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ABSTRACT 31 
The volume of video data in the railroad industry has increased significantly in recent 32 
years.  Surveillance cameras are situated on nearly every part of the railroad system such as 33 

inside the cab, along the track, at grade crossings, and in stations.  These camera systems are 34 
manually monitored, either live or subsequently reviewed in an archive, which requires an 35 
immense amount of manpower.  To make the video analysis much less labor-intensive, this paper 36 
develops a framework for utilizing Artificial Intelligence (AI) technologies for the extraction of 37 
useful information from these big video datasets. This framework has been implemented based 38 

on the video data from one grade crossing in New Jersey. The AI algorithm can automatically 39 

detect unsafe trespassing of railroad tracks (called near-miss events in this paper). To date, the 40 
AI algorithm has analyzed hours of video data and correctly detected all near-misses.  This pilot 41 
study indicates the promise of using AI for automated analysis of railroad big video data, thereby 42 
supporting data-driven railroad safety research. For practical use, our AI algorithm has been 43 

packaged into a computer-aided decision support tool (named AI-Grade) that outputs near-miss 44 
video clips based on user-provided raw video data. This paper, and its sequent studies, aim to 45 

provide the railroad industry with next-generation big data analysis methods and tools for 46 
quickly and reliably processing large volumes of video data in order to better understand human 47 
factors in railroad safety research.  48 

 49 
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1 INTRODUCTION AND MOTIVATION  80 
The availability of video data in the railroad industry is increasing every year.  The cameras are 81 
sited on nearly every part of the railroad system, such as inside the cab, along the track, at grade 82 

crossings, and in stations. The Fixing America’s Surface Transportation (FAST) Act requires all 83 
passenger railroads to install inward-facing cameras to better monitor train crews and assist in 84 
accident investigations, and outward-facing cameras to better monitor track conditions (1). The 85 
Los Angeles Metro Transit Authority in California began utilizing video cameras for law 86 
enforcement at grade crossings (2). In the New York area, Metro-North and the Long Island Rail 87 

Road received $5 million from the Federal Railroad Administration (FRA) for grade crossing 88 

improvements.  Approximately 40% of those funds were committed to installing a Closed-circuit 89 
Television (CCTV) system on high-risk grade crossings (3). While big video data has been 90 
collected, analyzing it quickly and reliably remains a challenge. In many cases, these camera 91 
systems are manually monitored by railroad staff, either live or subsequently reviewed in an 92 

archive. 93 
There exist many scenarios in the rail industry where “near-misses” or dangerous 94 

situations occur without causing actual incidents. Because no actual harm occurs, these “near-95 
misses” are typically not recorded in Federal Railroad Administration (FRA) safety databases. 96 
For example, if a pedestrian trespasses a railroad track when the red signal is on, but this action 97 

does not result in an accident, we call it a “near-miss”. Although “near-misses” do not cause 98 
actual damage, they indicate certain characteristics which may ultimately cause severe 99 

consequences if they occur repeatedly. Learning from near-miss data is an important research 100 
topic in proactive risk management (4). 101 

The pervasive presence of surveillance cameras provides a big data platform for 102 
collecting and analyzing near-miss data in support of railroad safety and risk management. 103 

Despite its value, video data analysis can be extremely laborious, usually taking hours or days to 104 
process and analyze. To address this technological challenge, this paper describes an Artificial 105 

Intelligence (AI) technology to let the computer program “watch,” “identify,” and “understand” 106 
near-miss clips automatically and efficiently utilizing an existing video infrastructure. Once this 107 
technology is practice-ready, it can be adapted to various applications in which big video data is 108 

used to support railroad safety decisions.   109 
 110 
2 OBJECTIVES OF RESEARCH  111 

This paper aspires to develop an AI framework to gather useful information from video footage, 112 
in support of railroad safety research. Specifically, this research aims to produce the following 113 

deliverables: 114 
• Development of a general AI methodological framework for railroad big video data 115 

analytics.  116 

• Application of the technology to a particular use-case, which is grade crossing near-miss 117 

detection.  118 

• Implementation of the AI algorithm into a computer-aided decision support tool that 119 
automatically processes big video data and outputs near-miss video clips.  120 

 121 
3 LITERATURE REVIEW  122 
A literature review was conducted to understand the state of the art and practice in two major 123 

categories, including 1) how big video data is utilized in the railroad industry for safety research; 124 

and 2) how AI is used for video analytics in railroad and other relevant domains. 125 
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 126 
3.1 Video Data for Railroad Safety Research 127 
In the railroad industry, the extraction of useful information from video data has largely been 128 

based on manual reviewing of the gathered footage. For example, Ngamdung et al. (5) conducted 129 
a study to understand illegal trespassing of railroad property in Pittsford, New York. The video 130 
analysis required a large amount of manpower to accomplish (6). In addition, there have been 131 
studies on the effectiveness of humans watching CCTV cameras; they show that after 20-40 132 
minutes of active monitoring, operators often suffer from “video-blindness,” which reduces their 133 

ability to effectively complete their task (7). Currently, there is minimal prior work regarding 134 

how artificial intelligence can assist us in analyzing big video data, which is a principal 135 
knowledge gap that this research aims to fill. Effort has been made to quantify the frequency and 136 
severity of highway-rail grade crossing incidents. Previous studies (8,9) employed the U.S. 137 
Department of Transportation (USDOT) Accident Prediction Model to estimate the number of 138 

collisions occurring at grade crossings. An understanding of driver behavior and human factors 139 
can contribute to grade crossing safety improvement (10). A comprehensive overview of grade 140 

crossing research is summarized in (11). Since grade crossing incidents account for a large 141 
portion of casualties on U.S. railroads (11, 12), it is important to better understand this type of 142 
risk so as to develop proper risk mitigation strategies.  143 

 144 
3.2 AI Technologies for Video Analytics  145 

Artificial Intelligence (AI) has the potential to tremendously reduce laborious effort required to 146 
process video data.  Similar sectors, such as roadways and airports, have begun to implement 147 
these techniques for big video data analysis. Selected AI techniques include background 148 
subtraction, region of interest, and Kalman filtering (13-16). The first and most fundamental tool 149 

in video analytics is background subtraction. When attempting to isolate moving objects in a 150 
frame, the removal of the landscape against which they are moving can improve processing time 151 

and accuracy. Originally, cameras at airports were used to provide visual confirmation of a 152 
plane's identity, and infrared cameras were used to ensure security from trespassers.  In recent 153 
years, a network called the Autoscope Solo Wide Area Video Vehicle Detection System has 154 

been deployed in European airports. This system utilizes background subtraction in its AI to 155 
identify moving objects within the field of view (13). Other techniques of big video analysis, 156 
region of interest (ROI) and line of interest (LOI), were implemented in a study counting 157 

pedestrians and cyclists crossing an intersection using a stationary CCTV camera.  A user can 158 
define a line or polygon of pixels in the frame which an AI can use as a reference.  In that study, 159 

pedestrians and cyclists were tracked in the frame and only counted as “crossing” if they passed 160 
through the ROI (16). Another AI technique is the Kalman filter, which is a set of mathematical 161 
equations to estimate the state of a process (14). This technique has been used to track vehicles 162 

within a camera view for highway applications (15).  163 

 While AI has the potential to provide useful data analysis capabilities, there are privacy 164 

concerns which may occur due to collecting personally identifiable information (17, 18). For 165 
example, a survey showed that 88% of Americans “do not wish to have someone watch or listen 166 
to them without their permission” (19). 63% of respondents “feel it is important to be able to go 167 
around in public without always being identified” (19). This opinion has fueled legal and 168 
technological changes to preserve the privacy of individuals. For example, in 1974 the United 169 

States congress enacted the Federal Privacy act, which regulated governmental databases in how 170 

they could store and publish information on its citizens (20). Therefore, it is important to 171 
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recognize and manage these privacy concerns. In 2009 the Federal Trade Commission (FTC) 172 
published a general set of principles for the collection of information, including awareness, 173 
consent, access, security and enforcement (21). In order to maintain these principles and still 174 

extract useful information, specialized video processing techniques have been developed to 175 
preserve privacy. Google’s Street View’s anonymization techniques are among the examples of 176 
how these concerns are technologically considered. The anonymization techniques involved an 177 
intricate neural network approach that first identifies faces and then performs a post processing 178 
obfuscation resulting in a final anonymized image (22). In a full-scale implantation of video 179 

analysis on grade crossings, a similar anonymization algorithm could be implemented to 180 

preserve privacy. 181 
 182 
3.3 Knowledge Gaps 183 
Currently, AI-driven big video analytics are still in an early stage in railroad safety research.  184 

Video analysis occurs largely on a manual basis. A customized AI algorithm would significantly 185 
expedite video analysis process.  186 

 187 
3.4 Intended Contributions of This Paper  188 
This paper intends to develop a unique, AI-aided methodological framework for video analytics 189 

that can be adapted to different application scenarios in which railroads need to analyze big 190 
video data in support of their safety decisions. Using an illustrative application in grade crossing 191 

near-miss detection using surveillance camera videos, we provide a step-by-step analytical 192 
procedure showing how AI can be developed and used to generate near-miss video clips. The 193 
methodology can be adapted to other scenarios toward automated, real-time, video monitoring 194 
and analysis. Near-miss data, which supplements accident data, provides additional useful 195 

information for understanding risky behaviors.  196 
  197 

4 ARTIFICIAL INTELLIGENCE AIDED RAILROAD VIDEO ANALYTICS 198 
There are a variety of resolutions, frame rates, opacities, and brightness levels in railroad video 199 
data. Each of these presents a challenge when training an AI to process and extract information 200 

from these data. There are several performance requirements for the AI in analyzing video data. 201 
First, it must accurately identify vehicles, trains, artifacts, shadows, and other objects. Second, 202 
the algorithm needs to be robust in diverse environmental conditions.  This includes inclement 203 

weather (e.g. rain, fog, snow) and varying light conditions (twilight, nighttime, daytime).  During 204 
the night those opacity levels change, and when vehicles drive by, headlights may cause a false 205 

detection. New opacity levels and extra checking techniques need be implemented to remediate 206 
this issue. 207 

To address the above-mentioned challenges, we introduce general AI approaches for 208 

video analytics, including background subtraction (13, 23-25), blob analysis (26), and Kalman 209 

filtering (14, 16, 27-28) for potential application to railroad video analysis (Figure 1).  These 210 

techniques isolate the moving objects and track their movement. Background subtraction is 211 
particularly useful because most cameras are static (e.g. those in stations, at grade crossings, or 212 
on bridges). The removal of the background allows for the isolation of the moving objects 213 
(humans or vehicles) in the frame.  Each pixel is derived in color scale and averaged over several 214 
frames as appropriate to the application. This is important as the environment causes light and 215 

vegetation to shift slightly, and an average value with inbuilt tolerances allows for a more 216 

dynamic background. The subtraction occurs on a frame-by-frame basis as well, where each 217 
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color-scaled pixel is subtracted from the learned background, resulting in a binary mask. In 218 
another approach, an AI algorithm establishes pixel ranges known as line of interest or region of 219 
interest, which aid in the counting and recording of objects’ behavior as they traverse the frame.  220 

By isolating part of the frame, less pixel-to-pixel calculations are required, which is particularly 221 
useful in high-resolution footage where the number of pixels is large. Finally, Kalman filtering 222 
can predict the movement of objects. This can also aid in the classification of specific types of 223 
objects that are tracked. With the values of objects’ sizes and acceleration obtained and/or 224 
predicted, the differentiation between vehicle and pedestrian or vehicle and train can be 225 

ascertained (14). These techniques—removing the stationary background, identifying the moving 226 

objects, determining if they are traversing an area of interest, and removing the non-conforming 227 
objects—establish a framework for AI-aided railroad video data analytics. Furthermore, 228 
developed AI-based techniques should be trained to test and verify its robustness. A training 229 
program for an artificial intelligence application for railroads would require the development of 230 

an initial algorithm with established environmental parameters. This draft algorithm analyzes a 231 
training set of data, comparing the algorithm’s results to the knowns.  A successful verification 232 

would require the algorithm to correctly “see” images of trains and pedestrians independently 233 
from the background, using techniques such as background subtraction (13). The AI can then be 234 
retested with various weather conditions and diverse daylight conditions, such as dawn, day, 235 

dusk, and dark.  After undergoing this training an AI Application is able to explicitly capture the 236 
images and moving paths of trains and highway users, such as cars, pedestrians, bicyclists, under 237 

a wide array of external conditions. Then the AI tool is able to record critical video information 238 
automatically, which is compiled into a database for future study. 239 

 240 
FIGURE 1 General AI framework for railroad video data analytics. 241 

 242 
5 APPLICATION TO GRADE CROSSING NEAR-MISS ANALYSIS  243 

Grade crossing trespassing accounts for a large number of incidents and fatalities annually (29). 244 
An AI algorithm was developed and implemented with the data based on one grade crossing in 245 
New Jersey. The CCTV video footage of this grade crossing was obtained, and a customized AI 246 

algorithm was developed to detect near-misses. A near-miss event occurs when a pedestrian or 247 
vehicle traverses the crossing while the red signal is on. Almost all prior studies in the field of 248 
grade crossing safety have focused on using accident data (30, 31), without accounting for a 249 

larger number of near-misses that share similar behavioral characteristics but (fortunately) did 250 
not cause any harm yet. The following section details the process of using AI to automatically 251 

detect near-misses from grade crossing video data. The general methodology can be adapted to 252 
other use cases in the future.  253 
 254 

5.1  Algorithm Flow Chart  255 

This AI reads the video file looking for a red signal, processes the image (details will be 256 

presented later), and evaluates whether a near-miss has occurred. Detailed analytical steps are 257 
presented below.  258 
 259 
Step 1   Reading Video Frames Sequentially 260 
The first step of the algorithm is to start reading the video file frame by frame. During this 261 

reading, the prime objective is to determine if the active signalized crossing light has been 262 

triggered. To increase processing speed, a frame-skip segment is included, which advances the 263 
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reading in 10-second intervals and stops when a red light is detected; this is practical in this 264 
application because the duration of a stop signal is greater than 10 seconds for this grade 265 
crossing. Frame-skip algorithms also allow for adaptability to high frame rate video and reducing 266 

analysis time.  267 
 268 
Step 2   Detection of Stop Signal 269 
After a frame has been isolated, the stop signal (red signal) is recognized in that frame. A 270 
checking of the red pixel values in the small area of the frame where the signal lies determines its 271 

status (Figure 2).  The user can configure the location and the opacity threshold for this 272 

application. If a stop signal is detected, the algorithm performs a frame-by-frame check 273 
backwards to determine the beginning of the stop signal. Then, the subroutine of near-miss 274 
detection is activated.  275 
 276 

FIGURE 2 Stop signal under day and night conditions. 277 
 278 

Step 3   Background Template Learning 279 
The near-miss detection subroutine follows several steps. The first is to learn and subtract the 280 
background template at the beginning of the stop signal.  Non-moving objects are captured in the 281 

field of view at this time.  For each stop signal that is encountered in the video, a new 282 
background is learned. This overcomes the challenge of the gradual changing of light levels 283 

throughout the day. Other environmental conditions such as passing rainstorms, parked cars in 284 
the background and others are also captured in the background template learning (Figure 3).   285 

 286 
FIGURE 3 Computer-recognized background using training data.  287 

  288 
Step 4   Objective Tracking 289 

Moving objects are detected in the foreground with the background subtraction technique (13, 290 
23-25). With background subtraction, the total number of moving pixels can be tracked and 291 
recorded from frame to frame; this detection continues until the red signal turns off. 292 

 293 
Step 5 Identifying Near-Misses 294 
After aforementioned steps, the algorithm identifies a near-miss event based on the total number 295 

of moving pixels. One main challenge here is to recognize and remove the “noise” from moving 296 
pixels of a train. It was noted that the number of pixels that a train occupies in the foreground 297 

during a crossing is much larger than that of highway users (e.g., a pedestrian or a vehicle). 298 
Therefore, a proper threshold can be established to separate near-miss objectives from trains. If a 299 
near-miss is detected, all frames of the red signal are extracted to a video file for further review. 300 

After stop signal processing concludes, the algorithm skips five minutes and continues the 301 

analysis from Step 1. This five-minute skip further reduces processing time and does not 302 

compromise the accuracy of the analysis since no stop signals re-occur within this short interval 303 
in this case study.  These parameters can be easily changed for different applications. 304 
 305 
5.2 Results 306 
The goal of our algorithm is to complete the analysis much faster and with equal or greater 307 

accuracy than manual reviewing.  In this case study, the processing of the video took roughly 2% 308 

of the total video duration to complete.  This duration is highly dependent on the number of stop 309 
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signals encountered. Two near-miss events were detected on a 25-hour video dataset, covering 310 
three different days.  The processing time for this video was less than 40 minutes. Detailed 311 
summary is listed in Table 1. 312 

 313 

TABLE 1 Results for AI-Aided Detection of Near-Misses 314 

 The algorithm’s output showed two near-miss events occurring within a single stop signal 315 
in the morning of one day.  In the first near-miss, before the train arrived, two pedestrians 316 

entered the grade crossings while the stop signal was active (Figure 4a). Five seconds after the 317 

two pedestrians crossed the track, the train arrived. The second near-miss occurred when a 318 
cyclist, who had stopped at the deployment of the arm gates and stop signal, crossed after seeing 319 
that the train was gone, without waiting for the signal to be deactivated (Figure 4b).  320 
 321 

FIGURE 4 Two near-miss incidents detected by the AI algorithm. 322 

 323 
 The results of this study epitomize two different types of highway users and two typical 324 
non-compliance behaviors. The two pedestrians perceived the timing of train arrival from their 325 
judgment and were confident with their ability of crossing the track before the train arrived. The 326 
second case illustrates the assumption that no second train would cross, despite the presence of 327 

multiple tracks and the continuing of the signal. Both near-misses represent risky behaviors with 328 
potentially catastrophic consequences, which have been seen in the past accident data (12, 30).  329 
 330 
 331 
 332 
6 WED-BASED DECISION SUPPORT TOOL (AI-GRADE) 333 

The AI algorithm described above has been implemented into a web-based decision support tool 334 
called “AI-Grade” (Figure 5). The web-based AI-Grade streamlines the automatic processing of 335 
railroad grade crossing data through the following steps:   336 

• Step 1 – Login in the application website   337 

• Step 2 – Select the video file that needs to be analyzed and enter the user’s email address. 338 

• Step 3 – Click “Submit” and the processing will begin. 339 

Step 4 – Once processing is completed, users will receive an email that provides the cropped 340 
near-miss video, if any.  341 

 342 
FIGURE 5 AI-grade decision support tool user interface. 343 

 344 
7 TOOL VALIDATION   345 

To ensure the usefulness of this AI tool, results must be accurate and achieved faster than via 346 

manual processing. A validation of this criteria was completed using the collected video data.  In 347 

terms of accuracy, there are four possible results: 1) an illegal trespassing occurs, and a detection 348 
is recorded (correct); 2) no illegal trespassing occurs, but a detection is recorded (false positive); 349 
3) an illegal trespassing occurs, but there is no detection (false negative); and 4) there is no 350 

illegal trespassing and there is no resulting detection (correct). 351 
 352 

TABLE 2 Tool Validation Outcomes for Near Miss Detection  353 
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 354 
For comparison, several students manually reviewed all the footage and compared their results to 355 
the output of AI-Grade.  To date, AI-Grade is 100% accurate without any false positives or 356 

negatives (Table 2). In addition, the AI program completed processing the 25-hour video within 357 
40 minutes, totaling 2% of the video time.  We are further developing and training this algorithm 358 
using more video data (e.g. one-year data) from our industry partners. Ultimately, we hope to 359 

design a tool for real-time analytics of video data in support of railroad safety decision-making.  360 
 361 
8 CONTRIBUTIONS TO RESEARCH AND PRACTICE  362 

8.1 Contribution to Academic Research  363 
This paper describes an Artificial Intelligence technological framework for automatically 364 

detecting near-misses at grade crossings.  Before the advent of AI technology, it was not 365 
practical to collect diverse information (e.g. the time, type, and environmental conditions 366 
surrounding illegal trespassing), from big video data because of an inordinate amount of man-367 
hours required for the acquisition of such information.  The expected contribution of this 368 

research to railroad safety parallels what the FHWA-sponsored study on Naturalistic Driving did 369 

for highway traffic safety, which used sensors to collect vehicle movement and driver attention 370 
data and used this information for highway safety analyses (32). Similarly, we aim to empower 371 
AI to analyze a large amount of railroad video data for better understanding human factors in 372 
various application scenarios.  373 
 374 

8.2 Contribution to Practice  375 
The practical contribution of the AI framework is its applicability to this and other scenarios in 376 
the rail industry (e.g. inside cabs, at stations, rail yards, and on platforms). This information will 377 
help railroad agencies make decisions regarding the allocation of limited safety budgets. AI can 378 
be trained to recognize a variety of environmental factors (e.g. weather, track geometry, the 379 

population surrounding rail facility), as well as risk-prone human behaviors (e.g. illegal 380 

trespassing, operator fatigue). Further, AI can be developed to quantitatively measure the 381 
association between risky behaviors and their influencing factors. These results enable 382 
development of proactive strategies to prevent or reduce near misses or incidents in railroad 383 
system, thereby improving its safety.  Additionally, the implementation of this framework has a 384 
low cost.  It utilizes an already existing video recording infrastructure and has no additional 385 

hardware costs.  386 
 387 
9 CONCLUSION  388 
This paper proposes the use of a customized Artificial Intelligence algorithm for automatically 389 
analyzing railroad video data in order to solicit useful information for understanding human 390 

behavioral characteristics. An example implementation and decision support tool are developed 391 

based on grade crossing surveillance video data. In the study period, our AI algorithm correctly 392 
detects all the near-miss events associated with unsafe trespassing of the studied grade crossing. 393 
The near-miss data can be used for developing safety strategies, to prevent the occurrence of 394 
risk-prone behaviors and resultant accidents. This research indicates the promising applications 395 

of AI to other research areas in railroad industry in the future, such as in-cab video analysis for 396 
distraction detection or security surveillance in railway stations.   397 

 398 

10 FUTURE WORK 399 
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To take this research further we are increasing the volume of the training set to include more 400 
environmental conditions and possibly more near-misses. Once the AI algorithm is trained via a 401 
very large and diverse amount of video data, it can be used to “recognize” and “understand” a 402 

wide array of scenarios in the real-time setting. Real-time video analytics in other locations and 403 
applications within railroad industry will be developed, validated and implemented.  Another 404 
area of future research would be the analysis of video from the cameras installed in locomotives 405 
based on an adaptation of the AI algorithm described in this paper. 406 
 407 

There are several major considerations when implementing a real-time system, some of which 408 

are as follows:  409 

• Ethical – Maintaining privacy of individuals in analysis & protection against sensitive 410 
data breaches; 411 

• Economical – Balancing cost & benefits of the technology;  412 

• Accuracy – Continually improving accuracy with growing database; 413 

• Demand – Adding data types and metrics as per stakeholder request; 414 

• Support – Responding to system failures and correcting errors; 415 
• Adaptability – Ensuring the ability to perform under unforeseen or untested scenarios; 416 

• Availability – Maintaining access for stakeholders; 417 
 418 
Additionally, a potential future step is to use the developed database for railroad safety risk 419 

analysis. As mentioned above, most previous studies were based on accidents instead of near-420 
misses. If near-miss data can be collected, additional insights (particularly behavioral 421 

characteristics) could be drawn to further support railroad safety research (31).  This would be 422 
combined with potential cost-benefit analyses to understand the practical value of AI 423 
implementation in the rail industry.  424 
 425 
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FIGURE 1 General AI framework for railroad video data analytics.  537 

Removal of static 

background from analysis

Recorded video file

Grouping of moving pixels 

into distinct objects

Mapping the movement of 

objects across the frame

Statistically predicting the 

movement of objects to 

ensure conformity

Recording important 

information to database for 

later analysis

Background 

Substraction

Tracking

Kalman 

Filtering

Database population

Blob 

Analysis



Zaman et al 4595                                                                                                                            15 
 

 
 

 538 

 539 

FIGURE 2 Stop signal under day and night conditions.  540 
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FIGURE 3 Computer-recognized background using training data.   543 
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FIGURE 4 Two near-miss incidents detected by the AI algorithm.   546 



Zaman et al 4595                                                                                                                            18 
 

 
 

 547 

 548 
FIGURE 5 AI-grade decision support tool user interface.  549 
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TABLE 1 Results for AI-Aided Detection of Near-Misses 550 

Date From To Duration 

(Hours) 

Red Signals Near Misses 

Day 1 08:00 15:00 07:00 21 0 

Day 2 00:19 09:00 08:41 20 2 

Day 3 12:00 21:00 09:00 26 0 

TOTAL 24:41 67 2 
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TABLE 2 Tool Validation Outcomes for Near Miss Detection  588 

 Trespassing 
No 

Trespassing 

Detection  100% 0% 

No Detection 0% 100% 

 589 


