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A B S T R A C T

This paper focuses on operational level stochastic orienteering problem, in which travel time and
service time are stochastic and the vehicle can adjust its routing plan. A real-time adjustment
strategy, called Simulation-Aided Multiple Plan Approach (SMPA), is proposed to optimize the
real-time vehicle routing plan. We embed a “myopia prevention” strategy into SMPA to improve
solution quality. The numerical experiment compares the performance of our proposed algorithm
with a strategic level algorithm and another commonly used operational level algorithm called
re-optimization algorithm. The results show that our algorithm outperforms previous methods in
both solution quality and computing time.

1. Introduction

The orienteering problem (OP) is an extension of the classic traveling salesman problem (TSP). It is also known as the traveling
salesman problem with profit (Feillet et al., 2005; Bérubé et al., 2009; Jozefowiez et al., 2008), the selective traveling salesman
problem (Laporte and Martello, 1990; Gendreau et al., 1998a,b, Thomadsen and Stidsen, 2003) or the maximum collection problem
(Kataoka and Morito, 1988; Butt and Cavalier, 1994; Butt and Ryan, 1999). The orienteering problem has a wide array of trans-
portation and logistics applications, such as fuel delivery (Golden et al., 1987), single-ring design when building telecommunication
networks (Thomadsen and Stidsen, 2003), tourist trip design (Vansteenwegen et al., 2007; Wörndl et al., 2017), mobile-crowd-
sourcing (Liao and Hsu, 2013; Chen et al., 2014), and unmanned aircraft and submarine surveillance activities (Wang et al., 2008;
Evers et al., 2014a).

The OP can be defined as follows. A set of customers is given with a corresponding set of rewards. The terms “customer” and
“reward” have different meanings in different applications. For example, in the Tourist Trip Design Problem (TTDP), “customers” is
defined as a set of attractions to be visited in a city and the “reward” represents the interest level of an attraction. In unmanned
aircraft activities, “customers” is a set of sites that are worth being surveilled and the “reward” is the value obtained if a site is
surveilled. One vehicle should visit some customers selectively and determine a route with the objective of maximizing the total
collected reward. The vehicle has a time budget, within which the vehicle must arrive at the pre-planned destination (Tsiligirides,
1984).

In practice, some elements of the orienteering problem are uncertain. For example, a truck’s travel time on a link varies based on
traffic conditions. Unmanned aircraft vehicles’ travel time is influenced by wind, altitude and blocks. In addition, the service time for
customers is not necessarily constant. Therefore, researchers proposed stochastic orienteering problems (SOP) for practical appli-
cations (Campbell et al., 2011; Tang and Miller-Hooks, 2005; Papapanagiotou et al., 2013, 2014, 2015a,b, 2016). This paper studies
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the orienteering problem with stochastic travel and service time. The objective of the stochastic orienteering problem is to
maximize total reward while ensuring that the vehicle can arrive at the planned destination within the time budget for a probability
greater than or equal to a required threshold (Varakantham et al., 2017).

On the operational level, some uncertain factors will be dynamically revealed after a vehicle visits certain customers, causing the
a priori routing plan to possibly be no longer optimal for this operational-level stochastic orienteering problem (OSOP). For example,
assume that a vehicle is executing its transportation and serving task based on a pre-planned route. After it visits some customers, the
vehicle may not have enough time to finish its remaining tasks or the vehicle has redundant time to visit more customers if it
continues to travel along the pre-planned route. At this time, the vehicle can adjust its route to ensure a high probability that the
vehicle can reach the planned destination within the remaining time budget or to collect more rewards if the vehicle has a sufficient
remaining time budget. Thus, this paper proposes a new computationally effective operational-level adjustment strategy called
simulation-aided multiple plan approach (SMPA) to improve the vehicle routing plan in real time. Since the travel time and
service time may not always follow tractable probabilistic distributions (e.g. normal distribution), it is difficult to analytically for-
mulate the probability that the vehicle can reach the planned destination within a given time budget, which is called the “in-time
arrival probability” (Varakantham et al., 2017). This paper applies the Monte Carlo simulation (Papapanagiotou et al., 2015b) to
estimate the in-time arrival probability of a routing plan. The real-time adjustment strategy is implemented by the Multiple Plan
Approach (MPA), which is inspired by a previous study by Bent and Van Hentenryck (2004). The basic idea of the MPA is to generate
a solution pool, from which one solution is selected as the future routing plan that will be adopted by the vehicle to execute
transportation and serving tasks. The solution pool is generated when the vehicle is traveling or serving a customer, and one solution
is selected for future task execution each time the vehicle finishes serving a customer. The MPA can save decision making time when
determining the next to-be-visited customer by fully utilizing the computer’s leisure time to prepare a solution pool when the vehicle
is traveling or serving a customer. However, simply using the MPA to adjust the routing plan in real time may cause the myopia
problem, which specifically occurs in the OSOP. For example, simply adopting the optimal routing plan may sometimes cause regret
for missing the opportunity to adopt a better routing plan. The myopia problem will be introduced in Section 4 in detail. To improve
the quality of the routing plans, we incorporate a “myopia prevention” strategy into the SMPA. The “myopia prevention” strategy
aims to minimize the expected regret reward when determining the next to-be-visited customer. Instead of simply adopting the
optimal routing plan, the “myopia prevention” strategy preserves the probability to adopt the current routing plan in order not to lose
the opportunity to adopt a potential routing plan with higher reward during the upcoming task execution process. Subsequently, a
group of numerical examples are designed to test the proposed SMPA. The vehicle routing plan obtained by the real-time adjustment
strategy SMPA will be compared with the a priori routing plan obtained by a strategic-level algorithm. Then another commonly used
real-time adjustment strategy in the dynamic vehicle routing problem called re-optimization algorithm (Pillac et al., 2013) is em-
ployed to compare with the proposed SMPA in terms of the solution quality and computing time.

The remainder of the paper is organized as follows: Section 2 reviews existing literature on the orienteering problem. Section 3
introduces the operational-level stochastic orienteering problem. Section 4 proposes the real-time adjustment strategy called the
simulation-aided multiple plan approach (SMPA). In section 5, numerical examples are designed and a simulation experiment is
conducted to test the performance of the new algorithm compared to selected previous methods. Conclusions are drawn in Section 6
and future work is proposed in Section 7.

2. Literature review

2.1. Existing work

The orienteering problem was first proposed by Tsiligirides (1984) in the form of deterministic and static components. Since then,
the problem has received wide attention because of the practical needs of transportation and logistics applications. Researchers have
developed various algorithms that attempt to solve the orienteering problem (Leifer and Rosenwein, 1994; Wang et al., 1995;
Fischetti et al., 1998; Tasgetiren and Smith, 2000; Schilde et al., 2009; Sevkli and Sevilgen, 2006; Liang et al., 2006; Campos et al.,
2014; Chekuri and Kumar, 2004; Kobeaga et al., 2017; Ostrowski et al., 2017).

As attention to this problem has expanded, researchers have proposed some variations of orienteering problems, such as the
orienteering problem with times window (OPTW) (Kantor and Rosenwein, 1992; Righini and Salani, 2006, 2009; Tricoire et al.,
2010), the team orienteering problem (TOP) (Archetti et al., 2007; Chao, 1996a; Souffriau et al., 2010; Ke et al., 2008), capacitated
team orienteering problem (Archetti et al., 2009; Tarantilis et al., 2013), the team orienteering problem with times window (TOPTW)
(Vansteenwegen et al., 2009; Labadie et al., 2012; Gunawan et al., 2017), and the multi-objective orienteering problem (MOP)
(Jozefowiez et al., 2008; Schilde et al., 2009). Some researchers applied different variants of OP into practice, such as tourist trip
design (Baffo et al., 2015; De Falco et al., 2015), mobile-crowdsourcing (Liao and Hsu, 2013; Chen et al., 2014), and unmanned
aircraft and submarine surveillance activities (Wang et al., 2008; Evers et al., 2014a). For more variants of the OP, please refer to
Gunawan et al. (2016). However, all of these orienteering problems are deterministic and static. In practice, many elements of
orienteering are uncertain and dynamic. Thus, more attention has recently been paid to the stochastic and dynamic orienteering
problems.

Several researchers have studied stochastic orienteering problems. Ilhan et al. (2008) sought to solve the orienteering problem
with stochastic profits. Evers et al. (2014b) assumed stochastic weights of the rewards collected by the vehicle in the orienteering
problem. Zhang et al. (2016) assumed that the customers’ presence was stochastic (i.e. each customer had a probability of requiring a
visit) and optimized both the profit collected and the travel cost. Varakantham and Kumar (2013) and Varakantham et al. (2017)
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considered stochastic travel time for the orienteering problem; they formulated a risk-aware stochastic orienteering problem as a
scalable mixed integer linear programming problem. Gupta et al. (2012) assumed that the size of a node is random. In other words,
they attempted to solve the orienteering problem with stochastic service time. Campbell et al. (2011), Tang and Miller-Hooks (2005),
Papapanagiotou et al. (2013, 2014, 2015a,b, 2016) handled the orienteering problem with both stochastic service time and travel
time.

Another variant of the orienteering problem is the dynamic orienteering problem, in which some elements, such as travel time and
profit are updated as time progresses. Fomin and Lingas (2002), Li et al. (2010), Verbeeck et al. (2014a), and Garcia et al. (2010)
considered time-dependent orienteering problems, in which travel time varies in different time periods. In their research, they
assumed that the travel time can be accurately predicted, and thus the problem is essentially deterministic. Dynamic and stochastic
orienteering problems have also been studied by several researchers. The orienteering problems studied by Lau et al. (2012),
Verbeeck et al. (2014b), and Verbeeck (2016) have stochastic and time-dependent travel times. The travel time varies in different
time stages and is stochastic with a known probability distribution.

2.2. Knowledge gaps

Although some researchers considered dynamic elements in the stochastic orienteering problem, they only focused on time-
dependent travel time. Almost all previous studies on this subject focused on strategic-level optimization rather than on operational-
level optimization. Their algorithms obtain an a priori routing plan in the planning stage. However, real-time adjustment strategies for
operational-level optimization have not yet been well studied.

2.3. Intended contributions of this paper

To narrow the above-mentioned knowledge gaps, this paper aims to bring the following contributions to the body of knowledge:

• To our knowledge, this paper is among the very few studies that focus on the operational-level stochastic orienteering problem
(OSOP). In the OSOP, the vehicle can adjust its routing plan in real time when executing transportation and serving tasks so that
the vehicle can collect more reward and ensure a higher in-time arrival probability.

• We propose a real-time adjustment strategy, called simulation-aided multiple plan approach (SMPA), to handle the OSOP with
stochastic travel and service times that are subject to any general distributions (not necessarily analytical tractable distributions
such as a normal distribution). The simulation technique is integrated in Multiple Plan Approach to direct the generation of
solution pools and estimate the in-time arrival probabilities. The SMPA can save decision making time when determining the next
to-be-visited customer by fully utilizing the computer’s leisure time to obtain a solution pool for preparation when the vehicle is
traveling or serving a customer.

• We embed a “myopia prevention” strategy into the SMPA to generate a routing plan that lets the vehicle collect more reward and
simultaneously keep a high in-time arrival probability. The “myopia phenomenon” specifically occurs in the OSOP when a real-
time adjustment strategy is used to solve OSOP. It minimizes the expected regret reward when determining the next to-be-visited
customer. Instead of simply adopting the optimal routing plan, the “myopia prevention” strategy preserves the probability to
adopt the current routing plan in order not to lose the opportunity to adopt a potential routing plan with higher reward during the
upcoming task execution process.

2.4. The scope of this paper

This paper considers the operational-level stochastic orienteering problem, in which the travel times and service times are sto-
chastic and the vehicle can adjust the routing plan in real time. We assume that the distributions of the travel times and service times
are known in advance and are all time-independent. All customers are pre-determined and we do not consider the dynamically
emerging customers when the vehicle is executing tasks. The rewards of all customers are deterministic and known.

3. Problem statement

Vansteenwegen et al. (2011) provided the basic description of the orienteering problem. Here, we define the orienteering problem
with stochastic travel and service time. Let CT={1, 2, …, n} be a set of customers, which will be visited selectively. Let DP={0}
represent the departure location and DT={n+1} represent the destination of a vehicle. All the locations are denoted as the set

= ∪ ∪N CT DP DT. Associated with each i ∊ CT, there is a reward ri for the vehicle if it serves this customer. Let r be the collection of
all rewards r={r1, r2, …, rn}. The time ti,j needed to travel from location i to j (i, j ∊N) and the service time sti needed by customer i
(i ∊ CT) are assumed as random variables. Let t={ti,j | i, j ∊N} and st={sti | i ∊ CT}. Not all customers can be visited since the
vehicle’s available time is limited to a given time budget T. The objective of this problem is to maximize total collected reward with
the constraint that the in-time arrival probability is greater than or equal to a threshold p. Thus, the stochastic orienteering problem
(SOP) in this paper can be simply formulated by Formula (1). For a detailed formulation of the SOP, please refer to Varakantham et al.
(2017).
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where X is a routing plan, RW(X) obtains the total reward if the vehicle adopts the routing plan X, and IAP(X) calculates the in-time
arrival probability.

In the operational-level stochastic orienteering problem (OSOP), the routing plan adopted by the vehicle can be adjusted after the
vehicle finishes serving certain customers. For example, after the vehicle finishes serving some customers, we may find that the
vehicle has redundant time to serve more customers or that the vehicle is unable to serve all the planned customers within the
remaining time budget. The vehicle can adjust the routing plan to earn more reward and reduce the risk that the vehicle cannot reach
the planned destination within the time budget.

We use S= (S1, S2, S3) to denote the status of the vehicle task execution, where S1 is the sequence of served customers, S2 is the
next to-be-visited customer, and S3 is the set of unvisited customers except S2. Fig. 1 presents an example of the current status of S. In
the figure, the vehicle is on the way to Customer 3. Thus, the sequence of visited customers S1= “0, 2, 1”, the next planned to-be-
visited customer S2= 3, and the set of unvisited customers S3= CT⧹{2, 1, 3}. The status S starts from the time when the vehicle
departs from the last customer location (Customer 1 in Fig. 1) in S1 and ends at the time when the vehicle finishes serving the next
planned to-be-visited customer (Customer 3 in Fig. 1). At the end of status S (i.e. the vehicle finishes serving Customer 3 in Fig. 1), the
task execution time when the vehicle finishes serving Customer S2 is revealed, and the remaining time budget is known. The next to-
be-visited customer should be determined and the current routing plan adopted by the vehicle may be adjusted based on the re-
maining time budget. This paper aims to propose such a real-time adjustment strategy with the objective of maximizing the collected
reward with the constraint that the in-time arrival probability should be greater than or equal to a certain threshold.

4. Simulation-aided multiple plan approach (SMPA)

4.1. Overview of the SMPA

This section introduces a new algorithm, called simulation-aided multiple plan approach (SMPA), to solve the OSOP. For nota-
tions, except when specified, please refer to Table 1. This table only defines the most important notations and operators that are
commonly used in all algorithms. We specify the meaning of all newly-defined notations in the algorithms in Appendix A.

This subsection gives a brief overview of the SMPA. The Multiple Plan Approach (MPA) was originally proposed by Bent and Van
Hentenryck (2004). The basic idea of the MPA is to utilize the computer’s leisure time when the vehicle is traveling or serving
customers to generate multiple solutions preparing for determination of a future routing plan. This paper proposes a simulation-aided
MPA with the “myopia prevention” strategy (explained later) to solve the OSOP.

In order to clarify the computing activities of the SMPA, we define three periods of the vehicle’s activities, 1) preparing period, 2)
traveling and serving period, and 3) decision making period. We will give the definitions of the three periods and clarify the results
that will be obtained in the three periods below. Fig. 2 shows the computer activities and vehicle activities based on the time and
spatial horizons.

1) The preparing period (S= (S1=∅, S2= 0, S3= CT)) is the period before the vehicle departs from the departure location. In this
period, an a priori routing plan should be determined to direct the vehicle task execution. Initially, the vehicle will execute the task
based on the a priori solution.

2) Traveling and serving periods (during a status S). After the preparing period finishes, the vehicle starts to execute transporting and
serving tasks. When the vehicle is on the way or serving a customer, a solution pool should be generated to prepare for the
determination of the next to-be-visited customer in the decision making periods.

3) Decision making periods (at the end of a status S): when the vehicle finishes serving each customer, the remaining time budget is
revealed, and the next to-be-visited customer should be determined and the routing plan adopted by the vehicle may be updated.

The three periods have different requirements for the promptness of computational process. The preparing period usually has the
lowest requirement because usually there is enough time to determine an a priori solution before the vehicle starts to execute the
tasks. The traveling and serving periods do not require that the algorithm should make any decision, but requires the algorithm to
obtain the solution pool that will be used in the decision making period. The decision making periods have the highest requirement
for the computing promptness. This is because when the vehicle finishes serving a customer, a prompt decision should be made to
determine which customer will be visited and served next. If the algorithm needs to spend a very long time in determining the next

Fig. 1. An example of the current status S.
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customer to be served, most of the time budget will be used for computing instead of task execution.
The proposed SMPA reasonably allocates the computing time into three periods based on the vehicle activities. Fig. 3 summarizes

the algorithms when the vehicle is executing transportation and serving tasks. When the vehicle is waiting at the departure location,
the computer uses Algorithm 2 to generate an initial solution pool. Then, Algorithm 4 is used to determine the initial routing plan
(the a priori routing plan) adopted by the vehicle. After the vehicle departs from the departure location and when the vehicle is on the
way or serving a customer, Algorithm 2 generates a new solution pool and Algorithm 3 transfers compatible solutions (the defi-
nition of “compatible solutions” will be introduced in Subsection 4.4) into the current solution pool. When the vehicle finishes serving
a customer, the next to-be-visited customer will be determined by Algorithms 4 and 5. Algorithm 4 is used to find an optimal
alternative routing plan. Then Algorithm 5 determines if the optimal alternative solution replaces the current routing plan based on
the “myopia” prevention strategy to direct the vehicle task execution. Based on the updated routing plan, the vehicle departs to the
next customer. The computer conducts the same computing activities in the next cycle until the time budget runs out. Note that both
Algorithms 4 and 5 need to estimate the in-time arrival probability and thus Algorithm 1 (Monte Carlo simulation) is embedded into
Algorithms 4 and 5 in all phases.

Table 1
Notations and operators.

Notations

CT Set of customers, CT={1, 2, …, n}.
DP The departure location, DP={0}.
DT The destination, DT={n+1}.
N Set of all locations, including the customers, the departure location and the destination, = ∪ ∪N CT DP DT.
r Collection of all rewards r={r1, r2, …, rn}.
ti,j Travel time from location i to location j (i, j ∊ N). ti,j is a stochastic variable, whose distribution is known.
sti Service time on customer i (i ∊ CT). It is a stochastic variable and the distribution is known.
rti,j Real travel time from location i to location j (i, j ∊ N).
rsti Real service time on customer i (i ∊ CT).
p The minimum required probability that the vehicle can reach the planned destination within the time budget.
T Total time budget for the vehicle to execute tasks.
S The current status of the vehicle’s task execution, S=(S1, S2, S3). S1 is the routing sequence of the served customers, S2 is the next to-be-

visited customer, and S3 is the set of unvisited customers except S2. This status lasts from the time when the vehicle finishes serving the last
customer in S1 to the time when the vehicle finishes serving S2.

IAPS(X) The in-time arrival probability of the routing plan X given that the travel times and service times are revealed at the end of status S.
XS The solution pool generated in the current status S, XS={Xi

S, i=1, 2, 3, …}. If Xi
S is one of the solutions, the routing plan Xi

S can be
represented by “S1, S2, RS(Xi

S)” where “S1” is the routing sequence of served customers, “S2” is the next to-be-visited customer and RS(Xi
S)

is the routing sequence that the vehicle has not started to travel along yet.
XS The solution with the maximum reward among the solutions in the solution pool XS whose in-time arrival probabilities are greater than or

equal to p. It can also be treated as the optimal solution in XS, which is obtained by Algorithm 4.
Xc

S The current routing plan adopted by the vehicle in the status S.
XPS The preliminary screened solution pool. It is the solution pool obtained by Algorithm 4, removing solutions, whose in-time arrival

probabilities are obviously smaller than p, from the solution pool XS.
tS At the end of status S, the real travel time from (S1)end to S2 and the service time on customer S2 are revealed. tS is the summation of the

travel time from (S1)end to S2 and the service time on customer S2, where (S1)end is the last customer in the routing sequence S1 (please see
the operators below).

TbS The remaining time budget at the beginning of the status S.
TeS The remaining time budget at the end of the status S.
EI The expected potential increased reward if Xc

S is still adopted as the current routing plan at the end of the status S.
ED The expected potential decreased reward if Xc

S is still adopted as the current routing plan at the end of the status S.
pd(XPicS)/pd(Xc

S) pd(XPicS) is the probability that XPicS’s in-time arrival probability can reach the value greater than or equal to the threshold p in the future
when the vehicle departs to the first customer in XPicS which is different from that in Xc

S. pd(Xc
S) is the probability that Xc

S’s in-time arrival
probability can reach the value greater than or equal to the threshold p when the vehicle departs to the first customer in Xc

S different from
that in XPicS.

Operators
(X)i Obtain the ith customer in the routing sequence X.
(X)end Obtain the last customer in the routing sequence X.
(X)i:j Obtain the routing sequence from ith location to the jth location in the routing sequence X.
“X, a” X is a routing sequence. “X, a” is an operator that puts Customer a behind the routing sequence X and forms a new routing sequence.
L(X) Obtain all connected links in the routing sequence X.
C(X) Obtain all customers in the routing sequence X.
RW(X) X is a routing plan. RW(X) obtains the total reward of the routing plan.
RW(X) X is a solution pool, RW(X) obtains the rewards of all the routing plans in X.
RS(X) X is a full routing plan with departure location, customer locations and the destination. In the status S, RS(X) is the routing sequence behind

S2 in the full routing plan X. For example, if X is “1–3–4–5–1”, when the vehicle is in the link “3-4” or serving customer 4, RS(X) is the
routing sequence “5-1”.

US(X) US(X)= “S2, RS(X)”, For example, if X is “1-3-4-5-1”, when the vehicle is in the link “3-4” or serving customer 4, US(X) is the routing
sequence “4-5-1”.
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4.2. Monte Carlo simulation to estimate the in-time arrival probability

Each time the vehicle finishes serving a customer, the real-time adjustment strategy should determine a future routing plan that
can direct the vehicle to execute the tasks. The in-time arrival probabilities of routing plans are required to be estimated in each
decision making period. It is difficult to measure the in-time arrival probability of a routing plan analytically if the travel times and
service times do not follow tractable distributions (e.g. normal distributions). Papapanagiotou et al. (2014, 2015a) used the Monte
Carlo simulation approach to measure the objective function of the model for their stochastic orienteering problem. This paper uses
Monte Carlo simulation to measure the in-time arrival probabilities.

At the end of the status S when the vehicle finishes serving customer S2, the task execution time of the routing sequence “S1, S2”,
including all travel times and service times, are revealed, and thus the in-time arrival probability of a routing plan X can be estimated
based on the remaining routing sequence RS(X) and the remaining time budget TeS. We use Formula (2) to represent the inputs and
outputs of the Monte Carlo simulation. For the pseudocode, please refer to Algorithm 1 in Appendix A.

=IAP X X T NSRAlgorithm t st( ) 1 ( , , , , )e
S S (2)

Fig. 3. Summary of algorithms used in different periods.

Fig. 2. Computing activities and vehicle activities.
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The inputs include:

X: the solution that needs to be estimated;
TeS: remaining time budget for the vehicle to execute tasks at the end of status S;
t: collection of all travel times between the two locations t={ti,j | i, j ∊N};
st: service times for all customers st={sti | i ∊ CT};
NSR: the number of simulation replications.

The output is

IAPS(X): estimated in-time arrival probability of solution X at the end of status S.

4.3. Solution generation algorithm

This algorithm is used in both of the preparing period and the traveling and serving periods. In the preparing period, this
algorithm is responsible for generating an initial solution pool; in the traveling and serving periods, this algorithm is used to generate
a new solution pool. We use Tabu Search (TS) to implement this algorithm. TS can avoid the repeated generation of identical
solutions using a memory function (Gendreau et al., 1998b). In each iteration of TS, a group of routing plans are selected to be put
into the solution pool. In TS, travel times and service times are randomly and periodically generated to direct the iteration process so
that various solutions are generated in the solution pool. An objective function is proposed to measure the quality of a solution (Xi

S) in
the current status S based on the generated travel times and service times.

∑ ∑ ∑ ∑ ∑= −
⎛

⎝
⎜ + −

⎞

⎠
⎟−

⎛

⎝
⎜ + −

⎞

⎠
⎟

∈ ∈ ∈ ∈ ∈

Z X r M t st T m t st T( ) ·max ,0 ·min ,0i
i C X

i
i j L U X

i j
icp

i C R X
i
icp

b
i j L U X

i j
icp

i C R X
i
icp

b
S S S

( ) , ( ( ))
,

( ( )) , ( ( ))
,

( ( ))i i i i i
S S S S S S S S S (3)

We divide the iterations of TS into NP computing periods. In each computing period, the travel times and service times are re-
simulated by the computer to direct the iteration process of TS so that various solutions can be generated. In the icpth computing
period of TS, ti j

icp
, is the travel time from location i to j and sti

icp is the service time for Customer i. Note that all ti j
icp
, and sti

icp are
simulated by the computer to conduct the search process of TS and their values are not real. M is a number that is much greater than
any ri (i ∊ CT), and m is a number that is much smaller than any ri (i ∊ CT) but is greater than “0”. When the total task execution time
exceeds the remaining time budget, the solution will be given a very low objective function value. This mechanism is achieved by the
second term in Formula (3). If the total task execution times of two routing plans do not exceed the time budget and the two routing
plans have identical rewards collected, the routing plan with less task execution time will be favored. This mechanism is achieved by
the third term in Formula (3).

We use Formula (4) to represent this algorithm. For the detailed pseudocode, please refer to Algorithm 2 in Appendix A.

= TX Algorithm t st2 ( , , )b
S S (4)

The inputs include:

TbS: the remaining time budget when the status S starts;
t: collection of all travel times between two locations t={ti,j | i, j ∊N};
st: service times for all customers st={sti | i ∊ CT}.

The output is

XS: a solution pool generated in status S.

4.4. Compatible solution transfer algorithm

This algorithm is used in the traveling and serving periods and aims to keep the compatible solutions from the solution pool in last
status to the solution pool in current status. This algorithm can save the computing time of Algorithm 2 by reducing the number of
solutions generated in the current status S. Let Sl=(S1l, S2l, S3l) denote the last status of the vehicle task execution. Fig. 4 shows the
relationship between S and Sl. Let = = …X iX { , 1,2,3, }i

S Sl l
denote the solution pool generated in the last status Sl. If =S R X( ( ))i

S S
2 1

l l
, Xi

Sl

is a compatible solution in the current status S, otherwise it is an incompatible solution. We use Fig. 5 to introduce the concept of the
compatible solutions and incompatible solutions. In Fig. 5, the next to-be-visited customer (Customer 3) is already determined, and

Fig. 4. Relationship between statuses S and Sl.
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the vehicle is now traveling from Customer 1 to Customer 3. Solutions 1 and 2 are two solutions from the previous solution pool
generated in the last status before the vehicle finishes serving Customer 1. Since the Customer 3 is already determined as the next to-
be-visited customer, Solution 2, in which the next to-be-visited customer is Customer 5, is no longer valid. Thus, Solution 2 is defined
as an incompatible routing plan in the current status. In Solution 1, Customer 3 is the next to-be-visited customer. It is compatible
with the current status of task execution and thus Solution 1 is defined as a compatible routing plan in the current status.

The “compatible solution transfer algorithm” can be expressed as Formula (5) and the pseudocode is presented in Appendix A.

=X Algorithm X , X3 ( )S S Sl
(5)

The inputs include:

XS: the new solution pool in status S generated by Algorithm 2;
XSl: the solution pool in last status Sl.

The output is

XS: the combined solution pool, including the transferred solutions and the newly generated solutions.

4.5. Solution selection algorithm

Fig. 3 shows that Algorithm 4 is used in the preparing period and the decision making periods. When the algorithm is used in the
preparing period, it determines an initial a priori routing plan that is adopted by the vehicle. When it is used in the decision making
periods, it obtains a candidate routing plan that may or may not replace the current adopted routing plan according to Algorithm 5.
At the end of status S, the vehicle finishes serving the customer S2. The travel time from (S1)end to S2 plus the service time on customer
S2 is revealed, which is denoted as tS, = +t rt rstS S S

S
( ) ,end1 2 2. Thus, the remaining time budget at the end of status S is TeS= TbS− tS.

We need to select a solution XS from the solution pool (XS). This solution (XS) earns the maximum reward among all the solutions
in XS while the in-time arrival probability should be greater than or equal to the given value p.

= ∈ ⩾X RW X X IAP X pXarg max{ ( )| , ( ) }
j

j j j
S S S S S S

(6)

The in-time arrival probability is measured by Monte Carlo simulation (Algorithm 1). In order to save computing time, the
algorithm firstly uses a preliminary Monte Carlo simulation to remove the routing plans whose task completion times obviously
exceed the remaining time budget. In the preliminary Monte Carlo simulation, the number of simulation replications is relatively
small. We assume that XPS is the solution pool after a preliminary screening. Then, XS is selected from the solution pool XPS by
increasing the number of replications in the Monte Carlo simulation. The solution selection algorithm can be expressed as Formula (7)
and the pseudocode is given in Appendix A.

=X T T t pXP Algorithm X , , , , t, st( , , ) 4 ( )e b
S S S S S S (7)

The inputs include:

XS: the solution pool {X1
S, X2

S, …} in the status S;
TbS: the remaining time budget when the status S starts;
tS: the real travel time from (S1)end to S2 plus the service time on customer S2;
p: the required minimum in-time arrival probability;
t: collection of all travel times between two locations t={ti,j | i, j ∊N};
st: service times for all customers st={sti | i ∊ CT}.

The outputs include:

XS: the optimal solution selected from XS in status S;
XPS: preliminary screened solution pool in status S.
TeS: the remaining time budget when the status S ends.

4.6. Algorithm for updating the current routing plan adopted by the vehicle

The routing plan adopted by the vehicle in the status S is Xc
S. Initially, the vehicle executes the tasks based on the a priori solution

determined in the preparing period. When the vehicle starts to execute the tasks, the current routing plan Xc
S may be updated after

the vehicle finishes serving some customers. Based on Algorithm 4, a solution XS is selected from the solution pool XS in the status S.
This solution has the maximum reward among the solutions in XS whose in-time arrival probability is greater than or equal to p. In
other words, it is the optimal solution in XS. Intuition tells us that the vehicle should adopt XS as the current routing plan instead of
Xc

S. However, simply replacing Xc
S with XS sometimes causes the “myopia” problem.

Let us use the example in Fig. 6 to demonstrate the myopia problem. We assume that the in-time arrival probability should be
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greater than or equal to the prescribed minimum threshold 95% in the example. In Fig. 6(a), the reward of the current adopted
routing plan Xc

S is “140”. After customer 1 is served, the in-time arrival probability of the current adopted routing plan is 98%.
Algorithm 4 finds a better routing plan XS (Fig. 6(b)) whose reward is “150” and whose in-time arrival probability is 96%. However, if
XS replaces Xc

S as the current adopted routing plan, other potential routing plans which are incompatible with XS will never be
selected as the current adopted routing plan. For example, Fig. 6(c) is a routing plan with reward “180”, which is compatible with Xc

S

but incompatible with XS. Although the in-time arrival probability of the routing plan in Fig. 6(c), 94%, is smaller than the prescribed
minimum threshold 95%, it is possible that the in-time arrival probability will be greater than or equal to 95% after the vehicle
finishes serving more customers. If XS replaces the current routing plan Xc

S, the routing plan in Fig. 6(c) will never be adopted by the
vehicle and thus the vehicle misses the opportunity to increase the reward to “180”. If the current routing plan Xc

S does not change, it
is possible that the routing plan in Fig. 6(c) with greater reward (180) will be adopted by the vehicle in the future after finishing
serving Customer 4. This situation is the “myopia” problem when XS simply replaces the current routing plan Xc

S.
In order to avoid the “myopia” problem, we adopt the following “myopia prevention” strategy, which can improve the expected

reward of a routing plan. At the end of the status S, there are three possible situations.

1) The next customers to be visited in solution XS and Xc
S are identical.

2) The next customers to be visited in solution XS and Xc
S are different and the reward of XS is greater than that of Xc

S.
3) The next customers to be visited in solution XS and Xc

S are different, and the reward of XS is smaller than that of Xc
S because the in-

time arrival probability of Xc
S at the end of the status S is smaller than the required threshold p.

If the first situation happens, we keep Xc
S as the current routing plan. In situation 2, we need to judge if the increased reward (RW

(XS)− RW(Xc
S)) of XS can compensate for the expected potential increased reward (EI) if the Xc

S is adopted as the current routing
plan. Now let us define the expected potential increased reward (EI) if the Xc

S is adopted as the current routing plan. EI can also be
treated as the expected “more reward” that the vehicle loses the opportunity to earn if XS replaces Xc

S.We need to find if there is at
least one solution XPicS in the preliminary screened solution pool XPS that RW(XPicS) > RW(XS) and the next to-be-visited customer
in XPicS is identical with that in Xc

S, i.e. =R X R XP( ( )) ( ( ))c ic
S S S S

1 1. In fact, XPicS is a potential routing plan with higher reward that the
vehicle may adopt in the future if the Xc

S is still adopted as the current routing plan. If no such solution XPicS exists, the solution XS is

Fig. 5. Examples of a compatible solution and an incompatible solution.

Fig. 6. An example demonstrating the myopia problem.

Z. Bian, X. Liu Transportation Research Part E 115 (2018) 246–266

254



accepted as the current routing plan. If such solution XPicS exists, we should estimate the probability (pd(XPicS)) that XPicS is qualified
to replace Xc

S for the vehicle to execute tasks in the future. In other words, pd(XPicS) is the probability that XPicS’s in-time arrival
probability can reach the value greater than or equal to the threshold p in the future when the vehicle starts to depart to the first
customer in XPicS that is different from that in Xc

S.
We use Fig. 6 to demonstrate how this probability is defined. The first two customers (Customers 3 and 4) after status S in Xc

S are
identical with those in XPicS. Customer 5 in Xc

S is the first customer which is different from that (Customer 7) in XPicS. Thus, pd(XPicS)
is the probability that the in-time arrival probability increases from “94%” in current status to “≥95%” when the vehicle finishes
serving Customer 4 before departing to Customer 7 in Fig. 6(c). At the time when the vehicle finishes serving Customer 4, two layers
of uncertainty should be considered to calculate pd(XPicS).

1) The first layer of uncertainty is whether the vehicle can arrive at the planned destination in time. This uncertainty introduces the
in-time arrival probability when the vehicle finishes serving Customer 4. This uncertainty results from the stochastic time of
ta= t4,7+ t7,8+ st7 in Fig. 6(c).

2) The second layer of uncertainty is whether the in-time arrival probability is greater than or equal to the threshold p when the
vehicle finishes serving Customer 4. This uncertainty is represented by pd(XPicS). This uncertainty is caused by the stochastic
remaining time budget when the vehicle finishes serving Customer 4. The remaining time budget is stochastic because of the
stochastic time of tb= t2,3+ t3,4+ st3+ st4 in Fig. 6(c). Therefore, this indicates that the in-time arrival probability is conditional
on the time of tb (tb= t2,3+ t3,4+ st3+ st4).

Based on the two layers of the uncertainty, pd(XPicS) in Fig. 6(c) can be formulated as:

⩽= ⩾pd XP P P tb + t + t + st T tb = t + t + st + st p( ) ( ( | ) ).ic 4,7 7,8 7 e 2,3 3,4 3 4
S S

pd is obtained in the following way. Let ta= t4,7+ t7,8+ st7 and tb= t2,3+ t3,4+ st3+ st4. Both ta and tb are unknown since both of
the two parts of the tour are not traversed yet. Thus, simulation is needed to get possible values of ta and tb. We use Monte Carlo to
simulate tb= t2,3+ t3,4+ st3+ st4 for H replications. We denote the hth simulation of tb as tbh, h=1, 2, …, H. For each specific
simulation result of tbh, we also use Monte Carlo to simulate ta= t4,7+ t7,8+ st7 for L replications. We denote the lth simulation of ta
as tal, l=1, 2, …, L. pd is calculated by the algorithm in Table 2.

If Xc
S is still adopted as the current routing plan, the expected increase in reward is defined as

= ×
∈

EI pd XP RW XP −RW Xmax ( ) ( ( ) ( ))
XP

ic ic c
XP

S S S

ic
S S (8a)

Subject to

>RW XP RW X( ) ( )ic
S S (8b)

=R X R XP( ( )) ( ( ))c ic
S S S S

1 1 (8c)

= + ⩽ ⩾pd XP P P tb XP ta XP T tb XP p( ) ( ( ( ) ( ) | ( )) )ic
k

ic
k

ic e
k

ic
S S S S S (8d)

where k is the minimum number that ≠R XP R X( ( )) ( ( ))ic k c k
S S S S (in Fig. 6, =R X( ( )) 5c k

S S , =R XP( ( )) 7ic k
S S ), tb XP( )k

ic
S is the task execution

time of the routing sequence before departing to the kth customer (Customer 7 in Fig. 6(c)) in XPicS, and ta XP( )k
ic
S is the task execution

time of the routing sequence after the vehicle finishes serving the (k− 1)th customer. Formula (8a) is to obtain the maximum

Table 2
Algorithm to obtain pd(XPicS).

Algorithm to obtain pd(XPicS)

C_h=0;
C_l=0;
For h=1 : H
Use Monte Carlo to get hth simulation of tb as tbh.
For l=1 : L
Use Monte Carlo to get lth simulation of ta as tal.

If + ⩽tb ta Th l e
S

C_l= C_l + 1;
End if
End for

If ⩾ pC l
L

C_h= C_h + 1;
End if

End for

=pd XP( )ic
C h
H

S
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expected increased reward of all solutions in XPS. Formula (8b) ensures that the solutions in XPS with the reward smaller than the
reward of XS have no opportunity to calculate EI. Formula (8c) ensures that the next to-be-visited customer in the solution XPicS

should be identical with that in solution Xc
S, otherwise XPicS has no opportunity to calculate EI. Formula (8d) is to calculate the

probability that XPicS is qualified to replace Xc
S for the vehicle to execute tasks in the future. If EI < (RW(XS)-RW(Xc

S)), we replace
Xc

S with XS as the current routing plan. Otherwise, Xc
S is kept as the current routing plan. For the example in Fig. 6, assuming that pd

(XPicS)= 0.4, EI=0.4× (180–140)= 16 > RW(XS)− RW(Xc
S)= 150–140=10. Thus Xc

S is kept as the current routing plan.
In situation 3, we need to judge if the decreased reward (RW(Xc

S)− RW(XS)) of XS is smaller than the expected potential de-
creased reward (ED) if Xc

S is still adopted as the current routing plan. We need to find if there is at least one solution XPicS in the
preliminary screened solution pool XPS that IAPS(XPicS) ≥ p and the next to-be-visited customer in XPicS is identical with that in Xc

S,
i.e. =R X R XP( ( )) ( ( ))c ic

S S S S
1 1. In fact, XPicS is an alternative routing plan with smaller reward that the vehicle can adopt in the future

after the Xc
S is still adopted as the current routing plan.

If such solution XPicS does not exist, XS will be accepted as the current routing plan. This is because if there is no such alternative
routing plan XPicS in XPS with smaller reward, it is likely for the vehicle to use solutions with even much lower rewards. Otherwise,
the in-time arrival probability may be lower than the required threshold p, if the vehicle continues adopting Xc

S. Thus, no alternative
routing plan in XPS does not eliminate the risk of adopting a different routing plan with lower reward. Since XPS only includes high-
quality solutions, such very low-reward solution is not included in XPS in current status S but may be adopted by the vehicle in the
future, if Xc

S is still adopted as the current routing plan. Thus, XS should be accepted as the current routing plan in order to avoid the
risk of significant reward reduction.

If such solution XPicS exists, we should estimate the probability (pd(Xc
S)) that Xc

S is qualified to still be adopted as the current
routing plan in the future. In other words, pd(Xc

S) is the probability that Xc
S’s in-time arrival probability can reach the value greater

than or equal to the threshold p when the vehicle starts to depart to the first customer in Xc
S different from that in XPicS. We use Fig. 7

to demonstrate how this probability is defined.
The first two customers (3 and 4) after status S in Xc

S and XPicS are identical. Thus, pd(Xc
S) is the probability that the Xc

S’s in-time
arrival probability increases from “94%” in the current status to “≥95%” when the vehicle finishes serving Customer 4 in Fig. 7(a).
Similar to the second situation, pd(Xc

S) can be formulated as:

⩽= ⩾pd X P P tb + t + t + st T tb = t + t + st + st p( ) ( ( | ) ).c 4,5 5,8 5 e 2,3 3,4 3 4
S S

The calculation of pd(Xc
S) is similar to that in Table 2. If Xc

S is adopted as the current routing plan, the expected decrease in
reward is defined as

= ×
∈

ED 1−pd X RW X −RW XPmin ( ( )) ( ( ) ( ))
XP

c c ic
XP

S S S

ic
S S (9a)

Subject to

⩾IAP XP p( )ic
S S (9b)

=R X R XP( ( )) ( ( ))c ic
S S S S

1 1 (9c)

⩽= ⩾pd X P P tb X + ta X T tb X p( ) ( ( ( ) ( ) | ( )) )c
k

c
k

c e
k

c
S S S S S (9d)

Formula (9a) aims to obtain the minimum expected potential decreased reward (ED) if Xc
S is still adopted as the current routing

plan. Formula (9b) ensures that the solutions in XPS with the in-time arrival probability smaller than p have no opportunity to
calculate ED. Formula (9c) ensures that the next to-be-visited customer in the solution XPicS should be identical with that in solution
Xc

S, otherwise XPicS has no opportunity to calculate ED. Formula (9d) is to calculate the probability pd(Xc
S). If ED > (RW(Xc

S)− RW
(XS)), we replace Xc

S with XS as the current routing plan. Otherwise, Xc
S is kept as the current routing plan. For the example in Fig. 7,

assuming that pd(Xc
S)= 0.4, ED=0.6× (140–115)= 15 < RW(Xc

S)− RW(XS)= 140–120= 20. Thus Xc
S is kept as the current

routing plan.
We use Formula (10) to express Algorithm 5 and the pseudocode of this algorithm is given in Appendix A.

=X T X X TS Algorithm XP S( , , ) 5 ( , , , , )c b c e
S S S S S S (10)

The inputs include:

XPS: the preliminary screened solution pool obtained by Algorithm 4;
S: the current status (before updated);
XS: the selected solution obtained by Algorithm 4;
Xc

S: the current adopted routing plan;
TeS: the remaining time budget at the end of the status S.

The outputs include:

Xc
S: updated current routing plan that the vehicle adopts to execute tasks;

S: updated status;
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Table 3
Comparison results of the three algorithms.

Examples Re-optimization versus strategic-level algorithm SMPA versus strategic-level algorithm SMPA versus re-optimization

Ns Nif Nid Ns Nif Nid Ns Nif Nid

T_33_50 42 25 33 50 3 47 45 14 41
T_33_80 49 22 29 47 4 49 37 25 38
A_50_400 66 28 6 74 9 17 51 25 24
A_50_600 53 37 10 83 5 12 60 17 23
S_66_60 66 30 4 89 9 2 62 22 16
S_66_90 62 29 9 83 4 13 62 18 20
A_100_600 68 25 7 86 13 1 56 21 23
A_100_800 65 27 8 91 7 2 63 25 12

Notes: Ns: number of trials that the routing plans obtained by the first algorithm are “superior” to those obtained by the second algorithm; Nif:
number of trials that the routing plans obtained by the first algorithm are “inferior” to those obtained by the second algorithm; Nid: number of trials
that the routing plans obtained by the first algorithm are identical with those obtained by the second algorithm.

Fig. 8. The network topology of the benchmarks.

Fig. 7. An example of situation 3.
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TbS: the remaining time budget when the updated status S starts.

5. Numerical examples

5.1. Data setting

Chao (1996b) and Tsiligirides (1984) proposed standard benchmarks of the orienteering problem to test the performances of
different algorithms. We select four benchmarks (tsiligirides_problem_3_budget_050, tsiligirides_problem_3_budget_080, set_66_1_060,
set_66_1_090) from the website (http://www.mech.kuleuven.be/en/cib/op#section-2). The time budgets in the four benchmarks are
“50”, “80”, “60”, and “90”, respectively. Fig. 8 shows the departure locations, destinations, and customers that may be visited by the
vehicles in the benchmarks of tsiligirides_problem_3 and set_66_1. The network topology of tsiligirides_problem_3_budget_050 and
tsiligirides_problem_3_budget_080 is presented in Fig. 8(a), and that of set_66_1_060 and set_66_1_090 is shown in Fig. 8(b).However,
these benchmarks cannot be directly applied to test the performance of the proposed algorithm in this paper, because the travel time
in the benchmarks are all deterministic. Thus, we modify the travel times as stochastic variables. The travel times are set to be log-
normal distributions ( ∼t μ σlognormal( , )i j i j i j, , ,

2 ), which is a reasonable assumption based on Guessous et al. (2014). Let

= − + −μ x x y ylog( ( ) ( ) )i j i j i j,
2 2 , where xi and yi are the horizontal and vertical coordinates of all customer locations, and σi j, (i, j ∊N)

Table 5
Computing times of the three algorithms in different periods.

Numerical examples Algorithms Computing time spent in preparing
period (s)

Computing time spent in traveling and
serving periods (s)

Computing time spent in decision
making periods (s)

T_33_50 SLA 23.24 0 0
ROA 18.73 0 Max: 16.50, Avg: 6.93
SMPA 13.58 Max: 3.84, Avg: 1.01 Max: 0.38, Avg: 0.09

T_33_80 SLA 24.98 0 0
ROA 19.36 0 Max: 24.00, Avg: 7.41
SMPA 13.77 Max: 3.74, Avg: 1.16 Max: 0.25, Avg: 0.07

A_50_400 SLA 68.29 0 0
ROA 51.38 0 Max: 50.35, Avg: 21.50
SMPA 41.22 Max: 11.34, Avg: 4.51 Max: 1.72, Avg: 0.52

A_50_600 SLA 73.83 0 0
ROA 56.28 0 Max: 54.74, Avg: 23.02
SMPA 46.54 Max: 13.26, Avg: 4.71 Max: 2.01, Avg: 0.55

S_66_60 SLA 104.02 0 0
ROA 78.70 0 Max: 74.96, Avg: 30.33
SMPA 59.86 Max: 18.83, Avg: 5.58 Max: 2.69, Avg: 0.60

S_66_90 SLA 120.87 0 0
ROA 84.19 0 Max: 79.23, Avg: 33.43
SMPA 63.72 Max: 21.69, Avg: 6.11 Max: 2.72, Avg: 0.74

A_100_600 SLA 173.96 0 0
ROA 126.38 0 Max: 118.63, Avg: 34.25
SMPA 104.69 Max: 23.96, Avg: 6.80 Max: 6.11, Avg: 0.97

A_100_800 SLA 197.82 0 0
ROA 138.00 0 Max: 134.86, Avg: 39.55
SMPA 117.09 Max: 27.02, Avg: 7.39 Max: 6.30, Avg: 1.02

Notes: SLA: strategic-level algorithm; RO: re-optimization algorithm; SMPA: simulation-aided multiple plan approach (proposed in this paper).

Table 4
Late arrival rates of the routing plans obtained by the three algorithms (out of 100 trials).

Numerical examples Late arrival rate

Strategic-level algorithm Re-optimization SMPA

T_33_50 1/100 0/100 0/100
T_33_80 2/100 1/100 2/100
A_50_400 2/100 1/100 0/100
A_50_600 6/100 1/100 2/100
S_66_60 3/100 4/100 0/100
S_66_90 2/100 1/100 0/100
A_100_600 4/100 0/100 0/100
A_100_800 4/100 2/100 3/100
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are all drawn from normal distributions with the mean of “0.15” and the standard deviation of “0.005”. The practice usually requires
that the minimum in-time arrival probability (p) should be close to “100%”. However, if we set p very close to 100%, the computer
needs to run a large number of trials to show the “late-arrival phenomena”. Thus, p should not be too close to “100%”. We prescribe
that the required minimum in-time arrival probability is 95% in all numerical examples (p=95%), which is a reasonable value. We
re-name the four numerical examples as T_33_50, T_33_80, S_66_60, and S_66_90. The first number in the notation is the number of
customers and the second number represents the time budget.The modified benchmarks do not have stochastic service times and the
scales of the benchmarks are not large enough. Thus, besides the modified standard benchmarks, we proposed four additional
numerical examples which are randomly generated by the computer. The travel times are set to follow log-normal distributions
( ∼t μ σlognormal( , )i j i j i j, , ,

2 ) and the service times are set to follow normal distributions ∼st μ σnormal( , )i i i
2 . The horizontal coordinates

(xi, i ∊ CT) and vertical coordinates (yi, i ∊ CT) of all customer locations are randomly generated from normal distributions with the
mean of “0” and the standard deviation of “20”. Let = − + −μ x x y ylog( ( ) ( ) )i j i j i j,

2 2 . σi j, (i, j ∊N) are all drawn from normal dis-
tributions with the mean of “0.15” and the standard deviation of “0.005”. ∈μ i(i CT) are drawn from the uniform distribution within
the interval [5, 10] and ∈σ i(i CT) are generated from normal distributions with the mean of “1” and the standard deviation of “0.01”.

In these four numerical examples, the departure location and the destination are the same place. The four numerical examples are
denoted by “A50_400”, “A50_600”, “A100_500” and “A100_800”. In “A50_400”, “50” is the number of customers and “400” is the
time budget that allows the vehicle to execute the transportation tasks. The required minimum in-time arrival probability is 95%

Fig. 9. Four neighborhood structures.
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(p=95%) in all numerical examples.
The designed 8 numerical examples have different scales (number of customers), different time budgets, and different travel and

service times, so that the proposed algorithm is tested in various scenarios. In order to verify the effectiveness of the proposed SMPA,
we compare the SMPA with a strategic-level algorithm and another operational-level algorithm, re-optimization, which is commonly
used to solve the dynamic vehicle routing problem in the literature (Pillac et al., 2013). The strategic-level algorithm determines an a
priori vehicle routing plan for the stochastic orienteering problem before the vehicle departs from the departure location and does not
adjust the routing plan when the vehicle is executing the transportation and serving tasks. We use the Tabu Search algorithm (Osman,
1993) to implement the strategic-level algorithm, whose effectiveness is verified by Gendreau et al. (1998b). The details of the Tabu
Search is give in the Appendix A (Algorithm 6). For the re-optimization algorithm, the Tabu Search algorithm (Algorithm 6) is
adopted to re-optimize the vehicle routing for the remaining customers every time the vehicle finishes serving a customer. The re-
optimization algorithm always adopts the optimal solution found by the algorithm as the current routing plan at the end of each
status. The re-optimization algorithm has the “myopia” problem that is introduced in Section 4. Moreover, the re-optimization
algorithm never utilizes the leisure time when the vehicle is on the way or serving a customer and all time is spent in the prompt
decision making periods when the vehicle finishes serving a customer. Both the strategic-level algorithm and the re-optimization
algorithm are achieved by Tabu Search (TS) algorithm due to comparison fairness, because the TS is also implemented for SMPA.

5.2. Running conditions

The algorithms are programmed in Matlab R2014a on a Dell computer with processor Intel(R) Core(TM) i7-4790 CPU @ 3.60 GHz
and 8 GB RAM.

5.3. Experimental results

For each numerical example, we run the three algorithms, namely strategic-level algorithm, re-optimization, and SMPA for 100
trials. In each trial, the computer generates a group of travel times and service times as real values if the vehicle traverses the links
and serves the customers. The vehicle executes the transportation and serving task based on the routing plans generated by each of
the three algorithms, namely SMPA, re-optimization, and the strategic-level algorithm. We conduct three comparisons in each trial,
which are re-optimization versus strategic-level algorithm, SMPA versus strategic-level algorithm, and SMPA versus re-optimization.
We record the number of trials that the routing plans obtained by the first algorithm that are “superior to”, “inferior to”, and
“identical with” those obtained by the second algorithm. We define a routing plan as “superior to” another routing plan if at least one
of the two conditions is satisfied: 1) the vehicle arrives at the planned destination within the time budget if the vehicle adopts the first
routing plan while the vehicle cannot reach the planned destination if the vehicle adopts the second routing plan, 2) the vehicle can
reach the planned destination if it adopts both of the first and second routing plan, but the reward of first routing plan is greater than
that of the second routing plan.

Table 3 presents the comparison results of the three algorithms, showing the number of trials that the first algorithm obtains
superior, inferior and identical routing plans compared against the second algorithm. Take “A_100_600” as an example, re-optimi-
zation algorithm obtains 68, 25 and 7 routing plans that are respectively superior to, inferior to, and identical with that obtained by
the strategic-level algorithm, while the SMPA obtains 86, 13 and 1 routing plans that are respectively superior to, inferior to, and
identical with that obtained by the strategic-level algorithm.

In Table 3, from the comparisons of re-optimization versus strategic-level algorithm and SMPA versus strategic-level al-
gorithm, we find that both re-optimization and SMPA outperform the strategic-level algorithm because the number of “superior”
routing plans are significantly larger than the number of “inferiors” obtained by the two operational-level algorithms for all nu-
merical examples. However, the differences between the number of “superior” routing plans and the number of “inferiors” in the
comparison of SMPA versus strategic-level algorithm is much larger than those in the comparison of re-optimization versus strategic-
level algorithm. This indicates that the SMPA outperforms the strategic-level algorithm more significantly than the re-optimization
algorithm does in terms of the solution quality. Moreover, in general, as the problem scale increases, the difference between the
number of “superiors” and the number of “inferiors” in the comparison of SMPA versus strategic-level algorithm becomes larger. This
implies that the SMPA may outperform the strategic-level algorithm more significantly in solving larger-scale problems. The direct
comparison of SMPA versus re-optimization also indicates that the SMPA outperforms the re-optimization in terms of the overall
solution quality, implied from the phenomenon that the number of “superiors” is significantly larger than the number of “inferiors”
for all numerical examples. This is because the novel “myopia prevention” strategy embedded in SMPA can increase the expected
reward collected by the vehicle.

Table 4 shows the numbers of late arrivals out of the 100 trials from the three algorithms, the strategic-level algorithm, the re-
optimization algorithm, and the SMPA. That is the number of trials in which the vehicle cannot reach the planned destination within
the time budget when the vehicle adopts the routing plans obtained by the three algorithms. Take “S_66_60” as an example, the
vehicle cannot reach the planned destination within the time budget for 3, 4 and 0 trials out of the total 100 trials if the vehicle adopts
the routing plans obtained by the strategic-level algorithm, the re-optimization algorithm and the SMPA, respectively.

We can imply from Table 4 that, in general, both two operational-level algorithms can reduce the late-arrival probability. The late
arrival rates of the re-optimization algorithm for all numerical examples except “S_66_60” are no larger than those of the strategic-
level algorithm, and the late arrival rates of the SMPA are all no larger than those of the strategic-level algorithm. The late arrival
rates of both the SMPA and the re-optimization algorithms are smaller than those of the strategic-level algorithm for seven out of
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eight numerical examples.
Table 5 presents the computing time of the three algorithms spent in the three periods, preparing period, traveling and serving

periods, and decision making periods. In the preparing period, the strategic-level algorithm spends the longest computing time among
the three algorithms for all tested numerical examples. Since the strategic-level algorithm does not spend any time in the traveling
and serving periods and the subsequent decision making periods, it has to fully utilize the computing time in the preparing period to
obtain a high-quality solution and thus spends the longest time in that period. The two operational-level algorithms, re-optimization
and SMPA, use less computing time in the preparing period because they will adjust the routing plan in real time and do not
necessarily need to obtain a very high-quality a priori routing plan in this period. In the traveling and serving periods, the strategic-
level algorithm and re-optimization algorithm do not spend any computing time. Only the SMPA utilizes computing time in this
period.

Because there are multiple traveling and serving periods in a routing plan, we record the maximum computing time spent in all
traveling and serving periods as well as calculate the average computing time spent in all traveling and serving periods. The com-
puting time spent by the SMPA in this period is reasonable. The maximum time spent in all traveling and serving periods for the
largest-scale numerical example, A_100_800, is 27.02 s, less than 30 s. Note that the computing time in this period can be changed by
adjusting the number of iterations or the number of solutions generated. The computing time spent in this period should not exceed
the time length of the current traveling and serving period. During the decision making periods, the operational-level algorithms have
to determine the next to-be-visited customer by determining the routing plan at the end of each status. The computing time spent by
the re-optimization algorithm is significantly longer than that spent by the SMPA, especially in solving large-scale problems (e.g.
A_100_800). This is because the re-optimization algorithm needs to re-optimize the routing plan each time the vehicle finishes serving
a customer while the SMPA only needs to select a solution from a pre-generated solution pool to determine the routing plan after the
vehicle finishes serving a customer. From Table 5, the maximum computing time of the SMPA in all decision making periods for the
largest-scale problem (A_100_800) is only 6.30 s, which is prompt enough for most scenarios.

In this table, we have to explain one abnormal phenomenon. The maximum computing time of the SMPA in all decision making
periods for T_33_50 is 3.84 s, which is longer than that spent by the example T_33_80 (3.74 s). This case seems that an instance with
the same number of nodes but with lower time budget spends longer time. This is possible. Algorithms 4 and 5 are used in the
decision making periods. When the next to-be-visited customers in solutions XS and Xc

S are different, Algorithm 5 spends much more
time than Algorithms 4 because the most computing time is to calculate the probability “pd” (see the algorithm in Table 2). The
number of calculations of “pd” is identical with the number of solutions, whose next to-be-visited customer is identical with that in
solution Xc

S (see Formulas 8c and 9c), in XPS. This number of solutions has randomness and does not entirely depend on the scale of
the problem. Thus, it is possible that the computing time of T_33_50 in some decision making periods is larger than that of T_33_80.

5.4. Summary of contributions

This section summarizes the good performance of the proposed simulation-aided multiple plan approach (SMPA) in solving
operational stochastic orienteering problem (OSOP). Based on the experimental results, we make the following contribution state-
ments.

1) The SMPA outperforms the strategic-level algorithm more significantly than another commonly used operational-level algorithm,
called the re-optimization algorithm, in solving the OSOP. This is because a novel myopia prevention strategy is embedded in
SMPA so that the expected reward of the obtained routing plan can be increased.

2) The SMPA can reduce the late-arrival risk compared with the strategic-level algorithm. The strategic-level algorithm determines
an a priori routing plan in the planning stage, while the SMPA can adjust the routing plan in real time. After serving certain
customers, when the vehicle has a low in-time arrival probability if continuing to adopt the a priori routing plan, the vehicle can
adjust the routing plan to increase the in-time arrival probability. Thus, in general, the routing plans obtained by SMPA have
higher in-time arrival probabilities than those obtained by the strategic-level algorithm.

3) The SMPA can save computing time spent in the prompt decision making periods when compared with the re-optimization
algorithm. The SMPA fully utilizes the computer’s leisure time in the traveling and serving periods to obtain a solution pool to
prepare the computing activity in the prompt decision making periods. In contrast, the re-optimization algorithm does not utilize
this leisure time and thus spends a longer time for re-optimizing the routing plan in the decision making periods.

6. Conclusions

This paper studies the operational-level stochastic orienteering problem, in which the vehicle can adjust the routing plan in real
time. A real-time adjustment strategy called Simulation-Aided Multiple Plan Approach (SMPA) is proposed to direct the vehicle to
execute the transporting and serving tasks. The SMPA uses Monte Carlo simulation to evaluate the in-time arrival probability and uses
a multiple plan approach to determine the real-time routing plan. A novel myopia prevention strategy is embedded into the multiple
plan approach to improve the solution quality. We use eight numerical examples to compare the proposed algorithm with the
strategic level-algorithm and the re-optimization algorithm. The numerical experimental results show that the proposed real-time
adjustment strategy (SMPA) obtains higher-quality routing plans than the strategic-level algorithm and the re-optimization algo-
rithm. The SMPA outperforms the strategic-level algorithm more significantly in solving larger-scale problems. Additionally, based on
the comparison results of the late-arrival probability, we find that the SMPA can reduce the late-arrival probability compared with the
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strategic-level algorithm. Finally, the SMPA can efficiently utilizes the time when the vehicle is traveling or serving a customer to
generate routing plans preparing for the prompt determination of the future routing plan when the vehicle finishes serving a cus-
tomer. The computing time of the SMPA in different periods are all reasonable in the studied scenarios. This research indicates the
promising application of SMPA to real-time vehicle routing adjustment in a wide array of transportation and logistics research
problems.

7. Limitations and future work

The proposed real-time adjustment strategy successfully solves the operational-level stochastic orienteering problem. However,
this paper has limitations, which will be addressed in our future work.

• This paper focuses on the one-vehicle stochastic orienteering problem. In our future work, we will propose real-time adjustment
strategies for the operational-level team orienteering problem in which multiple vehicles are dispatched to execute the trans-
porting and serving tasks collaboratively.

• Another extended interesting problem we will study is the operational-level dynamic and stochastic orienteering problem. In this
problem, the customer requests occur in random locations and random time when the vehicle is executing the tasks, and the travel
time and service time and/or each customer’s reward are stochastic. We will adapt the SMPA to handle such highly uncertain
orienteering problem.

• Finally, we will apply the proposed algorithm in practical problems, such as the fuel delivery problem, the single-ring design
problem when building telecommunication networks, the tourist trip design problem, and unmanned aircraft and submarine
surveillance problem.

Appendix A – Algorithms used in this paper

Algorithm 1 Monte Carlo simulation to estimate the in-time arrival probabilityIAPS(X)=Algorithm 1 (X, TeS, t, st, NSR)

Initialize ni= 0 (the index of current simulation replication), nn= 0 (number of in-time arrivals);
Do while ni < NSR

Randomly generate the travel times (ti j
ni
, ) for all links (i, j) ∊ L U X( ( ))S and service times (sti

ni) for all customers i ∊C R X( ( ))S

based on their distributions;
Calculate the total task execution time   =tt t + stni

i,j L U X i,j
ni

i C R X i
ni

( ) ( ( )) ( ( ))S S ;

If ttni ≤ TeS

nn= nn + 1;
End if
ni= ni + 1;

End do
Calculate the in-time arrival probability IAPS(X)= nn/NSR.

Algorithm 2 Tabu Search to generate the solution pool XS in status S
XS=Algorithm 2 (TbS, t, st)

Initialize the total number of periods (NP), number of iterations in each period (NIP), number of candidate solutions (CN), number
of solutions (NS) assigned into the solution pool for each iteration;

Set icp=0 (the index of the current period), ici=0 (the index of current iteration in each period), Xcurrent= X0
S as an initial

routing plan; % X0
S is randomly generated by the computer. First, a group of to-be-visited customers are randomly selected

from the all customers CT. Then the selected customers are also randomly permuted to form the routing sequence X0
S.

Set the tabu list as empty: = ∅TL ;
Do while icp < NP

icp= icp+1;

Randomly generate a group of travel times = ∈t i jt N{ | , }icp
i j
icp
, and service times = ∈st ist CT{ | }icp

i
icp based on their

distributions;
Do while ici < NIP
Generate CN candidate solutions X={X1, X2,…, XCN} of Xcurrent’s neighbors (see Appendix B);
Calculate {Z(X1), Z(X2),…, Z(XCN)} based on Formula (3) and record the subscript opt, where Z(Xopt)=max{ Z(X1), Z(X2),…,

Z(XCN)};
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Algorithm 2 Tabu Search to generate the solution pool XS in status S
XS=Algorithm 2 (TbS, t, st)

Put NS solutions with maximum Z values into the solution pool XS;
Do while Xopt is in tabu list
X= X ⧹ Xopt;
Xopt=argmax {Z(X1), Z(X2),…, Z(XCN)};

End do
Xcurrent= Xopt;
Put Xopt into the tabu list TL;
ici= ici + 1;
End do

End do

Algorithm 3 Compatible solution transfer algorithmXS=Algorithm 3 (XS, XSl)

For i=1: X| |Sl % The number of routing plans in XSl

If S2= R X( ( ))i
S S

1
l l

XS=XS ∪

{Xi
Sl}; % put Xi

Sl
into XS

End if
End for

Algorithm 4 Solution selection algorithm
(XS, XPS, TeS)=Algorithm 4 (XS, TbS, tS, p, t, st)

TeS= TbS− tS;
Set X=XS;
For j=1: |XS|

% Preliminary screen: remove the solutions whose in-time arrival probabilities are obviously less than p.
IAPS(Xj

S)=Algorithm 1 (Xj
S, TeS, t, st, NPS); %Xj

S is the jth solution in XS

If IAPS(Xj
S)< ′p % ′p is much smaller than p

X= X⧹ Xj
S;

End If
End for
Sequence all solutions in X in order of descending rewards and we get X=(X(1), X(2), …, X(n)) with rewards RW(X)= (RW(1),

RW(2), …, RW(n));
% n: number of solutions in X
i=1;

% i: the index of a solution to be measured by Monte Carlo simulation
Do

IAPS(X(i))=Algorithm 1 (X(i), TeS, t, st, NMP);
i= i+1;

While IAPS (X(i)) < p
XS= X(i);
XPS=X;
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Note: we set the number of preliminary simulation replications as 100 (NPS=100). Then we calculate the sample standard deviation
(std(ttotal)) of the 100 simulation replications of total task execution time (ttotal). The number of simulation replications for estimation
of in-time arrival probability is set to NMP=1500max(std(ttotal)−5, 1) because this number of simulation replications is sufficient to
ensure the accuracy of in-time arrival probability estimation (most are within the interval [−5% IAPS(X), +5% IAPS(X)]).

Algorithm 5 Algorithm for updating the current routing plan adopted by the vehicle
(Xc

S, S, TbS)=Algorithm 5 (XPS, S, XS, Xc
S, TeS)

a= R X( ( ))c
S S

1, b= R X( ( ))S S
1;

Sa=(“S1, S2”, a, S3⧹a); % it is the new status if Xc
S is still kept as the current routing plan.

Sb=(“S1, S2”, b, S3⧹b); % it is the new status if Xc
S is replaced by XS.

If a= b % the first situation
S= Sa;

Else
If RW(Xc

S) ≤ RW(X S) % the second situation
Use Monte Carlo simulation to estimate the expected potential increased reward (EI) based on Formula (8);
If EI < RW(XS)− RW(Xc

S)
S= Sb;
Xc

S= XS;
Else
S= Sa;
End if

Else % consider the third situation that RW(Xc
S) ≥ RW(XS) & IAPS(Xc

S) < p
Use Monte Carlo simulation to estimate the expected potential decreased reward (ED) based on Formula (9);
If ED > RW(Xc

S)− RW(XS)
S= Sb;
Xc

S= XS;
Else
S= Sa;
End if

End if
End if
TbS= TeS;

Algorithm 6 Strategic-level algorithm (Tabu Search)
Xbest=Algorithm 6 (TbS, t, st)

Initialize the total number of iterations (NI), number of candidate solutions (CN). Set ni=0 (the index of the current iteration),
Xcurrent= X0

S as an initial routing plan.
Xbest= X0

S (record the best solution found), RWbest=0 (record the reward of Xbest);Set the tabu list as empty: = ∅TL ;
Do while ni < NI

ni= ni+1;
Generate CN candidate solutions {X1, X2,…, XCN} of Xcurrent’s neighbors (see Appendix B).
Use Algorithm 1 to simulate the in-time arrival probabilities of all CN solutions: IAP(Xi)=Algorithm 1 (Xi, T, t, st, NSR), for all
i=1, 2, …, CN;
Let M={ Xj | all j that IAP(Xj) ≥ p};
Calculate RW(Xj) for all Xj ∊M and record the subscript opt, where RW(Xopt)=max RW(Xj), Xj ∊M;
If RW(Xopt)> RWbest

Xbest= Xopt;
RWbest= RW(Xopt);

End if
Do while Xopt is in tabu list
M=M ⧹ Xopt;
Xopt=argmax RW(Xj), Xj ∊M;

End do
Xcurrent= Xopt;
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Algorithm 6 Strategic-level algorithm (Tabu Search)
Xbest=Algorithm 6 (TbS, t, st)

Put Xopt into the tabu list TL;
End do

Appendix B – The neighborhood structures used in Tabu Search

We designed four neighborhood structures for the iteration in Tabu Search. Assuming that the current status is S, Xi
S is a solution

generated in the status S. We use Xi
S as an example to show the neighborhood structures (Fig. 9)

• Neighborhood 1: randomly select a customer location xi, xi ∊ S3 which is not visited, and insert it to the route US(Xi
S). We insert

this customer location to the position where the increase of task execution time is the minimum among all insertion positions in
the route.

• Neighborhood 2: remove one customer location from the route RS(Xi
S). The vehicle will not visit this customer location after

removal.

• Neighborhood 3: reverse the sequence of nodes between two selected customer positions in the route RS(Xi
S) while keeping

destination unchanged (the famous 2-opt neighborhood).

• Neighborhood 4: simultaneously insert a customer location xi ∊ S3 into the route US(Xi
S) and delete another customer location from

the route RS(Xi
S). Note that the insertion position should also be the one where the increased travel time is the minimum among all

insertion positions in the route.

Appendix C. Supplementary data

Supplementary data associated with this article can be found, in the online version, at http://dx.doi.org/10.1016/j.tre.2018.05.
004.
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