75 0.06 0.06 

N2_24 169.09 169.09 168.44 0.39 0.39 

N2_28 181.21 181.21 176.32 2.77 2.77 

N2_32 199.44 199.38 197.86 0.80 0.77 

N2_36 248.52 248.52 245.43 1.26 1.26 

N2_40 253.24 252.88 246.61 2.69 2.54 

N2_44 260.08 260.08 256.26 1.49 1.49 

N2_48 314.25 314.54 311.52 0.88 0.97 

N2_52 336.39 335.58 333.83 0.77 0.52 

Table 7 

Computing time of HSATS, HGLS, and SPA (value function: Formula (14) ). 

Numerical 

examples 

HSATS HGLS SPA 

TO (s) TP (s) TT (s) TO (s) TP (s) TT (s) TO (s) TP (s) TT (s) 

N2_4 0.10 0.42 0.52 0.09 0.33 0.42 0.13 0.01 0.14 

N2_8 1.14 7.98 9.12 0.72 5.65 6.37 1.44 0.31 1.75 

N2_12 3.65 40.59 44.24 2.43 29.55 31.98 4.79 1.26 6.05 

N2_16 10.34 159.98 170.32 11.47 172.75 184.22 13.96 3.50 17.46 

N2_20 14.00 271.03 285.03 19.46 360.47 379.93 17.89 6.96 24.85 

N2_24 17.94 441.51 459.45 37.44 901.17 938.61 22.84 9.64 32.48 

N2_28 23.92 628.69 652.61 66.91 1729.90 1796.81 29.70 14.24 43.94 

N2_32 27.93 907.01 934.94 85.38 2612.03 2697.41 34.11 16.96 51.07 

N2_36 35.77 1266.50 1302.27 94.75 3635.89 3730.64 42.20 23.88 66.08 

N2_40 40.68 1411.74 1452.42 109.55 > 3600 > 3600 51.65 25.36 77.01 

N2_44 46.43 2090.88 2137.31 131.43 > 3600 > 3600 55.80 36.93 92.73 

N2_48 53.84 2274.47 2328.31 157.79 > 3600 > 3600 71.03 47.81 118.84 

N2_52 58.74 2620.70 2679.44 182.50 > 3600 > 3600 89.79 53.69 143.48 

 

 

 

if IVT i = t i 0 . 

V i = V 

i 
max −

(
αNR 

i 
N R i 

(Q − n p i ) 
+ 

αIV T 
i ( IV T i − t i 0 ) 

t i 0 
+ 

αW T 
i 

W T i 

MD 

)
V 

i 
max 

2 

(14)

We will test the mechanism using the same algorithms. The experiment results are listed in Tables 6–9 . The numerical

examples are denoted as “N2_x”, where x represents the number of requests sent by passengers. Yet again, ANTIGONE is

not presented in Tables 6–9 due to its unreasonably long computing time. 
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Table 8 

Comparison results of the property of “individual rationality” and “price non-negativity” (value function: Formula (14) ). 

Numerical 

examples 

Percentage of “individual rational” prices Percentage of non-negative prices 

EA HSATS HGLS SPA EA HSATS HGLS SPA 

N2_4 Proved (100) 100.0 100.0 Proved (100) Proved (100) 100.0 100.0 100.0 

N2_8 Proved (100) 100.0 100.0 Proved (100) Proved (100) 100.0 100.0 100.0 

N2_12 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_16 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_20 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_24 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_28 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_32 Proved 100.0 84.4 Proved (100) Proved 100.0 100.0 100.0 

N2_36 Proved 100.0 100.0 Proved (100) Proved 100.0 100.0 100.0 

N2_40 Proved 100.0 Proved (100) Proved 100.0 100.0 

N2_44 Proved 100.0 Proved (100) Proved 100.0 100.0 

N2_48 Proved 95.8 Proved (100) Proved 100.0 100.0 

N2_52 Proved 100.0 Proved (100) Proved 100.0 100.0 

Note: the table only presents the data when the computer memory is sufficient and the computing time is less than 

one hour (3600 s). 

Table 9 

Profit made by the ridesharing service provider (value function: Formula (14) ). 

Numerical 

examples 

Profit made by the service provider (total price minus total transportation cost) 

EA HSATS HGLS SPA 

N2_4 22.30 22.30 22.30 22.30 

N2_8 41.20 41.20 41.20 41.20 

N2_12 59.50 59.50 59.40 

N2_16 72.60 72.60 67.10 

N2_20 96.00 96.00 92.80 

N2_24 117.90 118.10 113.20 

N2_28 141.40 141.40 115.80 

N2_32 153.60 155.00 141.90 

N2_36 173.90 172.70 143.10 

N2_40 192.00 149.20 

N2_44 200.80 186.50 

N2_48 247.90 209.50 

N2_52 242.40 147.60 

Note: the table only presents the data when the computer memory is sufficient and the computing time is less than 

one hour (3600 s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Tables 6 and 7 present the comparison results in terms of the objective function value and computing time. SPA can still

obtain satisfactory vehicle-passenger matching and routing plans within a reasonable time when passengers’ value functions

change. The results show that when the scale of the problem is small, HSATS, HGLS, and SPA are able to obtain the exact

optimal solution. With the scale of the problem increasing, the solution qualities of HSATS and HGLS are slightly higher

than those of SPA, but the differences between SPA and HSATS and between SPA and HGLS are still negligible. The largest

difference between SPA and HSATS/HGLS in terms of the objective function value is only 2.77%. The total computing time

of SPA is less than 3 min, significantly less than those of HSATS and HGLS. In Table 8 , HSATS and HGLS may generate

mechanisms that are not individual rational (numerical examples N2_48 and N2_32 with bold numbers). All of the prices

obtained by HSATS, HGLS, and SPA are still non-negative even though passengers’ attitudes towards prices becomes stricter.

Table 9 shows the profits of all numerical examples based on the mechanism obtained by HSATS, HGLS, and SPA. All profits

are positive, indicating that even though the passengers have stricter attitudes towards the price, the mechanism is still

profitable for the service provider. The experimental results demonstrate the robustness of SPA even if passengers’ attitude

towards the prices changes. 

1) Change of passengers’ tolerance for inconvenience factors 

This sensitivity analysis studies the impact of changing passenger’s requirements on prices and the matching and routing

plans. We state that the changing process of the mechanism M( X I P 0 ∗, p ) is reasonable if the passenger receives no worse

service and the price does not decrease when the requirement becomes stricter. Fig. 5 shows an example of a reasonable

changing process of one passenger’s (this passenger is highlighted by the red circle in the figure) mechanism M( X I P 0 ∗, p i ) .
There are three stages of the changing process in Fig. 5 . The price and the matching and routing plan do not change within

each stage. As the passenger’s requirements continue to grow stricter, the stage will transition to the next stage, and the

passenger will receive higher-quality service and the price increases. The reasonable changing process is important because
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Fig. 5. An example of reasonable changing process of one passenger’s mechanism. 

 

 

 

 

 

 

 

 

 

it avoids the following counter-situation: a passenger places a stricter requirement on an inconvenience attribute, but has

to tolerate an increased degree of the corresponding inconvenience attribute and pays less money. 

In the sensitivity analysis, the values of αi 
NR , αi 

IVT , and αi 
WT are all increased from 0.1 to 1 by 0.1 each time for each

passenger. We solve the mechanism M( X I P 0 ∗, p ) each time αi 
NR , αi 

IVT , and αi 
WT increase. We record the number of passenger

requests whose mechanism changing processes are reasonable and calculate the percentage of this number in the total

number of passenger requests for each numerical example. 

Table 10 shows the percentages of the number of passenger requests, whose changing processes of the mechanism are

reasonable , in the total number of passenger requests. When the scale of the problems is small, all algorithms can ensure

100% reasonable changing processes. However, as the scale of problems increases, these percentages of regular heuristic

algorithms, including HSATS and HGLS, decrease sharply (see Fig. 6 ). Thus, when the scale of the problem is large, even

though passengers’ requirements become stricter, the routing plan is likely to become less convenient for such passengers
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Table 10 

Percentages of reasonable changing processes. 

Numerical 

examples 

Percentages of reasonable changing processes 

EA HSATS HGLS SPA 

N_4 100 100.0 100.0 100.0 

N_8 100 100.0 100.0 100.0 

N_12 100.0 100.0 100.0 

N_16 100.0 100.0 100.0 

N_20 100.0 90.0 100.0 

N_24 16.7 25.0 100.0 

N_28 14.3 14.3 100.0 

N_32 18.8 18.8 100.0 

N_36 0.0 0.0 100.0 

N_40 12.5 100.0 

N_44 6.8 100.0 

N_48 6.3 100.0 

N_52 0.0 100.0 

N2_4 100 100.0 100.0 100.0 

N2_8 100 100.0 100.0 100.0 

N2_12 100.0 100.0 100.0 

N2_16 100.0 100.0 100.0 

N2_20 95.0 100.0 100.0 

N2_24 66.7 54.2 100.0 

N2_28 96.4 89.3 100.0 

N2_32 15.6 25.0 100.0 

N2_36 19.4 16.7 100.0 

N2_40 30.0 100.0 

N2_44 27.3 100.0 

N2_48 0.0 100.0 

N2_52 3.8 100.0 

Note: the table only presents the data when the computer memory is sufficient 

and the computing time is less than one hour (3600 s). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

and the price will decrease, which counteracts the mechanism design objective. For example, if a passenger places stricter

requirement on the extra in-vehicle travel time, the system is likely to let her stay in the vehicle for a longer time and the

price is likely to decrease by using HSATS or HGLS. In contrast, from the testing result, it seems that SPA can always ensure

a reasonable changing process of the mechanism for all passengers (100%) in all of the numerical examples. 

5. Conclusions 

This paper proposes a novel heuristic algorithm, the Solution Pooling Approach (SPA), to obtain the mechanism proposed

in our Part I paper. The SPA is able to ensure two important properties, “individual rationality” and “incentive compati-

bility”. The experimental results of the numerical example show that the SPA can significantly decrease the computational

complexity with a minimal sacrifice of solution quality, compared with commercial solvers (e.g. ANTIGONE) and traditional

heuristic methods, such as the Hybrid Simulated Annealing–Tabu Search Algorithm and the Hybrid Genetic Algorithm. From

the sensitivity analysis, we can conclude that the SPA is robust enough to efficiently obtain the mechanism without sacrific-

ing too much accuracy and to maintain some other desirable properties, including price non-negativity and service provider

profitability based on the numerical examples. The sensitivity analysis also suggests that passengers can receive a higher-

quality service by placing stricter requirements on corresponding inconvenience factors based on their mobility preferences,

and correspondingly, they are charged a higher price when participating in ridesharing. The SPA can be adapted to solve

generalized mechanism design problems. We analyze the specific circumstances under which the SPA can sustain the game-

theoretic properties, including “individual rationality” and “incentive compatibility”, and identify its limitations in solving 

generalized mechanism design problems. Our future work will apply the solution pooling approach to solve other mecha-

nism design problems and test its effectiveness. 
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Fig. 6. Percentages of number of reasonable changing processes for different numerical examples. 

 

 

Appendix A 

Table A-1 . 

Formulas in the models IP 0 and IP g 

min 

∑ 

i ∈ P 
C ICN 

i (N R i , IV T i , W T i , α
NR 
i , αIV T 

i , αW T 
i ) + T C(X ) (A.1)

max Z 0 (X ) = 

∑ 

i ∈ P 
V i ( X ) − T C ( X ) (A.2)
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Table A-1 

Notations. 

Sets 

P Set of passenger requests, P = {1, 2, …, n } 

V Set of vehicles, V = {1, 2, …, m } 

H Set of the transit hub, H = {0} 

Variables 

x ijk = 

{
1 , if vehicle k travels to location j after picking up passenger (s) in location i immediately 

0 , otherwise 
i ∈ P, j ∈ P ∪ H, k ∈ V 

y ik = 

{
1 , if vehicle k is dispatched to pick up passenger (s) in location i 

0 , otherwise 
i ∈ P, k ∈ V 

X = { x ijk , y ik | i ∈ P, j ∈ P ∪ H, k ∈ V } can represent a vehicle-passenger matching and vehicle routing plan. 

w ik = 

{
1 , if passenger (s) in location i is the first to be picked up by vehicle k 

0 , otherwise 
i ∈ P, k ∈ V 

NR i Number of co-riders with passenger(s) i. 

IVT i Passenger(s) i ’s in-vehicle travel time. 

WT i Passenger(s) i ’s extra waiting time at the transit hub 

C i 
ICN Passenger(s) i ’s inconvenience cost caused by ridesharing. 

V i ( X ) Passenger(s) i ’s value gained from the ridesharing service given a routing plan 

X. V i can also be treated as the maximum price that this passenger is willing 

to pay. 

Parameters 

np i Number of passengers in request i . For denotation convenience, we let “passenger(s) i ”

represent the passenger(s) in request i . 

DL i Passenger(s) i ’s preferred deadline before which he/she/they must arrive at the transit 

hub. 

t ij The travel time from node i to node j, i and j ∈ P ∪ H . The pickup time is included in t ij . 

c ij The transportation cost from node i to node j, i and j ∈ P ∪ H . 
Q The seat capacity of a vehicle, excluding the driver. 

αi 
NR , αi 

IVT , and αi 
WT Passenger(s) i ’s personalized requirements on the number of shared riders, in-vehicle 

travel time, and extra waiting time at the transit hub, respectively. The three 

parameters are obtained from passengers’ reported information. The personalized 

requirements, represented by αi 
NR , αi 

IVT , and αi 
W can be any form, as long as the 

three parameters can convey passengers’ different tolerances for the inconvenience 

attributes. 

V i max Passenger(s) i ’s maximum willing-to-pay price when she is transported from the origin 

to the transit hub directly without any shared riders. 
where 

V i ( X ) = V 

i 
max − C ICN 

(
NR i ( X ) , IV T i ( X ) , W T i ( X ) , αNR 

i , αIVT 
i , αWT 

i 

)
TC ( X ) = 

∑ 

k ∈ V 

∑ 

i ∈ P 

∑ 

j∈ P∪ H\ i 
x ijk c ij 

Subject to ∑ 

k ∈ V 
y ik = 1 , for all i ∈ P (A.3) 

∑ 

i ∈ P 
y ik n p i ≤ Q, for all k ∈ V (A.4) 

w ik + 

∑ 

i ∈ P\ j 
x i jk = y jk , for all k ∈ V, j ∈ P (A.5) 

∑ 

j∈ P∪ H\ i 
x i jk = y ik , for all k ∈ V, i ∈ P (A.6) 

∑ 

i ∈ P 
w ik ≤ 1 , for all k ∈ V (A.7) 

I V T i = 

∑ 

k ∈ V 

∑ 

j∈ H∪ P\ i 
x i jk 

(
I V T j + t i j 

)
, for all i ∈ P (A.8) 

IV T ≥ 0 , for all i ∈ P (A.9) 
i 
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W T i = D L i − min 

j∈ P 

{ 

M 

( 

1 −
∑ 

k ∈ V 
y jk y ik 

) 

+ D L j 

} 

, for all i ∈ P (A.10)

N R i = 

∑ 

j∈ P\ i 

∑ 

k ∈ V 
y ik y jk n p j , for all i ∈ P (A.11)

x i jk , y ik , w ik ∈ { 0 , 1 } , for all i, j ∈ P ∪ H, k ∈ V (A.12)

N R g = 0 (A.13)

Formula ( A.1 ) is the objective function of minimizing passengers’ inconvenience cost and the service provider’s trans-

portation cost, which is equivalent to Formula ( A.2 ) that maximizes passengers’ accumulative values minus the agency’s

transportation cost. A passenger’s value is defined as the maximum willing-to-pay price, non-inconvenience value minus

the inconvenience cost. A passenger’s inconvenience cost is a function of the number of co-riders, in-vehicle travel time,

and extra waiting time at the transit hub. Formula ( A.3 ) ensures that all passengers will be picked up by one vehicle and

only be served once. Formula ( A.4 ) represents that the maximum capacity of each vehicle should not be exceeded. Formulas

( A.5 ) and ( A.6 ) ensure the balanced flow from and to each passenger location. Formula ( A.7 ) ensures that each vehicle can

only be dispatched once at most. Formula ( A.8 ) gets all passengers’ in-vehicle travel times. Formula ( A.9 ) is to ensure the

non-negativity of all passengers’ in-vehicle travel times. Formulas ( A.10 ) and ( A.11 ) get all passengers’ extra waiting times

at the transit hub and the number of shared riders, respectively. Formula ( A.12 ) signifies that x ijk , y ijk , and w ik are binary

variables. Formula ( A.13 ) ensures passenger(s) g is transported directly to the transit hub without shared co-riders. 

Appendix B 

This appendix presents the performance of seven commercial solvers, ANTIGONE (Algorithms for coNTinuous/Integer

Global Optimization), ALPHAECP ( α-Extended Cutting Plane), BARON (Branch-And-Reduce Optimization Navigator),

COUENNE (Convex Over and Under ENvelopes for Nonlinear Estimation), LINDOGLOBAL, SBB (Simple Branch-and-Bound)

and SCIP (Solving Constraint Integer Programs), in terms of the objective function values and the computing time in solving

the non-convex mixed integer non-linear programming model IP 0 . Among these seven solvers, ANTIGONE, COUENNE, LIN-

DOGLOBAL, and SCIP can guarantee the global optimal solutions for non-convex MINLP models if the solvers are terminated

normally, while ALPHAECP, BARON, and SBB cannot ensure the global optimality ( Bussieck and Vigerske, 2010 ). The results

are shown in Tables B-1 and B-2 . The two tables do not show the result when the solvers are unable to return a solution. 
Table B-1 

Objective function values of model IP 0 obtained by seven solvers. 

Numerical examples Objective function values (dollars) 

ANTIGONE ALPHAECP BARON COUENNE LINDOGLOBAL SBB SCIP 

N_4 24.56 24.56 24.56 24.56 24.56 24.56 24.56 

N_8 58.00 58.00 58.00 58.00 58.00 55.30 58.00 

N_12 81.52 81.52 81.52 81.11 81.52 78.44 81.52 

N_16 119.98 115.36 117.57 116.79 

N_20 139.89 134.13 131.11 136.51 

N_24 152.58 139.59 140.73 133.72 

N_28 159.28 147.18 

Table B-2 

Computing times of seven solvers in solving model IP 0 . 

Numerical examples Computing time (seconds) 

ANTIGONE ALPHAECP BARON COUENNE LINDOGLOBAL SBB SCIP 

N_4 0.09 8.07 0.15 0.87 0.28 0.17 0.20 

N_8 1.95 423.69 8.55 139.39 21.46 12.36 5.37 

N_12 2278.09 360 0.0 0 360 0.0 0 360 0.0 0 360 0.0 0 441.02 360 0.0 0 

N_16 360 0.0 0 360 0.0 0 360 0.0 0 360 0.0 0 

N_20 360 0.0 0 360 0.0 0 360 0.0 0 360 0.0 0 

N_24 360 0.0 0 360 0.0 0 360 0.0 0 360 0.0 0 

N_28 360 0.0 0 360 0.0 0 
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