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a b s t r a c t 

Ridesharing is an effective transportation mode to provide first-mile accessibility to public 

transit and a low-cost, environment-friendly, and sustainable mobility service. This paper 

designs a mechanism for the first-mile ridesharing service. The mechanism accounts for 

passengers’ personalized requirements on different inconvenience attributes (e.g. the num- 

ber of co-riders, extra in-vehicle travel time, and extra waiting time at the transit hub) 

of the service in determining the optimal vehicle-passenger matching and vehicle routing 

plan and customized pricing scheme. The proposed mechanism is proved to be individual 

rational, incentive compatible, and price non-negative. The three properties respectively in- 

dicate that passengers are willing to participate in the service, that honestly reporting per- 

sonalized requirements is the optimal strategy, and that the service provider is guaranteed 

to receive revenue from the participants. A case study is proposed to interpret the mecha- 

nism and to demonstrate the generality of the personalized-requirement-based mechanism 

that can be adapted into different scenarios. 

© 2019 Elsevier Ltd. All rights reserved. 

 

 

 

 

 

 

 

 

 

 

 

1. Introduction 

Americans take 11 billion trips annually on public transportation, a 40% increase since 1995 ( American Public Transporta-

tion Association, 2016 ). The American public transportation industry faces an ongoing challenge of transit hub accessibility

– how travelers get to nearby transit hubs. This challenge is also known as the “first-mile” bottleneck. Several studies have

found that travelers’ choices of public transportation are significantly affected by the accessibility to transit hubs ( Krygsman

et al., 2004; Rietveld, 20 0 0 ). In the United States, many transit riders either drive their own vehicles or take taxis or other

emerging mobility services (e.g. Uber and Lyft) to nearby transit hubs. However, uncoordinated traveling does not fully

utilize the empty seats in a car, which in turn increases traffic congestion, emissions, and parking demands. 

Ridesharing is a potential solution to address first- or last-mile transit accessibility, and to provide a low-cost,

environment-friendly and sustainable mobility service ( Furuhata et al., 2013; Cici et al., 2014 ). There are various types of

ridesharing services. Furuhata et al. (2013) classified ridesharing into three categories, carpooling/vanpooling, long-distance

ride-match, and dynamic real-time ridesharing based on target markets. Furuhata et al. (2013) indicated that carpooling

usually targets commuters and that users can schedule the service. Long-distance ride-match provides intercity or interstate
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trips. This service usually requires passengers to schedule the service in advance. Real-time dynamic ridesharing provides an

automated process of ride-matching between drivers and passengers on very short notice or even en-route. Thus, based on

the user type, ridesharing can be categorized as scheduled and on-demand services. For scheduled service, passengers send

requests early enough (e.g. at least 30 minutes) before they need the service. The system can pre-optimize the matching and

routing plan and pre-determine the prices before the service is approaching. For on-demand service, passengers send spon-

taneous requests when they need the service. The system needs to optimize the matching and routing plan and determine

the prices in real time, so that vehicles can be dispatched to serve passengers within a very short time. Ridesharing can also

be categorized as targeted and untargeted services. Targeted ridesharing provides the service for specific type of passengers

(e.g. commuters, transit riders, etc.). Passengers using a targeted ridesharing service usually have common destinations (e.g.

companies, transit hubs, etc.). Untargeted ridesharing provides the service for any passenger who sends a request. Passen-

gers using an untargeted ridesharing service usually have different destinations. In this paper, we focus on the scheduled

first-mile ridesharing to the transit hub, accounting for its characteristics. 

The prior literature has recognized the trend of integrating first-mile ridesharing with public transportation. For example,

Shaheen and Chan (2016) discussed how mobile technology and public policy continue to evolve to integrate shared mo-

bility with public transit. Masoud et al. (2017a) developed a mobile application with an innovative ride-matching algorithm

as a decision support tool that suggests transit-rideshare connections. Stiglic et al. (2018) ’s study showed that the integra-

tion of a ridesharing system and a public transit system can significantly enhance mobility and increase the use of public

transport. Ma (2017) proposed a dynamic bi-modal vehicle dispatching and routing algorithm to address the real-time op-

erating policy of ridesharing (feeder) services in coordination with the presence of existing public transportation networks.

In addition, there is potentially a high demand for the first-mile ridesharing service in transit-intensive metropolitan areas.

For example, based on the NYC taxicab data ( New York City Taxi, & Limousine Commission, 2018 ), there were 3,122,731

taxi trips to the Pennsylvania Station in New York City in 2017. An average of 8555 taxis traveled to this station every day.

Among 3,122,731 taxi trips, 2,189,467 trips (70.1%) had only one passenger per trip. Among these one-passenger trips, ap-

proximately 1,509,580 (68.95%) taxi trips are within the same pickup zone and their pickup times are within 10 minutes.

These trips might potentially be combined under certain incentive mechanisms for ridesharing. Also, ridesharing service

providers (e.g. Uber and Lyft) have already added public transportation to their apps, allowing for seamless transfers from

their ridesharing to the public transit services for convenient multi-modal journeys ( Shelton, 2016; Smartrail World, 2016,

2018 ) in New York, Boston, Los Angeles, and other metropolitan cities around the world. This market of emerging multi-

modal first-mile ridesharing service inspires us to design a mechanism to incentivize more passengers to participate in

ridesharing. 

Mechanism design theory is a field in economics and game theory that designs economic mechanisms or incentives to-

ward desired objectives ( Hurwicz and Reiter, 2006 ). The proposed mechanism includes an optimal vehicle-passenger match-

ing and vehicle routing plan as well as a customized pricing strategy. The matching and routing plan determines each

passenger’s personalized first-mile ridesharing service. The customized pricing strategy provides passengers with economic 

incentives to participate in ridesharing by offsetting the inconvenience caused by ridesharing. Our designed mechanism

allows passengers to detail their personalized requirements on the following so-called “inconvenience factors”: (1) extra

in-vehicle travel time (for example, detour to pick up other passengers); (2) the number of co-riders sharing the vehi-

cle; and (3) extra waiting time at the transit hub due to potential early arrival. Previous studies ( Golledge et al., 1994;

Ben-Akiva and Lerman, 1985; Arentze, 2013 ) recognized that travelers’ choice of transportation mode is not only influ-

enced by price, but also by these “inconvenience” attributes. The methodology can be adapted to account for additional

factors in future research. The proposed mechanism can promote passengers’ participation by ensuring an important prop-

erty, “individual rationality”, which indicates that passengers’ maximum willing-to-pay prices will never be exceeded by

the actual paid prices. In addition, rational passengers may misreport their personalized requirements in order to maxi-

mize their utilities if the mechanism cannot prevent this. Thus, the designed mechanism needs to ensure another important

property, namely “incentive compatibility”, representing that truthfully reporting the requirement is each passenger’s op- 

timal strategy, which maximizes the utility. This property can prevent passengers from misreporting their personalized

requirements. Moreover, the price should be non-negative, so that the service provider can gain revenue from passen-

gers. Finally, a case study is proposed to interpret the mechanism and to demonstrate the effectiveness of the proposed

mechanism. 

This paper is structured as follows. We start with reviewing the literature on mechanism design and shared mobility

to identify knowledge gaps and research needs in Section 2 . Then, we introduce our designed mechanism in Section 3 . In

Section 4 , a case study is proposed to interpret the potential application of the proposed mechanism. Concluding remarks

are made in Section 5 and future work is introduced in Section 6 . 

2. Literature review 

2.1. Existing work 

Much prior work has focused on vehicle-passenger matching and vehicle routing optimization issues in the field of

ridesharing research. Different algorithms, such as Lagrangean column generation, the genetic heuristic algorithm, particle

swarm optimization, and the rolling horizon planning approach, were developed to solve both static and dynamic matching
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and/or routing problems for ridesharing services ( Baldacci et al., 2004 ; Calvo et al., 2004 ; Agatz et al., 2011, Ghoseiri et al.,

2011, Armant and Brown, 2014 , Ma et al., 2013, Wang et al., 2017, Huang et al., 2015, Ozkan and Ward, 2016, Jung et al., 2016 ,

Ma, 2017, Huang et al., 2018, Masoud and Jayakrishnan, 2017a, 2017b , Agussurja et al., 2018, Chen et al., 2018, Hou et al.,

2018, Wang et al., 2018b etc.). However, these studies have not addressed customized pricing for each individual passenger

nor measured the impact of the pricing mechanism on vehicle-passenger matching as well as the vehicle routing plan. 

Proper pricing is a key incentive to promote passengers’ collaboration to share the ride. There are various pricing strate-

gies in the literature that can be classified into four categories, supply-demand-balance pricing strategy, fair cost allocation

strategy, pricing optimization strategy, and auction-based pricing mechanisms. 

The first type of strategy is supply-demand-balance strategy, which is widely used in taxi services ( Yang et al., 2002;

Zhang and Ukkusuri, 2016; Qian and Ukkusuri, 2017 ). Researchers applied and modified the pricing strategy to adapt into

ridesharing services ( Witt et al., 2015 ; Banerjee et al., 2015 , Fang et al., 2017 , Liu and Li, 2017, Zha et al., 2017, Yang et al.,

2018 ). The mechanism of this pricing strategy can be described as follows. When customers’ demand exceeds the supply, the

price is increased to re-balance the demand and supply, and vice versa. Ridesharing companies, like Uber and Lyft, use this

pricing framework to incentivize drivers to move to undersupplied locations ( Hall et al., 2015 ). Since this pricing scheme is

determined by the relationship between supply and demand, passengers’ prices are not directly related to the matching and

routing plan and some inconvenience factors (e.g. number of shared riders and extra in-vehicle travel time). 

The second type of strategy fairly allocates costs among passengers. This pricing scheme is inspired by the work of

Frisk et al. (2010) on cost allocation in collaborative forest transportation. Subsequently, researchers proposed fair pricing

schemes ( Bistaffa et al., 2015 ; Gopalakrishnan et al., 2016 ; Li et al., 2016 ; Wang et al., 2018a ; Peng et al., 2018 ) based on

different travel attributes, such as travel distance, detours, and waiting time. The fair cost-sharing mechanism, however,

does not have the function that allows passengers to report their preferences over these attributes (e.g. via smartphone

applications). 

The third strategy optimizes the pricing along with the matching and/or routing to achieve certain objectives, such as

maximizing the total profit, minimizing passengers’ total travel cost, and maximizing the total saved travel mileage. For ex-

ample, Cheng et al. (2012) optimized the vehicle-passenger matching and passengers’ prices with the objective of minimiz-

ing the total travel cost, including the monetary payments and time penalties. Biswas et al. (2017) attempted to maximize

the total profit made by the service provider by determining the optimal prices and matching and routing plans. Santos and

Xavier (2015) solved a dynamic ridesharing problem and designed an optimal incentive for passengers’ participation so that

the number of served requests is maximized and the sum of all served requests’ costs is minimized. Qian et al. (2017) inves-

tigated the optimal assignment of a set of passengers for the sake of maximizing total saved travel miles, analyzed different

behaviors of passengers and drivers in participating taxi group rides, and explored the best incentives for taxi rideshar-

ing in order to maximize efficiency under the optimal assignment. Chen and Wang (2018) optimized the price, number of

operation vehicles, and vehicle capacity to maximize the social welfare for last-mile ridesharing, without considering the

matching and routing optimization. Nevertheless, very few prior studies fully investigated whether or not the designed in-

centive can offset the inconvenience caused by ridesharing considering passengers’ personalized requirements in order to

promote ridesharing participation. 

The fourth type of strategy is auction-based pricing mechanisms that aim to maximize society’s overall welfare by requir-

ing participants to truthfully report their valuations of the service. The Vickrey–Clarke–Groves (VCG) mechanism is a widely

used truth-inducing mechanism, which aims to maximize the cumulative value of collaboration ( Vickrey, 1961 ; Clarke, 1971 ;

Groves, 1973 ). However, the VCG mechanism has inherent limitations in the application of ridesharing. It is not budget-

balanced and requires external subsidies to sustain the service ( Parkes et al., 2001 ). Besides, calculating VCG payments is

computationally challenging ( Kamar and Horvitz, 2009 ). Thus, various auction-based mechanisms ( Kamar and Horvitz, 2009 ;

Cheng et al., 2014 ; Zhao et al., 2014 ; Zhao et al., 2015 ; Asghari et al., 2016 ; Asghari and Shahabi, 2017 ; Shen et al., 2016 ;

Nguyen, 2013 ; Zhang et al., 2016 ; Kleiner et al., 2011 ; Masoud et al., 2017b ; Masoud and Lloret-Batlle, 2016 ; Ma et al.,

2018 ; Hsieh et al., 2018 ; Zhang et al., 2018 ) are designed to modify or replace the VCG mechanisms in different scenarios.

Although these mechanisms incentivize passengers to truthfully report their valuations of the ridesharing service, none of

them allow passengers to input their personalized requirements on inconvenience factors caused by ridesharing. Thus the

incentive mechanisms are not based on passengers’ personalized requirements. 

2.2. Knowledge gaps and intended contributions 

To our knowledge, very little prior research has addressed the incentive mechanism design for first-mile ridesharing

with respect to public transit accessibility. First-mile ridesharing has four characteristics: (1) all passengers have the same

destination (i.e., the transit hub); (2) passengers may have a strict deadline for arriving at the transit hub; (3) passengers

can schedule the first-mile ridesharing service in advance if they know their transit schedules (particularly for commuters);

and (4) in addition to the number of shared riders and extra in-vehicle travel time, first-mile ridesharing imposes upon

passengers another potential inconvenience factor, being the extra waiting time at the transit hub due to early arrival if

passengers served by the same vehicle have different arrival deadlines. 

Very limited prior research has accounted for passengers’ personalized requirements on inconvenience factors (e.g. extra

in-vehicle travel time, number of shared riders, and additional waiting time) caused by ridesharing in optimizing the vehicle-

passenger matching and vehicle routing plan as well as designing customized incentive price simultaneously. The interactive
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Fig. 1. Relationship among passengers’ personalized requirements, optimization of matching and routing plan, and incentive pricing scheme as studied in 

this paper. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

relationship among passengers’ personalized requirements, optimization of matching and routing plan, and incentive pricing

scheme has not been well studied in the literature. 

This paper intends to make the following contributions. 

• This paper identifies some of the potential inconvenience factors of scheduled first-mile ridesharing service, including

the number of shared riders, extra in-vehicle travel time due to detours, and extra waiting time at the transit hub due

to early arrival. 
• We present the first work to design an incentive mechanism based on passengers’ personalized requirements on these

inconvenience attributes by simultaneously optimizing the vehicle-passenger matching and vehicle routing plan and de- 

signing a corresponding customized pricing scheme. As Fig. 1 shows, this designed mechanism accounts for the interac-

tive relationship among passengers’ personalized requirements, optimization of matching and routing plan, and incentive

pricing scheme. Passengers’ personalized requirements affect the values of the inconvenience factors in optimizing the

matching and routing plan. The customized incentive pricing scheme, which is determined by the matching and rout-

ing plan, promotes passengers’ participation by offsetting their inconveniences and truthful report of their personalized

requirements. 
• The incentive mechanism is proved to have the properties of “individual rationality” and “incentive compatibility”. It

indicates that the mechanism is able to promote rational passengers’ participation willingness and also to prevent pas-

sengers from manipulating the algorithm. 

3. Mechanism design model 

This section introduces a ridesharing incentive mechanism based on passengers’ personalized requirements. 

Section 3.1 introduces the problem statement, Section 3.2 analyzes passengers’ value and utility when they participate in the

service, Section 3.3 clarifies the objective of the proposed mechanism using an optimization model, Section 3.4 introduces

how the mechanism is obtained, and Section 3.5 gives the proofs of the properties. 

3.1. Problem statement 

Passengers can schedule the first-mile ridesharing service in advance. All passengers have the same destination (i.e.

the transit hub) to catch their next transit mode (e.g. trains). The service provider, which can be the transit agency or a

ridesharing service provider collaborating with the transit agency, has sufficient available vehicles to provide the first-mile

accessibility service. Individual passengers may have different preferred times of arrival. Some people may prefer to arrive

much earlier than the scheduled train departure time, while others enjoy arriving right on time to catch a train. Thus, our

mechanism allows passengers to specify their preferred arrival deadlines at the transit hub. Passengers with close arrival

deadlines are likely to share a ride. Vehicles must drive these passengers to the transit hub before the specified deadlines.

For example, Mike wants to take the train with the departure time of 9:00 a.m., while the train that John will take departs

at 9:10 a.m. Mike wants to arrive at the transit hub on time and thus he specifies 8:50 a.m. as his arrival deadline, while

John wants to arrive at the transit hub 25 minutes earlier for breakfast and his arrival deadline is 8:45 a.m. If John and Mike

share the ride, the vehicle must arrive at the transit hub before 8:45 a.m. 

We use Fig. 2 to demonstrate the operation of the first-mile ridesharing service. The system consolidates passengers’ re-

quests with close arrival deadlines. When a passenger schedules the service, he/she is notified of an estimated time window

for pickup and a range of trip fare. The time window can be estimated based on passengers’ reported arrival deadlines and

personalized requirements on extra in-vehicle travel time and extra waiting time at the transit hub. For example, suppose

that a passenger’s arrival deadline is DL , the shortest time for driving this passenger to the transit hub is t . Then the latest
i i 0 
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Fig. 2. Operation of the first-mile ridesharing service. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

pickup time is DL i – t i 0 . If this passenger’s maximum tolerable extra in-vehicle travel time and extra waiting time at the

transit hub are αi 
IVT and αi 

WT , respectively, then the earliest pickup time is DL i – t i 0 – αi 
IVT – αi 

WT . The range of the trip

fare can be estimated by historical prices as Uber does. The interface can also show the real-time taxi price in the market.

The final price will never exceed this taxi price. When the service is approaching (at time ts in Fig. 2 ), the system optimizes

the vehicle-passenger matching and vehicle routing plan, and calculates the customized prices. The request processing time

point ( ts ) should be early enough so that all passengers can be driven to the transit hub before their arrival deadlines. After

the requests are processed, each passenger will be notified of the vehicle that will serve him/her, the exact pickup time,

and the exact price, which are determined by our mechanism (the matching and routing plan and the pricing scheme). The

drivers will be directed to pick up passengers in a specified order and drive them to the transit hub before the earliest

arrival deadline. 

In addition to the passengers’ pickup locations and preferred arrival deadlines, passengers are allowed to report their

personalized mobility requirements on different inconvenience factors. In this paper, “inconvenience factors” include: (1)

the number of co-riders; (2) extra in-vehicle travel time beyond the direct shipment time due to detour; and (3) extra

waiting time at the transit hub due to possible early arrival. Golledge et al. (1994), Ben-Akiva and Lerman (1985) , and

Arentze (2013) recognized that travelers’ choice of transportation mode is influenced not only by price but also by these

“inconvenience” attributes. After the system receives the passengers’ information, an optimal vehicle-passenger matching

and vehicle routing plan is generated based on the personalized requirements. The price is then obtained based on the plan

and passengers’ reported personalized requirements. Passengers will finally receive a personalized service and customized

price. The personalized service is tailored to satisfy passengers’ requirements on the inconvenience attributes of the first-

mile trip and the customized price is used to incentivize them to participate in the first-mile ridesharing service. 

In this paper, it is assumed that each passenger’s objective is to maximize their own utility (defined as the difference

between the maximum willing-to-pay price and the actual paid price). It is possible that passengers may misreport their

requirements on inconvenience factors if lying is more beneficial for them. A desirable property of the pricing mechanism is

that expressing the true requirement is the passenger’s “best” strategy (i.e. the utility is maximized) regardless of what other

passengers report. This property is called “incentive compatibility” in the literature ( Myerson, 1979 ). Passengers’ behavioral

rationality also implies that if the price is higher than their maximum willing-to-pay price, they are unlikely to participate in

the ridesharing service. Thus, another indispensable property, “individual rationality”, is that each passenger should always

receive non-negative utility with respect to the price charged. This property aims to ultimately incentivize more travelers

to participate in the ridesharing service. Moreover, the service provider must receive payment from each passenger (i.e.

the price is non-negative). In summary, the proposed mechanism needs to have the three important properties, “incentive

compatibility”, “individual rationality”, and “price non-negativity”. 

Based on the problem background, we will determine the mechanism, denoted as M ( X , p ), consisting of a vehicle-

passenger matching and vehicle routing plan X and all passengers’ customized prices p = { p 1 , p 2 , …, p n }. 

The following assumptions are made, in line with the scope of the study. 

(1) We focus on a static case where passengers schedule the service and their information is known in advance. The

ridesharing market has placed a demand on pre-scheduled optimization. For example, Uber and Lyft have developed

APPs that allow passengers to send pre-scheduled requests for car usage. In this paper, we only optimize the vehicle

task execution plan for passengers who send requests before vehicles start to execute the task. In a dynamic scenario,

passengers are likely to send requests after the static optimization process is finished, and the system would be able
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Table 1 

Information for the illustrative example. 

Parameters Passengers 

John Peter Alice 

Location coordinates (2, 2) (2.6, 2.3) (3, 2.8) 

V i max = 5 + 1 . 5 × max ( d i 0 − 1 , 0) (taxi price, in dollars) 7.74 8.71 9.66 

Time of direct shipment ( t i 0 = 3 × d i 0 ) 8.485 10.414 12.311 

Arrival deadlines 13:00 pm 13:10 pm 13:00 pm 

Table 2 

Passengers’ personalized requirements. 

Tolerances Passengers 

John Peter Alice 

Maximum in-vehicle travel time (minutes) 10 15 20 

Maximum number of shared riders 3 3 2 

Maximum waiting time at the transit hub (minutes) 10 15 8 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

to re-optimize all decisions to accommodate spontaneous demands. The dynamic scenario for spontaneous passengers

is beyond the scope of this particular study, but will be considered in our future research. 

(2) The travel time between two locations is assumed to be deterministic. Future research will incorporate travel time

reliability in the optimization analysis. 

(3) The fleet size is sufficient to serve all passengers who send requests in advance, and all passengers who send requests

will receive the service. The number of passengers in each request does not exceed the seat capacity of a vehicle.

Future research will consider fleet shortage given an extraordinarily large ridesharing demand. 

(4) We assume that passengers will not misreport other travel information such as the departure locations, the destina-

tion (the transit hub), and the arrival deadlines. 

Before we detail the mathematical formulation of the mechanism design, we will use a simple hypothetical example

to explain the goal of the research. In this illustrative example, three passengers, named “John”, “Peter”, and “Alice”, in

three different locations book the ridesharing service to get to the train station. The transportation cost and the travel time

between each two locations as well as the pickup time span at each location are known in advance. For convenience of

illustration, the transportation cost ( c ij ) between two locations is defined as the Euclidean distance ( d ij ) with one dollar per

mile. The travel time ( t ij ) between two locations is three times the Euclidean distance t ij = 3 d ij . Note that this illustrative

example uses Euclidean distance only for simplification in order to demonstrate how the mechanism is obtained. Our mech-

anism design model does not assume that the travel distance between two locations should be Euclidean distance. After

the vehicle reaches each passenger’s location, the vehicle needs some time to pick up the passenger(s). We set the pickup

time span as two minutes ( pu j = 2) in this example. The coordinate of the transit hub location is set to be (0, 0). The arrival

deadlines are determined by the selected train they will catch at the transit hub. We also introduce the taxi service (direct

shipment without shared riders) for passengers’ alternative first-mile travel mode. The price of the taxi service is $5 for the

first mile and increases $1.5 per each additional mile. The available information based on the problem setting is listed in

Table 1 . 

Passengers can report their personalized requirements. In this example, we assume that they can report the maximum

in-vehicle travel time, the maximum number of co-riders, and the maximum waiting time at the transit hub that they can

tolerate. Suppose that their real requirements are given in Table 2 . 

The problem is how to determine the matching and routing plan and price for each passenger, accounting for passengers’

personalized mobility requirements. The proposed mechanism should be able to incentivize passengers to participate in the

ridesharing service instead of taking taxi service. Besides, the designed mechanism should incentivize passenger to truthfully

report their preferences instead of lying. The results of the mechanism for this example will be displayed in Section 3.4 . 

3.2. Passengers’ value function and utility function 

The value function, which reflects passengers’ maximum willing-to-pay prices, is used to model passengers’ participat-

ing willingness considering their personalized requirements on inconvenience attributes. The utility is defined as the net

value, which is the maximum willing-to-pay price minus the actual paid price. This paper assumes that rational passengers’

objective is to maximize their utilities. Before introducing the value and utility functions, we list the notations in Table 3 . 

In the context of this research, a passenger’s value is defined as the maximum price that he/she is willing to pay, in line

with the prior research ( Zou et al., 2015; Zhao et al., 2015; Kamar and Horvitz, 2009 ). This subsection proposes a generalized

value function that establishes the relationship between a passenger’s value and a given set of inconvenience attributes as

well as this passenger’s personalized requirement. The personalized requirement, represented by αi 
NR , αi 

IVT , and αi 
WT on

the three inconvenience attributes (number of shared riders, extra in-vehicle travel time that exceeds the direct shipment
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Table 3 

Notations in the value function and utility function. 

Notations Descriptions 

i Index of passenger requests. There can be more than one passenger in each request. For denotation convenience, we let 

“passenger(s) i ” represent the passenger(s) in request i . 

NR i Number of co-riders with passenger(s) i. 

IVT i Passenger(s) i ’s in-vehicle travel time. 

WT i Passenger(s) i ’s extra waiting time at the transit hub, i.e. the time interval between the arrival time and the deadline DL i (see 

Table 4 ). 

αi 
NR , αi 

IVT , and 

αi 
WT 

Passenger(s) i ’s personalized requirement on the number of shared riders, extra in-vehicle travel time that exceeds the direct 

shipment time, and extra waiting time at the transit hub, respectively. The three parameters are obtained from passengers’ 

reported information. 

C i 
ICN Passenger(s) i ’s inconvenience cost caused by ridesharing. The inconvenience cost is measured as each passenger’s acceptable 

minimum reduced price with the specific degree of inconvenience factors. 

X A vehicle-passenger matching and vehicle routing plan. 

V i ( X ) Passenger(s) i ’s value gained from the ridesharing service given a plan X. V i can also be interpreted as the maximum price 

that this passenger is willing to pay. 

V i max The value gained by passenger(s) i when transported from the origin to the transit hub directly without any inconvenience 

(i.e. NR i = 0, IVT i = t i 0 , where t i 0 is passenger(s) i ’s direct shipment time, and WT i = 0). 

U i ( X,p i ) Passenger(s) i ’s utility given a vehicle-passenger matching and vehicle routing plan X and a price p i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

time due to detour, and extra waiting time at the transit hub due to early arrival) can be in any form, as long as the three

parameters αi 
NR , αi 

IVT , and αi 
WT can convey passengers’ different tolerances for the inconvenience attributes. 

Kamar and Horvitz (2009) proposed a passengers’ value function based on inconvenience cost. We incorporate the pa-

rameters αi 
NR , αi 

IVT , and αi 
WT as passengers’ personalized requirements into the value function. 

V i (X ) = V 

i 
max − C ICN 

i 

(
N R i (X ) , IV T i (X ) , W T i (X ) , αNR 

i , αIV T 
i , αW T 

i 

)
(1)

We list three reasonable assumptions of the parameters in the value function, which are used in the proof of the prop-

erties of the proposed mechanism. 

(1) C i 
ICN is a monotone increasing function of NR i , IVT i , and WT i . We assume that when people share the trip with more

people, stay in the vehicle for a longer time, or wait at the transit hub for extra time, the passengers’ inconvenience

cost will never decrease. 

(2) We define V i max as the price charged by the taxi when this passenger takes this taxi directly to the transit hub with-

out other shared riders. If a passenger participates in the ridesharing service but receives a direct shipment service

without other shared riders, the service is treated as taxi service. The maximum willing-to-pay price is equal to the

taxi price, because if the price is higher than the taxi price, the customer is unwilling to participate into the rideshar-

ing service and will choose the taxi service. Thus, when NR i = 0, IVT i = t i 0 , and WT i = 0, the inconvenience cost equals

zero. That is 

C ICN 
i 

(
N R i = 0 , IV T i = t i 0 , W T i = 0 , αNR 

i , αIV T 
i , αW T 

i 

)
= 0 (2)

This assumption is easy to understand because when NR i = 0, IVT i = t i 0 , and WT i = 0, the service is the same as taxi

service—direct shipment for passenger(s) i . 

(3) It is assumed that the taxi always makes a profit. That is, the taxi price is always greater than the transportation cost:

V 

i 
max > c i 0 (3)

A passenger’s utility (the difference between the maximum willing-to-pay price and the actual price paid) is given in

Formula (4) , which is also defined in the literature ( Zou et al., 2015; Zhao et al., 2015; Kamar and Horvitz, 2009 ). 

U i ( X, p i ) = V i ( X ) − p i (4)

We use an illustrative example of the value function for better understanding. This value function will be used in the

example in Section 3.4 to illustrate how the mechanism is obtained. In this example, if one passenger shares the ride

with others, the maximum willing-to-pay price is set to be the taxi price multiplied by a discount rate ( λi , here we set

the discount rate as λi = 0.85) if the service satisfies the passenger’s requirements. Note that the discount rate λi can be

other values, which is also reported by passengers. If passengers’ requirements are not satisfied, they are unwilling to pay

anything. Based on this assumption, the value function is defined as: 

V i = 

{ 

V 

i 
max , direct shipment ( equivelant to taxi service ) 

0 , ridesharing , requirements are not satisfied 

λi V 

i 
max , ridesharing , requirements are satisfied 

The inconvenience cost is thus defined as: 

C ICN 
i = 

{ 

0 , direct shipment 

V 

i 
max , ridesharing , requirements are not satisfied 

( 1 − λi ) V 

i 
max , ridesharing , requirements are satisfied 
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Table 4 

Additional notations of variables and parameters in the optimization model (only for vehicle-passenger matching and vehicle routing optimization). 

Sets 

P Set of passenger requests, P = {1, 2, …, n } 

V Set of vehicles, V = {1, 2, …, m } 

H Set of the transit hub, H = {0} 

Variables 

x ijk = 

{
1 , if vehicle k travels to location j after picking up passenger (s) in location i immediately 

0 , otherwise 
. 

i ∈ P, j ∈ P ∪ H, k ∈ V 

y ik = 

{
1 , if vehicle k is dispatched to pick up passenger(s) in location i 

0 , otherwise 
i ∈ P, k ∈ V 

X = { x ijk , y ik | i ∈ P, j ∈ P ∪ H, k ∈ V } can represent a vehicle-passenger matching and vehicle routing plan. 

w ik = 

{
1 , if passenger(s) in location i is the first to be picked up by vehicle k 

0 , otherwise 
i ∈ P, k ∈ V 

NR i Number of co-riders with passenger(s) i. 

IVT i Passenger(s) i ’s in-vehicle travel time. 

WT i Passenger(s) i ’s extra waiting time at the transit hub 

C i 
ICN Passenger(s) i ’s inconvenience cost caused by ridesharing. 

Parameters 

np i Number of passengers in request i . 

DL i Passenger(s) i ’s preferred deadline before which he/she/they must arrive at the transit hub. 

t ij The travel time from node i to node j, i and j ∈ P ∪ H . The pickup time is included in t ij . We assume a triangle inequality assumption t ij ≤ t ig + t gj 

for any i, j , and g , which will be used to guarantee non-negative prices ( Section 3.5 Proposition 5 ). This is a reasonable assumption because 

the nonstop travel time is unlikely longer than the vehicle’s travel time to detour to pick up another passenger plus an additional pickup time. 

c ij The transportation cost from node i to node j, i and j ∈ P ∪ H . We assume c ij ≤ c ig + c gj , for any i, j , and g for the same purpose. 

Q The seat capacity of a vehicle, excluding the driver. 

 

 

 

 

 

 

 

 

 

 

Let us return to the example in Section 3.1 . John’s value function is as follows: 

V John = 

⎧ ⎨ 

⎩ 

7 . 74 , IV T John = t i 0 , NR John = 0 , W T John = 0 

0 , IV T John > 10 , NR John > 3 , or W T John > 10 

λi × 7 . 74 , otherwise 

Note that the example above is just an illustrative example. The value function can take a generalized form that is

adaptable to any reasonable scenario. Developing specific value functions and designing an interface that allows users to

report their requirements are beyond the scope of this paper, but will be considered in future research. 

3.3. Optimization of vehicle-passenger matching and routing plan 

We consider the ridesharing service provider (the agency) and passengers (the users) as a system to optimize the vehicle-

passenger matching and routing plan. The agency and the users are two indispensable components of a system, and both

the agency cost and the user cost are often considered collaboratively in the literature ( Kim et al., 2015; Hajibabai et al.,

2014; Amirgholy and Gonzales, 2016 ). The objective of the proposed mechanism is to minimize the agency’s transportation

cost (e.g. vehicle dispatch cost, energy consumption cost, driver labor cost, and emissions) and the users’ inconvenience

cost caused by ridesharing associated with their personalized requirements. This formulates an optimization problem to

determine an optimal vehicle-passenger matching and vehicle routing plan. 

The problem can be formulated as the following model (denoted as IP ). For the notations, please refer to Tables 3 and 4 .

Z = min 

∑ 

i ∈ P 
C ICN 

i 

(
N R i , IV T i , W T i , α

NR 
i , αIV T 

i , αW T 
i 

)
+ T C(X ) (5) 

where TC ( X ) is the transportation cost of the vehicle-passenger matching and vehicle routing plan: T C(X ) =∑ 

k ∈ V 

∑ 

i ∈ P 

∑ 

j∈ P∪ H\ i 
x i jk c i j 

Subject to ∑ 

k ∈ V 
y ik = 1 , for all i ∈ P (6) 

∑ 

i ∈ P 
y ik n p i ≤ Q, for all k ∈ V (7) 

w ik + 

∑ 

i ∈ P\ j 
x i jk = y jk , for all k ∈ V, j ∈ P (8) 
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∑ 

j∈ P∪ H\ i 
x i jk = y ik , for all k ∈ V, i ∈ P (9)

∑ 

i ∈ P 
w ik ≤ 1 , for all k ∈ V (10)

I V T i = 

∑ 

k ∈ V 

∑ 

j∈ H∪ P\ i 
x i jk 

(
I V T j + t i j 

)
, for all i ∈ P (11)

IV T i ≥ 0 , for all i ∈ P (12)

W T i = D L i − min 

j∈ P 

{ 

M 

( 

1 −
∑ 

k ∈ V 
y jk y ik 

) 

+ D L j 

} 

, for all i ∈ P (13)

N R i = 

∑ 

j∈ P\ i 

∑ 

k ∈ V 
y ik y jk n p j , for all i ∈ P (14)

x i jk , y ik , w ik ∈ { 0 , 1 } , for all i, j ∈ P ∪ H, k ∈ V (15)

Formula (5) is the objective function that minimizes both the passengers’ inconvenience cost and the agency’s trans-

portation cost. One passenger’s inconvenience cost is a function of the number of co-riders, in-vehicle travel time, and extra

waiting time at the transit hub. Formula (6) ensures that all passengers will be picked up by one vehicle and only be served

once. Formula (7) represents that the maximum capacity of each vehicle should not be exceeded. Formulas (8) and (9) en-

sure the balanced flow from and to each passenger location. Formula (10) ensures that each vehicle can only be dispatched

once at most. Formula (11) gets all passengers’ in-vehicle travel times. Formula (12) is to ensure the non-negativity of all

passengers’ in-vehicle travel times. Formulas (13) and (14) get all passengers’ extra waiting times at the transit hub and the

number of shared riders, respectively. Formula (15) signifies that x ijk , y ijk , and w ik are binary variables. 

We do not use constraints to formulate passengers’ requirements because we already use the inconvenience cost function

to represent the passengers’ requirements. Thus, adding constraints to represent passengers’ requirements is redundant and

unnecessary. We use the example in Section 3.2 to demonstrate this. 

Proposition 1. Adding inconvenience cost function into the objective function can ensure that passenger(s) i’s (for all i ∈ P)

personalized requirement can be always satisfied. 

Proof. Suppose that X 

∗ is the optimal solution of model IP and passenger(s) i ’s requirement is not satisfied given the op-

timal matching and routing plan X 

∗. Thus, passenger(s) i ’s inconvenience cost is C i 
ICN ( X 

∗) = V i max . Let Z ( X 

∗) represent the

objective function value of model IP ( Formula 5 ). If passenger(s) i does not participate in the first-mile ridesharing service,

then the optimal objective function value is assumed to be Z i- . It is easy to understand that Z i- ≤ Z ( X 

∗) – C i 
ICN ( X 

∗) = Z ( X 

∗)

– V i max , because extra transportation cost is needed for a vehicle to serve passenger(s) i. Now consider a solution X i in

which passenger(s) i is shipped to the transit hub directly without shared riders, and the matching and routing plan is

optimized for other passengers. Thus, Z ( X i ) = Z i- + C i 
ICN ( X i ) + c i 0 . Since passenger(s) i is shipped to the transit hub directly

without shared riders in X i , passenger(s) i does not have the inconvenience cost ( C i 
ICN ( X i ) = 0), and thus Z ( X i ) = Z i- + c i 0 .

Z i- = Z ( X i ) – c i 0 ≤ Z ( X 

∗) – V i max , then Z ( X 

∗) – Z ( X i ) ≥V i max – c i 0 . Based on Formula (3) , V i max – c i 0 > 0 . Thus Z ( X 

∗) > Z ( X i ) . Since

X i is a feasible solution of model IP , the optimality of solution X 

∗ is violated. Thus, passengers’ requirements can be always

satisfied in the optimal solution X 

∗ of model IP. �

3.4. Customized incentive pricing scheme 

This subsection firstly introduces the basic idea of designing an individual rational and incentive compatible pricing strat-

egy. Then, we detail the design of the pricing scheme for the particular application in first-mile ridesharing. Subsequently,

we use a simple example to show how the price is obtained. The theoretical proofs of the properties, individual rationality,

incentive compatibility, and price non-negativity are given in Section 3.5 . 

The pricing framework is calculated by designing and solving a series of models, including one model IP 0 and n models

IP g (for all g ∈ P ). Model IP 0 should be equivalent to the original model IP proposed in Section 3.3 . Each model IP g is used to

calculate the price only and does not have practical meaning. Both models IP 0 and IP g have maximizing objective functions.

Then the pricing scheme is given by 

p g = g 
(
X 

I P g ∗) −
(

f 
(
X 

I P 0 ∗
)

− V g 

(
X 

I P 0 ∗
))

(16)
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Table 5 

Mathematical models for obtainment of the mechanism. 

Model denotations Objective functions Constraints Optimal solution Optimal objective function value 

IP 0 f ( X ): Formula (17) C S I P 0 Formula (18) X I P 0 ∗ = { x I P 0 ∗
i jk 

, y I P 0 ∗
ik 

} Z ∗I P 0 
IP g for all g ∈ P g ( X ): Formula (17) C S I P g Formulas ( 18, 19 ) X I P g ∗ = { x I P g ∗

i jk 
, y 

I P g ∗
ik 

} Z ∗I P g 

 

 

 

 

 

 

X I P 0 ∗ is the optimal solution of model IP 0 with the maximizing objective function f (.), which includes the summation of all

passengers’ values. 

f ( X ) = 

∑ 

i ∈ P 
V i (X ) + h (X ) (16a) 

where h ( X ) is used to make the model IP 0 equivalent to the original model IP proposed in Section 3.3 . 

X I P g ∗ is the optimal solution of model IP g , and g (.) is the maximizing objective function of the model. 

This pricing scheme makes the mechanism “individual rational” if the following condition is always satisfied 

g 
(
X 

I P g ∗) ≤ f 
(
X 

I P 0 ∗
)

(16b) 

This is because passenger(s) g ’s utility is U g = V g ( X 
I P 0 ∗) – p g = f ( X I P 0 ∗) – g ( X I P g ∗) ≥ 0, if the condition above is satisfied. A

direct way of satisfying this condition is to design the model IP g that makes the objective function g ( X ) identical with f ( X )

and to let the feasible regions of models IP g (for each g ) be included in the feasible region of model IP 0 . That is 

g ( X ) = f ( X ) (16c) 

C S I P g ⊆ C S I P 0 (16d) 

where C S I P g and C S I P 0 are the feasible regions of models IP g and IP 0 , respectively. 

If model IP g is independent of passenger(s) g ’s report, then the mechanism is “incentive compatible”. 

If passenger(s) g misreports the requirement, then we assume that the optimal solution of model IP 0 changes from X I P 0 ∗

to Y I P 0 ∗. g ( X I P g ∗) remains constant because g ( X I P g ∗) is independent of passenger(s) g ’s report. Then f ( X I P 0 ∗) changes to 

f ′ 
(
Y I P 0 ∗

)
= 

∑ 

i ∈ P,i 	 = g 
V i 

(
Y I P 0 ∗

)
+ V 

′ 
g 

(
Y I P 0 ∗

)
+ h 

(
Y I P 0 ∗

)
(16e) 

Then, the price becomes 

p ′ g = g 
(
X 

I P g ∗) −
(

f ′ 
(
Y I P 0 ∗

)
− V 

′ 
g 

(
Y I P 0 ∗

))
= g 

(
X 

I P g ∗) −
( ∑ 

i ∈ P,i 	 = g 
V i 

(
Y I P 0 ∗

)
+ h 

(
Y I P 0 ∗

)) 

(16f) 

Then passenger(s) g ’s utility becomes 

U 

′ 
g = V g 

(
Y I P 0 ∗

)
− p ′ g = 

( ∑ 

i ∈ P 
V i 

(
Y I P 0 ∗

)
+ h 

(
Y I P 0 ∗

)) 

− g 
(
X 

I P g ∗) = f 
(
Y I P 0 ∗

)
− g 

(
X 

I P g ∗) (16g) 

Y I P 0 ∗ may no longer be optimal for model IP 0 , indicating that the objective function of model IP 0 , f ( . ), will suffer from a

decrease caused by her misreporting. Thus, her utility U g = f ( X I P 0 ∗) – g ( X I P g ∗) will decrease as well if she misreports her

personalized requirement. Therefore, truthful reporting is passengers’ optimal strategy. 

The following content of this section details the design of pricing strategy in Formula (16) . The designed models IP 0 and

IP g (for all g ∈ P ) are summarized in Table 5 . 

Model IP 0 : 

Objective function: 

max Z 0 (X ) = 

∑ 

i ∈ P 
V i ( X ) − T C ( X ) (17) 

where TC ( X ) is the transportation cost of the routing plan X . 

T C(X ) = 

∑ 

k ∈ V 

∑ 

i ∈ P 

∑ 

j∈ P∪ H\ i 
x i jk c i j 

Constraints: 

X ∈ C S I P 0 (18) 

The constraint set C S I P 0 consists of Formulas (6) –(15) . 
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Fig. 3. An optimal solution of IP g . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

IP 0 is mathematically equivalent to the original optimization model ( IP ) in Section 3.3 . First, IP 0 and IP have identical

constraints. Second, the objective functions of the two models are equivalent implied by Formulas (1) , (5) and (17) . Thus,

X I P 0 ∗ is also the optimal solution of the original optimization model ( IP ) in Section 3.3 . 

Models IP g (along with IP 0 , IP g is to calculate each passenger’s price if he/she/they participates in the first-mile rideshar-

ing service): 

Objective function: Formula (17) . 

Constraints ( C S I P g ): Formulas (18) and (19) 

N R g = 0 (19)

Each model optimizes all passengers’ values minus the transportation cost in the system given that passenger(s) g is

transported to the transit hub directly without any shared riders (see Fig. 3 ). 

All passengers’ prices are p = { p 1 , p 2 ,..., p n }, in which each price is calculated by 

p g = Z ∗I P g −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

(20)

Model IP 0 and IP g have an identical objective function ( Formula 17 ) and the feasible region of model IP g is included

in the feasible region of model IP 0 because model IP g has an additional constraint ( Formula 19 ) compared with model IP 0 .

Thus, the mechanism is “individual rational” based on Formulas ( 16c ) and ( 16d ). Moreover, the optimal solution of model IP g
is independent of passenger(s) g ’s report of the parameters of αg 

NR , αg 
IVT , and αg 

WT because passenger(s) g ’s inconvenience

cost is zero and the value is a constant ( V 
g 
max ) if the passenger(s) is transported to the transit hub directly without shared

riders, no matter what values of αg 
NR , αg 

IVT , and αg 
WT the passenger(s) reports. This can ensure “incentive compatibility”

based on Formulas ( 16e )–( 16g ). In addition, the mechanism has another important property, “price non-negativity”, which

ensures that the service provider can receive revenue from passengers. The detailed proofs of these three properties are

given in Section 3.5 . 

The mechanism can be denoted as M( X I P 0 ∗, p ) , and Algorithm 1 shows how the mechanism is obtained. 

Let us return to the simple example proposed in Section 3.1 to show how the mechanism is obtained. The three pas-

sengers John, Peter, and Alice are numbered as “1”, “2”, and “3”, and the transit hub is numbered as “0”. We use the value

function in the example proposed in Section 3.2 . We firstly optimize the model IP 0 to get the optimal solution X I P 0 ∗ of model

IP 0 , which is a vehicle-passenger matching and vehicle routing plan: “Alice–Peter–John–Transit hub” (3-2-1-0, Fig. 4 ). The

total transportation cost of this routing plan ( T C( X I P 0 ∗) ) is 4.140 dollars. The optimization results are summarized in Table 6 .

Then we consider the three models IP 1 , IP 2 , and IP 3 ( IP g , g = 1, 2, and 3. John: 1, Peter: 2, Alice: 3). The optimization

results are listed in Table 7 . 

Take John as an example to show how his price is calculated. John’s price is calculated by Formula (20) : 

p 1 = 

(
V 1 

(
X 

I P 1 ∗
)

+ V 2 

(
X 

I P 1 ∗
)

+ V 3 

(
X 

I P 1 ∗
)

− T C 
(
X 

I P 1 ∗
))

−
(
V 2 

(
X 

I P 0 ∗
)

+ V 3 

(
X 

I P 0 ∗
)

− T C 
(
X 

I P 0 ∗
))

= ( 7 . 743 + 7 . 401 + 8 . 207 − 6 . 940 ) − ( 7 . 401 + 8 . 207 − 4 . 140 ) = 4 . 94 ( dollars ) . 

Others’ prices are calculated in the same method. The result of the mechanism is given in Table 8 . 

We then take Alice as an example to show three possible strategies: 1) taking a taxi to achieve direct shipment; 2) partic-

ipating in the ridesharing service and truthfully reporting her requirement ( αi 
IVT = 20, αi 

NR = 2, and αi 
WT = 8, the maximum

in-vehicle travel time, the maximum number of co-riders, and the maximum extra waiting time at the transit hub that the
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Fig. 4. Optimal routing plan of the example. 

Table 6 

Optimization results of IP 0 . 

Optimization 

results 

Passengers 

John Peter Alice 

Total travel time (minutes) 8.5 12.5 16.4 

Extra waiting time at the transit hub (minutes) 0 10 0 

Number of shared riders 2 2 2 

Values V i ( X 
I P 0 ∗) (dollars) 6.58 7.40 8.21 

Notation: V i ( X 
I P 0 ∗) , passenger i ’s value given the optimal plan X I P 0 ∗, i.e. the 

maximum willing-to-pay price. 

Table 7 

Optimization results of IP g . 

Models ( IP g ) 

IP 1 IP 2 IP 3 

Optimal solution X I P 1 ∗(3-2-0, 1-0) X I P 2 ∗(3-1-0, 2-0) X I P 3 ∗(2-1-0, 3-0) 

Total Transportation cost ( TC ( X I P g ∗)) 6.94 7.58 7.60 

Passenger indexes ( i ) 1 2 3 1 2 3 1 2 3 

Travel time (minutes) 8.49 10.41 14.34 8.49 10.41 14.33 8.49 12.50 12.31 

Waiting time at transit hub (minutes) 0 10 0 0 0 0 0 10 0 

Number of shared riders 0 1 1 1 0 1 1 1 0 

V i ( X 
I P g ∗) (dollars) 7.74 7.40 8.21 6.58 8.71 8.21 6.58 7.40 9.66 

Notation: V i ( X 
I P g ∗) , passenger i ’s ( i = 1, 2, 3) value (i.e. the maximum willing-to-pay price) given the optimal solution 

( X I P g ∗) of the model IP g . (3-2-0, 1-0), a vehicle-passenger matching and vehicle routing plan, in which two vehicles are 

used (Vehicle 1: 3-2-0, Vehicle 2: 1-0). 

Table 8 

The result of the customized pricing mechanism. 

Optimal routing plan Alice- > Peter- > John- > the transit hub 

Passengers John Peter Alice 

Taxi price ( V i max , in dollars) 7.74 8.71 9.65 

Maximum willing-to-pay price ( λi × V i max , in dollars) 6.58 7.40 8.21 

Actual payment (dollars) 4.94 5.27 6.21 

Utility (dollars) 1.64 2.13 2.00 

 

 

 

 

 

 

passenger can tolerate are 20, 2, and 8 minutes, respectively, as shown in Table 2); and 3) participating in the ridesharing

service and misreporting her requirement ( αi 
IVT = 15 , which is a misreported value, αi 

NR = 2, and αi 
WT = 8). Table 9 shows

the results of the three strategies. If she takes the taxi, her utility is “0” as she pays the maximum willing-to-pay price. If

she uses the ridesharing service and truthfully reports the requirement, the price is only 6.21 dollars and her utility is 2

dollars. However, if she misreports her requirement, the price increases to 7.85 and her utility decreases to 0.36. This table

demonstrates that participating in the ridesharing service and telling the truth is the optimal strategy for this passenger

(the bold number “2.00” is the maximum utility). 
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Table 9 

Alice’s three strategies and the corresponding results. 

Alice’s service attributes Strategies 

Direct shipment 

(taking taxi) 

Ridesharing, 

telling the truth 

Ridesharing, 

misreporting 

Optimal routing plan generated by the system (3-0, 2-0, 1-0) (3-2-1-0) (3-2-0, 1-0) 

Actual value (dollars) 9.66 8.21 8.21 

Price (dollars) 9.66 6.21 7.85 

Utility (dollars) 0 2.00 0.36 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.5. Theoretical analysis 

This subsection presents the mathematical description of the three properties “individual rationality”, “incentive compat-

ibility”, and “price non-negativity”, and gives mathematical proofs. 

Proposition 2. Individual rationality. As long as a passenger participates in the service system, the mechanism M( X I P 0 ∗, p ) en-

sures that each passenger’s utility ( U g ( X 
I P 0 ∗, p g ) ) received from the ridesharing service is always non-negative . 

U g 

(
X 

IP 0 ∗, p g 
)

= V g 

(
X 

IP 0 ∗
)

− p g ≥ 0 , for any g ∈ P (21)

Proof. 

U g 

(
X 

I P 0 ∗, p g 
)

= V g 

(
X 

I P 0 ∗
)

− p g 

= V g 

(
X 

I P 0 ∗
)

− Z ∗I P g + 

(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

= Z ∗I P 0 − Z ∗I P g 
= Z ∗I P 0 − Z 0 

(
X 

I P g ∗
)

The first part of the formula above is the optimal objective function value of IP 0. X I P g ∗ is a feasible solution of IP 0 , and

thus the second part of the formula is not necessarily the optimal objective function value of IP 0 . Thus, 

U g 

(
X 

I P 0 ∗, p g 
)

= Z ∗I P 0 − Z 0 
(
X 

I P g ∗) ≥ 0 

Proposition 3. Incentive compatibility. Telling the truth is always the optimal reporting strategy for each passenger who partici-

pates in the service under the mechanism M( X I P 0 ∗, p ) regardless of other passengers’ reporting strategies ( Nisan et al., 2007 ). 

Proof. We assume that passenger(s) g misreports the parameters (personalized requirements, denoted as θ g ) in the value

function. In the example in Section 3.2 , θ g = { αg 
NR , αg 

IVT , αg 
WT , λg }. 

We define V g 
′ (X ) = V 

g 
max − C ICN (NR g (X ) , IV T g (X ) , W T g (X ) , θg 

′ ) , where θ g ’ is the set of passenger(s) g ’s misreported values

in θ g . 

The optimization problem IP 0 becomes IP 0 
′ : 

Z ∗
I P 0 

′ = max Z 0 
′ (X ) = 

∑ 

i ∈ P,i 	 = g 
V i ( X ) + V g 

′ 
( X ) − T C(X ) , s . t . X ∈ C S I P 0 

Note that model IP 0 
′ uses all passengers’ reported personalized requirements as input data, in which passenger(s) g ’s

personalized requirement is misreported. Other passengers’ values ( V i ( X ), for all i 	 = g ) are calculated based on their reported

personalized requirements regardless of whether these passengers’ reports are truthful or not. The only difference of IP 0
from IP 0 

′ is that model IP 0 uses passenger(s) g ’s truthful report as an input data. We assume that X I P 0 
′ ∗ is the optimal

solution of IP 0 
′ . Optimization model IP g does not change, because problem IP g is independent of passenger(s) g ’s report.

More precisely, passenger(s) g ’s value always equals V 
g 
max (implied from Formulas 1 and 2 ) because the passenger(s) is

directly transported to the transit hub without shared riders in IP g (see Fig. 3) . 

Then, the price charged for passenger(s) g is: 

p ′ g = Z ∗I P g −
(

Z ∗
I P 0 

′ − V g 
′ 
(

X 

I P 0 
′ ∗
))

The utility that passenger(s) g can receive is: 

U g 

(
X 

I P 0 
′ ∗, p ′ g 

)
= V g 

(
X 

I P 0 
′ ∗) − p ′ g 

= V g 

(
X 

I P 0 
′ ∗) −

(
Z ∗I P g −

(
Z ∗

I P 0 
′ − V g 

′ (X 

I P 0 
′ ∗)))

= V g 

(
X 

I P 0 
′ ∗) −

(
Z ∗I P g −

( ∑ 

i ∈ P,i 	 = g 
V i 

(
X 

I P 0 
′ ∗) + V g 

′ (X 

I P 0 
′ ∗) − T C 

(
X 

I P 0 
′ ∗) − V g 

′ (X 

I P 0 
′ ∗)))

= 

∑ 

i ∈ P 
V i 

(
X 

I P 0 
′ ∗) − T C 

(
X 

I P 0 
′ ∗) − Z ∗I P g 

= Z 0 
(
X 

I P 0 
′ ∗) − Z ∗I P g 
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Fig. 5. Example of the transition solution obtainment. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

X I P 0 
′ ∗ is not necessarily the optimal solution of IP 0 , thus 

Z 0 

(
X 

I P 0 
′ ∗
)

≤ Z 0 
(
X 

I P 0 ∗
)

Accordingly, we have 

U g 

(
X 

I P 0 
′ ∗, p ′ g 

)
= Z 0 

(
X 

I P 0 
′ ∗
)

− Z ∗I P g ≤ Z 0 
(
X 

I P 0 ∗
)

− Z ∗I P g = U g 

(
X 

I P 0 ∗, p g 
)

where U g ( X I P 0 ∗, p g ) is passenger(s) g ’s utility and X I P 0 ∗ is the optimal solution of model IP 0 when he reports the true values

in θ g . X 
I P 0 

′ ∗ and X I P 0 ∗ are respectively the optimal solutions of models IP 0 
′ and IP 0 , regardless of other passengers’ reporting

strategies. This indicates that telling the truth is always the best strategy for each passenger regardless of other passengers’

reporting strategies. �
As passengers consider adopting different strategies, it becomes a game in which they decide whether to take a rideshar-

ing service or taxi service and choose to truthfully report or misreport their personalized requirements. The properties of

“individual rationality” and “incentive compatibility” of the designed mechanism ensure a Nash Equilibrium state of the 

game in which all passengers take ridesharing service and truthfully report their personalized requirements. This indicates

that taking ridesharing service and truthfully reporting is each passenger’s dominant strategy. 

Then, we introduce the definition of “transition solution” and analyze its property ( Proposition 4 ). The definition of

“transition solution” will be used to demonstrate that the mechanism has the property of “price non-negativity” ( Section 3.5

Proposition 5 ). 

Definition 1. Y g = TRS g ( X ) is the g th transition solution from a feasible solution X of the model IP 0 to the corresponding

feasible solution Y g of the model IP g if the transition process is given by Algorithm 2 . 

Fig. 5 shows an example of transition solution generation. Passenger(s) g goes to the transit hub directly without any

other shared passengers, and the broken links are re-connected. 

Proposition 4. For any passenger(s) i, V i ( Y g ) ≥ V i ( X ) for any solution X, where Y g = TRS g ( X ) for any g ∈ P . 

This proposition will be used in the proof of the “price non-negativity” proposition ( Section 3.5 Proposition 5 ) . 

Proof. If i = g , then V i ( Y g ) = V i max , and thus V i ( Y g ) ≥ V i ( X ). 

If passengers in requests i and g are served by the same vehicle, we have IV T i ( Y g ) ≤ IV T i ( X ), NR i ( Y g ) ≤ NR i ( X ), and WT i ( Y g )

≤ WT i ( X ). Since the passengers’ value function is a monotone decreasing function of NR i , IVT i , and WT i , we have V i ( Y g ) ≥
V i ( X ). 

If passenger(s) i and g are served by different vehicles, V i ( Y g ) = V i ( X ), because passenger(s) i ’s matching and routing plan

is the same in Y g as in X . 

Thus, for any passenger(s) i , we have V i ( Y g ) ≥ V i ( X ) for any transition solution g. �

Proposition 5. Price non-negativity. If two preconditions are satisfied: 1) the transportation cost and travel time between two

locations comply with the triangle inequality c ij ≤ c ig + c gj and t ij ≤ t ig + t gj for any i, j, and g; and 2) V i max > c i 0 ( Formula 3 ), the

service provider can always receive revenue from each passenger under the mechanism M( X I P 0 ∗, p ) . 

p g = Z ∗I P g −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

≥ 0 (22) 
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Table 10 

Addresses of the ten selected locations. 

Passengers Addresses Passengers Addresses 

1 458 Ralph St, Somerset, NJ 6 Rockafeller Road, Piscataway Township, NJ 

2 16 King Rd, Somerset, NJ 7 227 Hilton St, Highland Park, NJ 

3 58 Arden St, Somerset, NJ 8 121 S 11th Ave, Highland Park, NJ 

4 235 Hampshire Court, Piscataway Township, NJ 9 109 S 8th Ave, Highland Park, NJ 

5 375 Lancaster Ct, Piscataway Township, NJ 10 219 S 7th Ave, Highland Park, NJ 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Let Y g = T R S g ( X I P 0 ∗) = { x g 
i jk 

, y 
g 

ik 
| i ∈ P, j ∈ P ∪ H, k ∈ V } (see Definition 1 ). Since Y g is a feasible solution of IP g and X I P g ∗ is

the optimal solution of IP g , we have Z 0 ( X 
I P g ∗) ≥ Z 0 ( Y g ) . Thus, 

p g = Z 0 
(
X 

I P g ∗) −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

≥ Z 0 ( Y g ) −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

Since in solution Y g passenger(s) g is transported to transit hub without shared riders, V g ( Y g ) = V 
g 
max . Thus 

Z 0 ( Y g ) = 

∑ 

i ∈ P\ g 
V i ( Y g ) −

∑ 

k ∈ V 

∑ 

i ∈ P\ g 

∑ 

j∈ P∪ H\ i,g 
x g 

i jk 
c i j + 

(
V 

g 
max − c g0 

)
From Formula (3) , we have 

Z 0 ( Y g ) > 

∑ 

i ∈ P\ g 
V i ( Y g ) −

∑ 

k ∈ V 

∑ 

i ∈ P\ g 

∑ 

j∈ P∪ H\ i,g 
x g 

i jk 
c i j . 

From Proposition 4 , we have ∑ 

i ∈ P\ g 
V i ( Y g ) ≥

∑ 

i ∈ P\ g 
V i 

(
X 

I P 0 ∗
)

Thus 

Z 0 ( Y g ) > 

∑ 

i ∈ P\ g 
V i 

(
X 

I P 0 ∗
)

−
∑ 

k ∈ V 

∑ 

i ∈ P\ g 

∑ 

j∈ P∪ H\ i,g 
x g 

i jk 
c i j 

∑ 

k ∈ V 
∑ 

i ∈ P\ g 
∑ 

j∈ P∪ H\ i,g x 
g 

i jk 
c i j is the transportation cost excluding the transportation cost that is related to passen-

ger(s) g in solution Y g . It is easily proved smaller than or equal to the total transportation cost in solution X I P 0 ∗

( 
∑ 

k ∈ V 
∑ 

i ∈ P 
∑ 

j∈ P∪ H\ i x 
I P 0 ∗
i jk 

c i j ) because of the triangle equality. Thus 

Z 0 ( Y g ) > 

∑ 

i ∈ P,i 	 = g 
V i 

(
X 

I P 0 ∗
)

−
∑ 

k ∈ V 

∑ 

i ∈ P 

∑ 

j∈ P∪ H\ i 
x I P 0 ∗

i jk 
c i j = Z ∗I P 0 − V g 

(
X 

I P 0 ∗
)

Thus 

p g > Z 0 ( Y g ) −
(
Z ∗I P 0 − V g 

(
X 

I P 0 ∗
))

≥ 0 

4. Case study 

4.1. Input setting 

This section presents a case study to illustrate the results of the designed mechanism and its theoretical properties. In

the following case, we select ten locations near the New Brunswick Train Station (New Jersey, in the United States) on

Google Maps. The addresses of the ten locations are listed in Table 10 and are identified in Fig. 6 on the map. The travel

times between two locations are estimated by Google Maps at 12:30 p.m. on July 13, 2017. The travel distance between two

locations is obtained based on the actual routes using the information from Google Maps. For convenience of clarification,

the transportation cost is set to be proportional to the travel distance. The taxi price ( V i max ) is $5 for the first mile and

$1.5 for each additional mile, V i max = 5 + 1 . 5 × max ( d i 0 − 1 , 0) . Each location has one passenger sending the request for the

service. We assume that each passenger catches one of the three trains at New Brunswick Station. Passengers’ train schedule

information is listed in Table 11 . In our case study, for simplicity and ease of illustration, all the passengers’ preferred arrival

deadlines are set to be ten minutes before their train departure times. Our model can also handle the problems when their

preferred arrival deadlines are different. A fleet of cars with a seat capacity of “4” will be dispatched to pick up all the

passengers and transport them to the transit hub before the specified deadlines. 

The case study uses two types of value functions and passengers’ report methods in order to show that the generalized

mechanism can be adapted to different scenarios. In the first scenario, passengers can report the maximum extra in-vehicle
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Fig. 6. Selected locations near New Brunswick Station. 

Table 11 

Trains in New Brunswick Station selected by the ten passengers. 

Passengers indexes ( i ) Train numbers Train departure times Passengers indexes ( i ) Train numbers Train departure times 

1 Q3846 1:20 pm 6 Q3846 1:20 pm 

2 Q3846 1:20 pm 7 Q3843 1:35 pm 

3 Q3848 1:36 pm 8 Q3843 1:35 pm 

4 Q3848 1:36 pm 9 Q3843 1:35 pm 

5 Q3843 1:35 pm 10 Q3848 1:36 pm 

Table 12 

Passengers’ personalized requirements in the first scenario. 

Personalized 

requirements 

Passenger indexes 

1 2 3 4 5 6 7 8 9 10 

αi 
NR 3 3 3 4 4 3 4 4 4 4 

αi 
IVT (minutes) 10 15 15 10 6 8 7 15 10 10 

αi 
WT (minutes) 20 20 5 10 10 20 10 5 10 15 

αi 
NR : the maximum number of shared riders that the passenger i can tolerate. 

αi 
IVT : the maximum extra in-vehicle travel time that the passenger i can tolerate. 

αi 
WT : the maximum extra waiting time at the transit hub that the passenger i can 

tolerate. 

 

 

 

 

 

travel time, maximum number of shared riders, and maximum extra waiting time at the transit hub (see Table 12 ), as shown

in the example in Section 3 . Passengers’ value function is as that of the example in Section 3.2 : 

V i = 

{ 

V 

i 
max , direct shipment 

0 , ridesharing , requirements are not satisfied 

λi V 

i 
max , ridesharing , requirements are satisfied 

Passengers’ reporting methods and the value function are only used for illustration, and the method can be adapted to

any specific form. 

In the first scenario, passengers can directly report their personalized requirements. The interactive system is straightfor-

ward for users to manipulate. However, the system has one limitation: as long as one passenger’s requirements are satisfied,

the value (maximum willing-to-pay price) is assumed to be a constant, λi V 
i 
max , even though the service has different degrees
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Table 13 

Passengers’ personalized requirements in the second scenario. 

Personalized 

requirements 

Passenger indexes 

1 2 3 4 5 6 7 8 9 10 

αi 
NR 0.12 0.29 0.41 0.35 0.18 0 0.10 1.00 0.19 0.20 

αi 
IVT 0.30 0.40 0.51 0.44 0.82 1.66 0.62 1.89 0.32 1.20 

αi 
WT 0.10 0.10 1.52 1.79 0.83 0.03 0.76 0.88 1.25 2.00 

αi 
NR (dollars per co-rider): reduction rate of maximum willing-to-pay price in terms of the number of co-riders. 

αi 
IVT (dollars every 5 minutes): reduction rate of maximum willing-to-pay price in terms of the extra in-vehicle travel time. 

αi 
WT (dollars every 5 minutes): reduction rate of maximum willing-to-pay price in terms of the extra waiting time at the transit hub. 

Table 14 

Results of the mechanism in the two scenarios. 

Results (a) Results of the mechanism in the first scenario 

Passenger indexes ( i ) 

1 2 3 4 5 6 7 8 9 10 

V i max (in dollars) 7.25 8.60 8.15 10.55 10.70 8.30 6.20 6.05 5.75 5.90 

V i (in dollars) 6.16 7.31 6.93 8.97 9.10 7.06 5.27 5.14 4.89 5.02 

p i (in dollars) 4.95 6.01 5.63 6.05 6.20 5.40 4.80 4.55 4.35 4.50 

U i (in dollars) 1.21 1.30 1.30 2.92 2.90 1.66 0.47 0.59 0.54 0.52 

(b) Results of the mechanism in the second scenario 

Results Passenger indexes ( i ) 

1 2 3 4 5 6 7 8 9 10 

V i (in dollars) 6.69 6.98 6.82 9.15 9.52 8.20 5.85 5.05 5.25 5.70 

p i (in dollars) 6.56 6.53 6.14 6.40 6.81 6.96 5.70 4.96 5.02 5.49 

U i (in dollars) 0.13 0.45 0.68 2.75 2.71 1.24 0.15 0.09 0.23 0.21 

V i max : the taxi price. V i : passenger i ’s value, i.e. the maximum willing-to-pay price. p i : passenger i ’s real 

price. U i : passenger i ’s utility, U i = V i – p i . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

of inconvenience attributes. In the example of Section 3 , John’s maximum willing-to-pay price is assumed to always be 6.58,

with the in-vehicle travel time increasing from 8.5 minutes to 10 minutes. 

In other scenarios, the maximum willing-to-pay price may decrease as the inconvenience degree increases. Thus, we

adapt the mechanism in the second scenario, in which passengers’ maximum willing-to-pay prices decrease as the inconve-

nience degree increases. In the second scenario, passengers can report the reduction rate of maximum willing-to-pay price

in terms of the three inconvenience attributes. For example, if a passenger reports αNR 
i 

= 0 . 5 , it indicates that each time the

number of co-riders increases by one, the maximum willing-to-pay price decreases by 0.5 dollar. Similarly, αIV T 
i 

= 0 . 5 means

that each time the extra in-vehicle travel time increases by 5 minutes, the maximum willing-to-pay price decreases by 0.5

dollar; αW T 
i 

= 0 . 5 means that each time the extra waiting time at the transit hub increases by 5 minutes, the maximum

willing-to-pay price decreases by 0.5 dollar. Thus, the three parameters αi 
NR , αi 

IVT , and αi 
WT represent the strictness of the

requirements. The values of αi 
NR , αi 

IVT , and αi 
WT are given in Table 13 . 

The hypothetical value function is naturally presented by Formula (23) . 

V i = V 

i 
max − αNR 

i N R i −
αIV T 

i ( IV T i − t i 0 ) 

5 

− αW T 
i 

W T i 

5 

(23)

This value function achieves a more reasonable mechanism in which the maximum willing-to-pay price decreases as

the inconvenience degree increases. Note that we use this hypothetical function just to show that our mechanism can be

adapted for generalized scenarios. This form of the value function in the second scenario is less straightforward than that

in the first scenario, and the reporting method may be more complex for passengers. 

4.2. The results of the mechanism 

We solve the model IP 0 to get the optimal matching and routing plans for the first and second scenarios, (2-3-1-0, 7-8-

9-10-0, 4-5-6-0) and (2-3-1-0, 4-5-6-0, 9-10-0, 7-8-0), shown in Fig. 7 (a) and (b), respectively. Table 14 (a) and (b) present

the price information for the two scenarios, respectively. V i max is the taxi price, representing passenger i ’s maximum willing-

to-pay price without any inconvenience. V i is passenger i ’s actual maximum willing-to-pay price given the inconvenience

cost caused by ridesharing considering the personalized requirement. p i is passenger i ’s actual paid price. The prices are

all positive in both of the scenarios, indicating that the service provider receives revenue from the participants. U i repre-

sents passenger i ’s utility that is the maximum willing-to-pay price minus the actual paid price. All passengers’ utilities are
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Fig. 7. (a) Optimal vehicle-passenger matching and vehicle routing plan in the first scenario. (b) Optimal vehicle-passenger matching and vehicle routing 

plan in the second scenario. 

Algorithm 1 

Obtaining the pricing mechanism. 

Input all parameters; 

Solve the optimization model IP 0 and get the optimal solution X I P 0 ∗, the optimal objective function value Z ∗I P 0 , and each passenger’s value V g ( X I P 0 ∗) in 
X I P 0 ∗; 

For g = 1: n 

Solve the optimization model IP g , and get the optimal objective function value Z ∗I P g ; 
Calculate passenger(s) g ’s price p g = Z ∗I P g − ( Z ∗I P 0 − V g ( X 

I P 0 ∗) ) ; 
End for 

Output the mechanism M( X I P 0 ∗, p ) . 
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Algorithm 2 

Obtaining the transition solutions Y g = TRS g ( X ). 

Input a solution X = { x ijk , y ik , w ik }; 

Let Y g = X ; 

If NR g > 0 

Find k that y gk = 1, and let y gk = 0; 

Let another vehicle k ′ without tasks pick up passenger(s) g, y gk ′ = 1, w gk ′ = 1, and x g 0 k ′ = 1; 

Find j that x gjk = 1, and let x gjk = 0; 

If w gk = 0 

Find i that x igk = 1, and let x igk = 0; 

Let x ijk = 1; 

Else 

Let w gk = 0; 

Let w jk = 1; 

End if 

End if 

Output Y g . 

(a)

(b)

Fig. 8. (a) “Incentive compatibility” in the first scenario. (b) “Incentive compatibility” in the second scenario. 

 

 

 

 

 

positive, indicating that all passengers are willing to choose ridesharing versus the taxi service. The non-negative utilities

also indicate that the discount is able to offset passengers’ reduced maximum willing-to-pay prices caused by the incon-

venience considering their personalized requirements. Furthermore, we take the 7th passenger as an example to show the

property of “incentive compatibility”. Fig. 8 (a) and (b) are straightforward demonstrations of “incentive compatibility” in

the two scenarios, respectively. If the passenger truthfully reports the requirements on the inconvenience attributes, he will
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receive no smaller utility than that if he misreports the requirements. In Fig. 8 (a), we assume that the maximum extra

in-vehicle travel time that passenger 7 can tolerate is 7 minutes. If the passenger truthfully reports the “7 minutes” (the

red dash line), he receives the maximum utility ($0.47) from the service. If he misreports the maximum tolerable in-vehicle

travel time as being less than “7 minutes”, the price may increase and his utility will decrease. If he misreports the max-

imum tolerable in-vehicle travel time as being greater than “7 minutes”, the routing plan may impose him an in-vehicle

travel time longer than “7 minutes”, and thereby his requirement is not satisfied. Thus, his maximum willing-to-pay price

is zero but he still has to pay a price, and thus his utility is negative. Similarly, in Fig. 8 (b), truthfully reporting the re-

duction rate ($0.6 every five minutes) of the maximum willing-to-pay price in terms of the extra in-vehicle travel time is

the optimal strategy for passenger 7. Note that Fig. 8 only presents one inconvenience attribute – extra in-vehicle travel

time – as an example, and we can draw the same conclusion for the other inconvenience attributes. Finally, several pre-

vious studies ( Zhao et al., 2014; Biswas et al., 2017 ) have considered whether the payment collected from participants can

cover the transportation cost. From the results of the mechanism, the profit (the summation of all prices minus the trans-

portation cost, 
∑ n 

i =1 p i − T C( X I P 0 ∗) ) is $40.74 in the first scenario and $46.08 in the second scenario, both of which are

positive. This property will be tested by a group of numerical examples with various numbers of passengers in our Part II

paper. 

4.3. Sensitivity analysis 

Sensitivity analysis aims to investigate the dynamic process of the vehicle-passenger matching and vehicle routing plan

and the prices as passengers change their requirements. We increase the strictness of one passenger’s requirement on one

of the three inconvenience attributes by fixing his requirements on the other two inconvenience attributes as well as all the

other passengers’ requirements. Fig. 9 (a), (b), and (c) present how prices change due to decreasing the maximum degree

of the three inconvenience attributes that the passengers can tolerate in the first scenario. Fig. 10 (a), (b), and (c) show the

changing process of the prices in the second scenario caused by increasing the reduction rate of maximum willing-to-pay

price in terms of the increased degrees of the three inconvenience attributes, respectively. 

In Fig. 9 , when the maximum degree of the three inconvenience attributes that the passengers can tolerate decreases,

each passenger’s price either remains constant or increases. The price remains constant because passengers’ changed toler-

ance does not impact the optimal solution of the optimization model IP 0 and the optimal vehicle-passenger matching and

vehicle routing plan does not change. If the optimal matching and routing plan changes due to tightening the tolerance for

the inconvenience attributes, then the passengers receive better-quality services and the price increases. Take passenger 6

in Fig. 9 (a) as an example. When the maximum number of co-riders she can tolerate decreases from 3 to 2, the optimal

vehicle-passenger matching and vehicle routing plan (Vehicle 1: 2-3-1-0; Vehicle 2 : 4-5- 6 -0; Vehicle 3: 7-8-9-10-0) does

not change and the price remains constant. When the maximum tolerable number of co-riders decreases from 2 to 1, the

optimal vehicle-passenger matching and vehicle routing plan changes to “Vehicle 1: 2-3-1-0; Vehicle 2: 5-4-0; Vehicle 3 :

6 -0; Vehicle 4: 7-8-9-10-0” and the price increases due to the better-quality service. Similar conclusions are drawn from

Fig. 9 (b) and (c). Likewise, in Fig. 10 (a), when passenger 6 increases the reduction rate of maximum willing-to-pay price in

terms of the number of co-riders from $0.4 per co-rider to $0.6 per co-rider, the optimal vehicle-passenger matching and

vehicle routing plan (Vehicle 1: 2-3-1-0; Vehicle 2 : 4-5- 6 -0; Vehicle 3: 7-8-0; Vehicle 4: 9-10-0) and the price remain con-

stant. When the reduction rate of the maximum willing-to-pay price in terms of number of co-riders is increased from $0.6

per co-rider to $0.8 per co-rider, the optimal vehicle-passenger matching and vehicle routing plan changes to “Vehicle 1:

2-3-1-0; Vehicle 2: 5-4-0; Vehicle 3 : 6 -0; Vehicle 4: 7-8-0; Vehicle 5: 9-10-0” and the price increases accordingly. The sen-

sitivity analysis implies that passengers can receive higher-quality service with higher prices by placing stricter requirements

on the corresponding inconvenience factors based on their preferences. 

4.4. Summary 

This section proposed a case study in two scenarios. The first scenario is more clear-cut. Passengers can directly report

their lowest tolerance for the three inconvenience attributes. However, the first scenario has a limitation regarding the value

function: it assumes that as long as one passenger’s requirement is satisfied, the maximum willing-to-pay price is constant.

In the second scenario, the strictness of passengers’ requirements is reflected in the reduction rate of the maximum willing-

to-pay price in terms of the three inconvenience attributes. The value function shows that passengers’ maximum willing-to-

pay prices decrease as the degree of any inconvenience attribute increases. We adopt these two scenarios to demonstrate

the generality of the proposed mechanism, which is flexible enough to be adapted for different scenarios. This case study

straightforwardly shows the three properties, “individual rationality”, “incentive compatibility”, and “price non-negativity” of 

the mechanism in the two different scenarios. Moreover, the prices collected from participants can cover the transportation

cost in this case. Our Part II paper will show the service provider’s profit in more cases with various numbers of participants.

The sensitivity analysis demonstrates that if passengers place stricter requirements on the inconvenience attributes, they

may receive higher-quality service with a higher price. 

In this case study, we only use one example in two specific scenarios to interpret the results of the mechanism. The scale

of the problem is small because only ten passengers are involved. Thus, this example lacks generality and is unable to test
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Fig. 9. (a) Price changing caused by tightening the tolerance for the number of co-riders in the first scenario. (b) Price changing caused by tightening the 

tolerance for extra in-vehicle travel time in the first scenario. (c) Price changing caused by tightening the tolerance for extra waiting time at the transit 

hub in the first scenario. 

 

 

effectiveness of the potential algorithms in obtaining the mechanism for generalized large-scale problems. Our Part II paper

will develop an efficient algorithm and test the performance of this algorithm using numerical examples with different

scales. 
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Fig. 10. (a) Price changing caused by increasing requirement strictness on the number of co-riders in the second scenario. (b) Price changing caused by 

increasing requirement strictness on the extra in-vehicle travel time in the second scenario. (c) Price changing caused by increasing requirement strictness 

on the extra waiting time at the transit hub in the second scenario. 

 

 

5. Conclusions 

This paper considered passengers’ personalized requirements when passengers use a first-mile ridesharing service. We 

have designed a mechanism to incentivize passengers to participate in the ridesharing service based on their personalized

requirements. This mechanism simultaneously optimizes the vehicle-passenger matching and vehicle routing plan and de- 

termines each participant’s incentive price. Passengers will receive personalized service and a customized price based on
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their reported personalized requirements on the inconvenience attributes, including number of co-riders, extra in-vehicle

travel time, and extra waiting time at the transit hub. We proved that the proposed mechanism is individual rational, incen-

tive compatible, and price non-negative. A case study is given to demonstrate the generality of the mechanism to different

scenarios. 

6. Future research 

This paper has limitations. First, obtaining the mechanism is computationally challenging when the scale of the problem

is large. Our Part II paper develops an effective algorithm to obtain the mechanism. Second, we only consider the static

case of a first-mile ridesharing service in which all passengers book the service in advance. Our future work will consider

dynamic cases in which passengers send on-demand requests. We expect to develop an online mechanism design model

to incentivize passengers to reveal request information earlier, so that the algorithm can achieve system-wide optimization.

Third, our future work will develop a convenient, efficient, and reasonable interactive system (e.g. smartphone APPs) that

allows users to report their mobility preferences. Finally, the travel time in this paper is deterministic, while in practice it is

usually uncertain. Travel time uncertainty and reliability will be considered for the mechanism design in our future work. 
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