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This paper proposes a low-cost, data-driven approach to assess and predict bridge defor-
mation using track inspection big data, which is primarily used for assessing track condi-
tions. Firstly, a Bridge Deformation Assessment model with a sophisticated signal
processing process is introduced to manipulate track geometry inspection data for extract-
ing bridge-related components. Secondly, a Bridge Dynamical Deformation index (BDD
index) is defined to quantify bridge deformation based on track geometry inspection data.
Thirdly, the Temperature-Time-Deformation model (TTD model) is established to describe
bridge deformation with respect to ambient temperature and length of service time of the
bridge. Three types of TTD equations are proposed, including exponential-, hyperbolic- and
linear-TTD equations. Fourthly, a track geometry inspection dataset over 2.6 years involv-
ing 563 bridge spans is applied as a case study. It is found that the BDD index changes with
ambient temperature by 0.02 mm/�C on average, and increases with time by 0.2 mm/year
during the 2.6-year period. Furthermore, a prediction on the amount of increase of the BDD
index over the following 3 years is given with a 95% confidence level. It is expected that
BDD index will increase by 0.5 mm in 2 years and 0.7 mm in 3 years according to the
TTD model. Finally, the model uncertainty is discussed from data aspect and model aspect.
The methods in this paper are of reference value for research topics on bridge condition
evolution, rail geometry degradation and prediction-based infrastructure maintenance.

� 2021 Elsevier Ltd. All rights reserved.
1. Introduction

1.1. Background

Bridge-based sections account for a large proportion of China’s High-Speed Railways (HSR) due to their advantages of
avoiding the interruption of existing lines and the occupation of land [1–3]. As a result, the demand for assessment of the
condition of such a large amount of bridges over the long term is steadily increasing. Among different bridge types, the sim-
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ply supported beam accounts for the largest proportion [3]. This paper focuses on the condition of simply supported beams;
the bridge and track layout information are given in Section 1.2.

Bridge condition simulation, evaluation, prediction, and condition monitoring [4–7,71,72] has long been a hot topic, espe-
cially for high-speed railway lines [8–43]. One universal and widespread concern is bridge deformation [25–43], including
deflection (downward bend) and camber (upward bend). Large bridge deformation will cause a larger rotation angle
between any two adjacent bridges spans, leading to defects in the longitudinal profile of the track and reducing the running
stability, comfort and safety of the trains [21–22,43].

Bridge deformation can be divided into three categories: (1) temporary deformation (TD), (2) periodical deformation (PD)
and (3) time-developing deformation (TDD). TD is the recoverable deflection caused by trainloads, and it will restore when
the train load is no longer present. PD refers to deformation which changes periodically due to ambient climatic conditions,
such as the thermal gradients of bridge cross sections [47–57]. In the time scale of one year, PD shows seasonal fluctuation
characteristics. TDD is the unrecoverable deformation which evolves gradually over a long time. The most important factors
causing TDD are the loss of reinforcement prestress [26,29,30,44–46] and the creep and shrinkage of concrete [23,31–37,46].
Fig. 1 presents illustration of TD, PD and TDD. A brief literature review about TD, PD and TRD is given in Section 2.

This paper does not aim to study the mechanism of TD, PD and TDD. Instead, the objective of this paper is to introduce a
novel data analysis approach for assessment and prediction of railway bridge deformation over the long term using big data
from track inspection. The measured data and the measurement principle of track inspection cars are introduced in
Section 1.3.

1.2. Bridge-based track layout

In this paper, our special interest is on bridge deformation. The China High-Speed Railway track geometry inspection
dataset from Jan. 2015 to Aug. 2017 is used as a case study in this paper. The construction of the railway line began on
Dec. 30, 2008. The design speed is 250 km/h. The line began operation on Jan. 1, 2015. It is reported that the bridge girders
were placed on the piers around June 2010. The track is a CRTS I slab track. As illustrated in Fig. 2, the bridge type is rein-
forced concrete pre-stressed box girder with length of 32 m. There are two lengths of slabs, one is 5 m (Slab 2 in Fig. 2) and
the other is 3.8 m (Slab 1 in Fig. 2), with the order of 3.8 + 5 + 5 + 5 + 5 + 5 + 3.8 = 32.6 m. The slabs don’t lie across two
girders. Note that the actual spatial period of one single simple supported bridge is 32 m + 0.3 m + 0.3 m + 0.1 m = 32.7
m. For the bridge girders, the effective support length (the distance between two support points) is 32 m. The ambient tem-
perature around the bridges in this line ranges from 2 �C ~ 36 �C

1.3. Track geometry inspection data

The track inspection car utilizes the Inertial-Reference method [58–60]. A detailed introduction of track geometries can
be found in [58–66]. As illustrated in Fig. 3, the track longitudinal profile is obtained by combining carbody-wheel relative
distance and double integration of carbody acceleration, which is followed by a HIGH pass filtering process to eliminate
trend drift. It has been proven numerically and experimentally that the effective wavelength range is from 1 m to 120 m
(for some inspection cars, the maximal wavelength can be up to 200 m). The measured track longitudinal profile can be
understood as the dynamic displacement of the wheel along the rail line. The final measurement results are integrated with
track geometry and stochastic irregularities, base deformation (e.g. bridge deflection and camber, subgrade settlement and
etc.), and condition of the inspection train itself (e.g. wheel polygonal irregularities).

To monitor the bridge deformation based on track geometry inspection data over the long term, an accurate and reliable
position information of the geometry inspection data is a prerequisite in this study. However, due to various issues regarding
train’s positioning system, such as degraded adhesive conditions between rail and wheel, sensor failures and poor GPS signal,
the positions of multiple runs of track geometry inspections are far from consistent. Sometimes, the milepost error of
Fig. 1. Three major extrinsic factors that lead to bridge deflection or camber, including dynamic trainload, vertical temperature gradient, and creep &
shrinkage of concrete.
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Fig. 2. The layout of CRTS I slab track on the 32 m simply supported beam. (Full section pre-stress).

Fig. 3. The measurement principle of track longitudinal profile using the Inertial-Reference method. Here variable Y refers to the measured track
longitudinal profile, a and W refer to carbody acceleration and relative distance between carbody and wheel, respectively.
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between two inspection runs can even reach hundreds of meters, which needs to be aligned and synchronized to the same
spatial coordinate. This is referred to as ‘‘position synchronization”, a long-standing important research problem in the area
of track data analytics. In our previous research, we have proposed a novel approach to more accurately and expediently syn-
chronize track geometry inspection positions via big-data fusion [67]. In this paper, the dataset has been processed by the
model proposed in [67], where the relative milepost error is less than 0.3 m.

The track geometry measured by the track inspection car is treated as a stochastic process along the mileage-axis [66,68].
Along the time-axis, however, it is found that the track geometry waveform does not change randomly over time comparing
different inspection runs after milepost synchronization. Fig. 4 illustrates the comparison of rail longitudinal profile between
four inspection runs. In particular, for the bridge-based section, an obvious periodic change (with a periodic interval of 32 m)
of the waveform along the mileage axis can be observed, which cannot be seen in the subgrade-based section. Additionally,
the bridge-based section also shows a greater difference between different inspection runs compared to the subgrade-based
section. It is the waveform differences between different inspection runs and different spans of bridge that are the key to
revealing the characteristics of bridge deformation. Although this difference is small and features a significant variance
and uncertainty, it turns out to be quite meaningful under statistical significance.
2. Literatures review and contribution of this paper

2.1. Temporary deformation (TD)

TD is determined by trainloads and bridge stiffness. Increasing of trainloads and degradation of stiffness will cause larger
TD and the direction of TD is downward. There are a lot of publications regarding the interaction between bridges and trains,
experimentally [4,9] and numerically [10–20,23].

As for bridge stiffness, Gonzales at al. (2013) [51] studied the stiffness properties of railway bridges between winter (tem-
perature below 0 �C) and summer. It was found that low temperatures tend to increase the value of the mean and variance of
the measured natural frequencies of a bridge. An interpretation of this change is hypothesized as due to changes in the stiff-
ness parameters of somematerials with the onset of frost. A conclusion can be drawn according to [51] that temperature will
not influence bridge stiffness when the temperature is above 0 �C. A similar study based on natural frequency can be found
by reference to [52].

Besides the frost caused by low temperatures, concrete cracking is another major factor leading to stiffness degradation
by softening the stress–strain relation [69,70]. However, clues regarding stiffness degradation of high-speed railway bridges
3



Fig. 4. Comparison of rail longitudinal profile between four inspection runs after mileage synchronization. (a) and (b) are the waveforms of the bridge-
based and subgrade-based sections.
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are rarely observed. Due to the durability of the design and the application of full section pre-stressing, it is almost impos-
sible for cracks to be produced.
2.2. Periodical deformation (PD)

Though it is mentioned above that ambient temperature does not affect bridge stiffness when above 0 �C, thermal gra-
dient does have a significant influence on bridge deformation due to thermal expansion and shrinkage of concrete [47–52].

In 2002, Carin L. et al [48] presented measurement data of thermal gradients through the depth of a segmental box girder
bridge over 2.5 years. A strong seasonal periodical fluctuation of temperature differences as well as bridge deformation can
be observed. Similar studies on the seasonal effects can be found in [50–52].

By reference to [48], the relationship between the temperature gradients and the middle span bridge deflectionxc can be
expressed as
xc ¼ Ml2

16EI
ð1Þ
M ¼ aE �
Z

T yð Þb yð Þydy ð2Þ
where, M is the equivalent bending moment caused by thermal effect, l is the effective span of a simply supported beam; I is
the inertial moment of the bridge cross section and E is the modulus of elasticity. T yð Þ is the temperature difference at dis-
tance y from the centroid of a section; b yð Þ is the width of section at distance y from the centroid; a is the coefficient of ther-
mal expansion (11� 10�6=�C);

Fig. 5 presents a case of measured positive temperature gradients. The measured data is cited from [48]. Similar results
can be found in [54] and [55].

It is reported by [46] that a fifth-order curve is a good model of the distribution of temperatures through the depth of a
concrete superstructure. The equation is
T yð Þ ¼ Ts � y
yc

� �5

ð3Þ
where, T yð Þ is the temperature at a depth y below the top surface (�C); Ts is surface temperature (�C); y is the depth below the
top surface (mm) and yc is the depth of the coolest position (mm). In the case of [56], yc is specified to 1200 mm.
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Fig. 5. Illustration of a case of positive temperature gradients.
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In 1983, Potgieter and Gamble [57] presented equations to predict thermal gradients of concrete bridges considering
ambient climatic conditions of solar radiation, daily ambient temperature variation, and wind speed. A case is given in
[57] for San Antonio where the appropriate equations are as follows:
Ts S; TV ;vð Þ ¼ 28:2
Sa

29:089
� 0:7

� �
þ 0:352 TV � 11:1ð Þ þ F vð Þ ð4Þ
where; F vð Þ ¼ 32:3� 4:84v þ 0:771v2 � 0:088v3 þ 0:00463v4 is the temperature influenced by wind speed v (m=s); S is the
total daily solar radiation (KJ=m2); TV is the ambient temperature variation (�C); a is the absorptivity (0.7 for plain concrete
and 0.9 for asphalt). [57]

An accurate prediction of thermal gradients of concrete bridges is not easy since it requires varieties of ambient climatic
conditions, which feature great uncertainty. It is recommended for readers to refer to [49] for a deeper understanding con-
cerning thermal gradients of concrete bridges.

2.3. Time-developing deformation (TDD)

It has long been observed that railway bridges (mainly simply supported pre-stressed bridges) tend to deform upward
like a camber gradually as time passes [24–36,40–41]. Here the upward change trend is in the scope of TDD. There are mul-
tiple factors that contribute to TDD, including prestress losses and the creep and shrinkage of concrete. The latter, creep and
shrinkage of concrete, is thought to be the dominant factor leading to TDD. Creep and shrinkage of concrete under pressure is
a natural process. There are numerous studies regarding the evolution of creep in different situation and it is reported that
concrete creep and shrinkage are influenced by many factors, including relative humidity, temperature under load, size
effect, water to cementitious ratio, age at loading, stress-strength ratio at loading and others. [23,31,34,36,37,46].

Wenjun He [36] deeply researched the long-term camber of pre-stressed bridges caused by creep and shrinkage of High
Performance Concrete (HPC). Some real measured results of the camber of pre-stressed bridges are provided within a one-
year period in [36], but the time sampling was too short to reveal the evolution of bridge camber over the long term.

There are a lot of variations for bridges in the field environment. The temperature and humidity change irregularly com-
pared to the laboratory environment. The complex environment also leads to the problem that the results from a single
bridge span do not convince without statistical significance. Thus, the major difficulty for studies to be carried out is the lack
of field data regarding the deformation of bridges. Moreover, it is uneconomical and almost impossible to install monitoring
systems on a number of bridges. The installation of monitoring systems is costly and more likely to be used to monitor
bridges with special structures or large spans, such as suspension bridges and cable-stayed bridges. Since real observations
are not easy to obtain, empirical models were proposed to predict the long-term camber of pre-stressed bridge girders, such
work can be found in [24–26].

2.4. Intended contributions of this paper

This paper proposes a low-cost, data-driven approach to assess and predict bridge deformation using track inspection big
data. Track inspection has been primarily used for assessing track conditions. However, due to the bridge-track-vehicle inter-
action, this data source may provide additional insight into the condition of the bridge. Using track inspection data to
approximately evaluate bridge conditions has not been attempted in prior literature. If successful, this method can provide
a secondary use for the enormous amount of track inspection data that was not fully utilized for this purpose before.

The main contributions of this paper are summarized in the following points:
5
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� A Bridge Deformation Assessment model (BDA-model) with a sophisticated signal processing process is introduced to
manipulate track geometry inspection data for the extraction of bridge-related components;

� A Bridge Dynamical Deformation index (BDD index) is defined to quantify bridge deformation based on track geometry
inspection data;

� The Temperature-Time-Deformation model (TTD-model) is established to describe bridge deformation with respect to
ambient temperature and length of service of the bridge. Three types of TTD equations are proposed, including
exponential-, hyperbolic- and linear-TTD equations.

� A track geometry inspection dataset over 2.6 years with 563 bridge spans is applied as a case study. A prediction of the
increase of the BDD index over the following 3 years is given with a 95% confidence level;

� A further discussion is presented regarding model uncertainty and application prospects.

3. Data processing and model framework

The data processing and model framework are illustrated in Fig. 6. There are three parts:

A: Dataset Loading and preprocessing. There are two main data sources, including track geometry inspection data and
historical ambient temperature corresponding to the inspection runs. The track geometry inspection data should
undergo the mileage synchronization procedure (please refer to [67]) to ensure the relative position error (RPE) is less
than 0.3 m, so that the multiple runs of geometry data can be used to monitor bridge deformation in the long term.
Fig. 6. Data processing flow chart.
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B: Bridge Deformation Assessment model (BDA-model). This part consists of a sequence of data processing operations.
A multiple moving average filtering method is applied, based on which peaks and valleys are extracted for bridge span
estimation and pier positioning. Furthermore, the bridge dynamic deformation (BDD) is defined as a feature of bridge
deformation. A method to estimate BDD based on rail longitudinal profile is proposed.

C: Temperature-Time-Deformation model (TTD-model). This part presents a model to separate the temperature-
related and concrete-creep-related components that lead to bridge deformation in the field environment. Three types
of TTD equations, Exponential-, Hyperbolic-TTD and Linear-TTD equations, are proposed and parameters are esti-
mated. Finally, a prediction is given on the increase of bridge deformation in the following ten years.
4. Bridge deformation assessment model

4.1. Multiple moving average filtering (MMA filtering)

Since the bridge-related deformation waveform is covered up by the stochastic track geometry irregularities, a filtering
process is necessary to recognize the bridge span and to separate the bridge-based rail profile waveforms of each bridge
span. A direct way to reduce random disturbance is by taking the average of multiple measurements. The filtering method
used in this section is multiple moving average (MMA) filtering, the most common filtering method used in engineering
field. There are two parameters of MMA filtering: the number of points for the single average operation N and the number
of times for average operations M. MMA filtering is equivalent to Gaussian filtering.

The purpose of filtering is not frequency truncation, but to reduce the random disturbance of the rail profile. More impor-
tantly, the filtered results should be as smooth as expected so they can be used for the recognition of bridge piers by esti-
mating the peaks and valleys in Section 4.2. Mathematically, the peak and valley of a digital signaly ¼ yiji ¼ 1;2 � � � ;nf g is
defined as Eqn. 5:
Fig. 7.
typeofyi ¼
peak; yi > yi�1andyi > yiþ1

valley; yi < yi�1andyi < yiþ1

notpeakorvalley; otherwise

8><>: ; i ¼ 2; � � � ;n� 1 ð5Þ
The appropriate values of the parameters (N andM) are essential to the performance of the filtered results. If the values of
N and M are too small, they will leave too many peaks and valleys on the filtered curve, while values that are too large will
excessively smooth the waveform. The ‘‘appropriate values” of N and M mentioned here are aimed at bridges with a span of
32 m. There are other appropriate values for N and M relevant to infrastructure with other periodic lengths, such as a sub-
grade with a 20 m periodic structure.

Throughmultiple numerical tests, the appropriate values for N andM used in this section are set at N = 20 andM = 20. The
sampling interval of the inspection car is 0.25 m, so it indicates the moving average filtering is taken on every 5 m
(20points� 0:25m) length of rail, and the filtering is processed 20 times. The filtering performance is presented in Fig. 7.
As shown, the original waveform contains a lot of random fluctuations, and there are many irregular peaks and valleys.
As a comparison, the filtered result (the black curve) becomes much smoother. The peaks (red circles) and valleys (red plus
symbol) of the filtered curve are distributed regularly on the bridge-based section.
Bridge span estimation based on peaks and valleys of the filtered waveform. The range with cyan background represents the bridge-based section.
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4.2. Bridge span identification

This section deals with the recognition of the bridge span. The following contexts are based on two possible but opposite
hypotheses:

� H0� the piers are located at the peaks;
� H1�the piers are located at the valleys.

There follows an essential question: which hypothesis should be accepted, or should both of them be rejected? When
both H0 and H1 are rejected, it indicates the piers are not located at the peaks or valleys, and the models presented in the
coming sections become invalid. This question is of great importance and it is addressed in Section 4.3 in particular. This
section retains both hypotheses and the related models are provided separately.

The positions of peaks and valleys of the filtered results are denoted as p ¼ piji ¼ 1;2 � � � ; sf g and v ¼ v iji ¼ 1;2 � � � ; tf g,
respectively. Then, the bridge middle span position and bridge span, denoted as a value pair
m; lð Þk ¼ mi; lið Þji ¼ 1;2 � � � ; s� 1; k ¼ porvf g are estimated based on vectorp and v according to Eqn. 6
Fig. 8.
valleys
m; lð Þk i
mi; lið Þp ¼ piþ1þpi
2 ;piþ1 � pi

� �
; i ¼ 1; � � � ; s� 1

mi; lið Þv ¼ v iþ1þv i
2 ;v iþ1 � v i

� �
; i ¼ 1; � � � ; t � 1

(
ð6Þ
where, the subscripts p and v represent the estimation based on peaks and valleys, respectively.
The model is applied to the dataset introduced in Section 1.3 and the estimated bridge middle span position and bridge

span are presented in Fig. 8. Fig. 8(a) shows that the MMA filtering process has a significant suppression effect on the wave-
form amplitude of the non-bridge-based rail section, while at the same time it maintains the characteristics of the bridge-
based section. Moreover, it can be observed from Fig. 8(b) that the estimated bridge spans are concentrated around 32 m for
the bridge-based rail section, compared to the disordered distribution of non-bridge-based section, which can also be
observed from the distribution histogram presented in Fig. 8(c).

To further address the bridge span identification mathematically, a normal distribution fitting of peak-based and valley-
based bridge span is carried out, and we get l N 32:781;1:427ð Þ, the fitting result is illustrated in Fig. 9. Here the mean value is
32:781, close to the real length of one period of bridge structure (32.7 m), with only a 2.48% error. At a 99% confidence level,
we obtain a confidence interval of bridge recognition according to the estimated span of [29.11 m, 36.46 m].
(a) 

(b) (c) 

Bridge middle span position and bridge span estimation. (a) shows the filtered results; (b) presents the estimation of m; lð Þk based on peaks and
according to the filtered results, with the cyan ranges representing the bridge-based track section; (c) is the distribution histogram of the estimated
n four categories, including non-bridge-based peaks, non-bridge-based valleys, bridge-based peaks and bridge-based valleys.
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Fig. 9. Normal distribution fitting of peak-based and valley-based bridge span.
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It should be mentioned that the distribution fitting is based on results of both peaks and valleys, because as long as we do
not reject both H0 and H1, the peaks (or valleys) may be corresponding to piers and the valleys (or peaks) to be the middle
span. In both conditions, mi; lið Þp and mi; lið Þv can be used for the estimation of length of bridge span.

4.3. Pier position hypothesis validation

This section deals with the validation of the pier position hypothesis. First of all, a basic conclusion from material
mechanics should be addressed. For simply supported beams, the equation of the deflection curve under loads is similar
to a parabola with zero values at the two hinge supports. The two hypotheses can be validated by comparing the waveform
of the rail longitudinal profile over one bridge span. The true hypothesis between H0 and H1 should better fit a parabola.

Let x; yð Þ ¼ xi; yið Þji ¼ 0; � � � ;128f g be a sample of rail longitudinal profile data within one bridge span, in which the pier
positions are specified according to H0 or H1. And xi ¼ 32=128� i� 1ð Þ and yi is the original rail longitudinal profile at posi-
tion xi.

A standardization of x; yð Þ is necessary considering that the stiffness of the bridge pier is great enough that it deforms
much less than the girders. Thus, the magnitudes of rail longitudinal profile at the position of the piers are set to zero by
subtracting a linear trend between the two piers. Then, we get a standardized x; by� � ¼ xi; byi

� �ji ¼ 0; � � � ;128� �
and we have

Eqn. 7
byi ¼ yi �
1

128
i � y128 þ 128� ið Þ � y0ð Þ; i ¼ 0; � � � ;128 ð7Þ
To observe bridge deformation from rail longitudinal profile over one single bridge span is difficult since the bridge defor-
mation is almost covered up by the track geometry irregularity with random disturbances. However, by taking the average of
x; yð Þ over multiple bridge spans, the common characteristics can be revealed. Fig. 10 illustrates a comparison of the average
of rail longitudinal profile over multiple bridge spans based on the two hypotheses.

It is obvious that Fig. 10(a) is a more reasonable deflection of the bridge and there should not be a sharp angle at the mid-
dle span as in Fig. 10(b). Mathematically, the judgment of the pier position hypothesis can be described as Eqn. 8:
V0 ¼ min
k;b

kh0 � kxþ bk
V1 ¼ min

k;b
kh1 � kxþ bk

8<: ð8Þ
where, h0 and h1 are the first order change rate of the average of y based on H0 and H1, respectively. k and b are linear fitting
parameters. V0 and V1 are values representing the degree of linear approximation of h0 and h1. The valid hypothesis between
H0 and H1 can be determined as the one with the smaller value of V0 and V1. Additionally, when both V0 and V1 are too large,
it indicates both h0 and h1 are not similar to a linear function. Thus, a threshold for V0 and V1 is necessary to distinguish the
abnormal situation. The validation process is written as Eqn. 9:
pierpositionhypothesis ¼
H0; V0 < V1andV0 < T

H1; V0 > V1andV1 < T
rejectboth; otherwise

8><>: ð9Þ
where, T is a threshold which is determined empirically. Here when V0 ¼ V1 or both V0 and V1 are larger than T , both H0 and
H1 are rejected, which can be interpreted as no bridge span of 32 m being detected.

It should be noted that there is no absolute result for the validation of H0 and H1. A comparison is necessary since some-
times H0 is true and sometimes the opposite. In general, when the bridge is newly built and the environmental temperature
is low, the bridge deforms downwards and H0 is true. On the contrary, when the bridge has been in service for a long time
and the environmental temperature is high, the bridge deforms upwards like a camber and H1 is true. Fig. 11 illustrates the
waveform comparison of rail longitudinal profiles on the same bridge span over 2.6 years. Though it is not clear for the peri-
9



Fig. 10. Comparison between two different hypotheses regarding pier identification. (a) and (b) are rail longitudinal profiles of 563 spans based on H0 and
H1, respectively; (c) and (d) are the first order change rates of the black curve in (a) and (b), respectively.
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odic change, an overall increasing trend is obvious. In the early stage, the bridge bends downwards (see the blue curves). As
time goes by, the downward trend of the waveform gradually decreases and an upward trend is shown (see the yellow
curves).

4.4. Bridge dynamic deformation (BDD)

An index is introduced in this section to characterize bridge deformation. Compared to static bridge deformation, Bridge
Dynamic Deformation (BDD) is proposed to describe the deformation of bridges serving in a field environment when trains
cross the span. BDD is a final outcome influenced by multiple causes, including loads, bridge stiffness, environmental tem-
perature, the development of concrete creep and shrinkage, and others. The following context describes how the BDD index
is defined in this paper.

As is mentioned in Section 3.2, the rail longitudinal profile over a 32 m bridge span is standardized so that the offsets at
the two hinge supports are set to zero by subtracting a linear trend. Thus, y x ¼ 0ð Þ ¼ y x ¼ 32ð Þ ¼ 0. Then, the BDD curve is
defined with the form of Eqn. 10
Fig. 11.
when t
y xð Þ ¼ a � xðx� 32Þ ð10Þ
The waveform comparison of rail longitudinal profile on the same bridge from January 2015 to August 2017 (the colors correspond to the time
he rail inspection was carried out). There are 60 inspection runs presented.
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where a is the only parameter describing the amplitude of bridge deformation. When a < 0 or a > 0 the bridge deforms
upwards or downwards, respectively. Also, a ¼ 0 indicates the upward and downward trends of bridge deformation coun-
teracting each other.

For a standardized rail longitudinal profile data sample over a 32 m bridge span, x; yð Þ ¼ xi; yið Þji ¼ 0; � � � ;128f g, the
parameter a can be estimated based on the following least square model Eqn. 11:
Fi
argmin
a

1
2
ky � a � x2 þ 32a � xk2 ð11Þ
There are 129 pairs of data because the sampling interval of the track inspection car is 0.25 m and the effective length of
the bridge is 32 m. The model is a standard convex optimization problem, and the result can be expressed as Eqn. 12
a ¼
X128
i¼0

yi

 !
=
X128
i¼0

xiðxi � 32Þ
 !

¼ �1
21844

�
X128
i¼0

yi ð12Þ
In this paper, instead of using a whole curve to describe the BDD, the middle span deformation is chosen as a feature since
it is known that the maximum bridge deflection is reached when the train is at the middle span. Thus, the BDD index in this
paper is defined as the offset between the quadratic fitting curve and the static reference at the middle span, as Eqn. 13,
which is illustrated in Fig. 12.
BDD,0� y x ¼ 16ð Þ ¼ 162

21844
�
X128
i¼0

yi ¼ 0:0117 �
X128
i¼0

yi ð13Þ
The unit of the BDD index is millimeters. The definition indicates the direction of the BDD is upward. When a bridge
deflects downward the value of BDD is negative, and vice versa.

With the definition above, the estimated BDD indexes of 563 bridges from January 2015 to August 2017 are calculated
and presented in Fig. 13. As is shown, a seasonal periodic fluctuation with a general increasing trend can be observed. For
each group in Fig. 13, the box-plot refers to 563 BDD indexes. The median, average and standard deviation of each group
are given in Table A3 in Appendix.
5. Temperature-time-deformation model

This section focuses on the major constituent components of BDD. The Temperature-Time-Deformation model (TTD-
model) is established and parameters are estimated based on the outputs from the BDA-model.

5.1. Components of BDD

Recalling that there are three major extrinsic factors in terms of bridge deformation which were listed in Section 1.2:
trainloads, temperature gradient and creep and shrinkage of concrete over time. Thus, the BDD can be treated as a combined
effect of the three components. According to BDD superposition assumption in Table A2, the function of the BDD index
against dynamic trainload F, ambient temperature T and time t can be written in the following form Eqn. 14:
Y F; T; tð Þ ¼ �a Fð Þ þ b Tð Þ þ cðtÞ ð14Þ

where, a Fð Þ, b Tð Þ and cðtÞ are the sub-functions of the BDD index with respect to F, T and t, respectively.
g. 12. Definition of Bridge Dynamic Deformation (BDD), the middle span offset between the quadratic fitting curve and the static reference.
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Fig. 13. The BDD indexes of 563 bridges from Jan. 7, 2015 to Aug. 8, 2017 (60 track inspection runs). The red plus symbols represent outliers.
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5.2. BDD from the TD component

a Fð Þ represents the bridge deflection caused by a dynamic trainload F. The direction of BDD caused by the trainload is
downward, so there is a negative sign in front of a Fð Þ. According to the TD assumption in Table A2: the load F can be taken
as a constant; we obtain Eqn. 15
a Fð Þ ¼ A ð15Þ
5.3. BDD from the PD component

b Tð Þ represents the bridge deformation caused by temperature T. It should be noted that it is the temperature gradient of
the girder in the vertical direction that matters, rather than the ambient temperature. According to Eqs. (1) to (3), we find
that the middle-span deformation due to the temperature gradient is proportional to the temperature on the surface Ts.
According to Eq. (4), Ts is determined by solar radiation, daily ambient temperature variation, and wind speed. Nevertheless,
instead of estimating the surface temperature Ts, this paper proposes a simplified approximation by using the ambient tem-
perature to address the temperature effect. According to the PD assumption in Table A2, the BDD index is approximately
proportional to the ambient temperature in long-term observation. For a given reference temperature T0, when T > T0,
there is a positive temperature gradient that makes the bridge bend upwards, and vice versa. When the ambient temperature
happens to be T0, the bridge is not influenced by temperature gradient, which means b T ¼ T0ð Þ ¼ 0. Then b Tð Þ is proportional
to T � T0; we obtain Eqn. 16
b Tð Þ ¼ B � ðT � T0Þ ð16Þ

The coefficient B, with a unit of mm=�C, is an important parameter which reveals the relationship between bridge defor-

mation and ambient temperature. It should be noted that the expression of b Tð Þmay be a debatable point. However, it can be
understood as a linear approximation of the complicated influence of ambient temperature. Since the real temperature gra-
dient of the bridge is too difficult to measure, the ambient temperature is an alternative and approximate choice.

5.4. BDD from the TDD component

c tð Þ represents the bridge deformation caused by the development of concrete creep and shrinkage. In the field environ-
ment, the situation is so complicated that temperature, humidity and trainloads change periodically with great uncertainty,
which makes the development of concrete creep and shrinkage hard to measure by equipment or predict by empirical for-
mulas. Instead, this paper provides a macroscopic description of the bridge deformation caused by creep-shrinkage through
the development of the BDD index, without further consideration of the mechanism of concrete creep and shrinkage. Accord-
ing to the TDD assumption in Table A2, we get c t ¼ 0ð Þ ¼ 0 and c t ! 1ð Þ ¼ constant.

Combining with reference [36–37], where exponential and hyperbolic functions are used to describe the development of
concrete creep and shrinkage, we suggest c tð Þ be described with three possible expressions: an exponential function ce tð Þ,
hyperbolic function ch tð Þ and local linear function c tð Þ, as Eq. (17) to (19).
12
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ce tð Þ ¼ C � 1� e�kt
� � ð17Þ

ch tð Þ ¼ D � t
Eþ t

ð18Þ

cl tð Þ ¼ K � t ð19Þ

The parameters of these three models can be interpreted by associating with the evolution process of bridge deformation

due to concrete creep and shrinkage. The units of C and D are mm, and represent the limit of bridge deformation caused by
creep-shrinkage. The units of k and E are 1/day and day, respectively. The parameter k is the exponential convergence rate. E
is a parameter controlling the shape of the function ch tð Þ. The unit of K is mm/day, and it is a parameter valid in a local scope,
but it holds the most intuitive meaning for the development speed of bridge deformation.

In brief, since a Fð Þ is a constant, the TTD-model is independent of trainload F. The TTD-model can be written as three
forms
YeðT; tÞ ¼ �Aþ B � ðT � T0Þ þ C � 1� e�kt
� � ð20Þ

YhðT; tÞ ¼ �Aþ B � ðT � T0Þ þ D � t
Eþ t

ð21Þ

Yl T; tð Þ ¼ �Aþ B � T � T0ð Þ þ K � t ð22Þ

where, T represents temperature (�C) and t represents time (day). Eq. (20), (21) and (22) are named the E-TTD equation, H-
TTD equation and L-TTD equation, respectively.

6. Model fitting and prediction

6.1. Nonlinear regression of the TTD equations

This section presents the results of parameter estimation of YeðT; tÞ, YhðT; tÞ and YlðT; tÞ. The original data used to perform
the fitting comes from ambient temperature data and the estimated BDD indexes as well as the corresponding track geom-
etry inspection data, which are also provided in Appendix. By using the MATLAB toolbox cftool, Eq. (20) to (22) are fitted and
results are presented as Eqns. 23, 24 and 25.
YeðT; tÞ ¼ �1:85þ 2:07� 10�2 � T þ 25:61 � 1� e�2:237�10�5 �t
� 	

ð23Þ

YhðT; tÞ ¼ �1:94þ 2:02� 10�2 � T þ 20 � t

3:096� 104 þ t
ð24Þ

YlðT; tÞ ¼ �1:85þ 2:04� 10�2 � T þ 5:587� 10�4 � t ð25Þ

where, the temperature data used for the fitting is the highest temperature of that day. The BDD indexes used are the mean
values. The goodness of fit as well as the parameters A, B, C, D, E, T0, k and K are given in Table 1. Since the fitting data is not
able to distinguish A and T0, the value of Aþ B � T0 is given. Comparing with the results presented in Table 1, the following
conclusions can be drawn:

� All three fittings share similar accuracy according to the goodness of fit;
imation of parameters for E-, H- and L-TTD equations, including A, B, C, D, E, T0, k and K. The physical meaning of each parameter is given in Section 5.

g type Goodness of fitR2 Parameter Value 95% confidence bounds

l
-TTD (Ye)

0.8793 B 0.0207 [0.0177, 0.0237]
Aþ B � T0 1.85 [�1337, 1385]
C 25.61 [�1385, 1334]
k 2.237e�5 [�1.23e�3, 1.27e�3]

D (Yh) 0.8772 B 0.0202 [0.0172, 0.0233]
Aþ B � T0 1.94 [�0.1328, 4.013]
D 20 [�358.2, 398.2]
E 3.096e + 04 [�6.483e + 05, 7.102e + 05]

D (Yl) 0.8766 B 0.0204 [0.0174, 0.0234]
Aþ B � T0 1.851 [�2.052, �1.65]
K 5.587e�4 [4.733e�4, 6.441e�4]
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� The temperature coefficient B is about 2:04� 10�2mm=�C according to the three TTD equations;
� For the E-TTD equation, the limit value of creep-shrinkage-caused bridge deformation is about 25.6 mm, which is greater
than that of H-TTD (20 mm).

� The parameter K of L-TTD indicates that an average of 0.2 mm/year (5:59� 10�4 mm/day) of deformation (upward)
increase is observed in these years.

It should be noted that the fitting parameters for E- and H-TTD are very sensitive, since the 95% confidence bounds of
Aþ B � T0, C, D and E change across a large range, as highlighted with red in Table 1. We can conclude that even though
the track inspection dataset used in this case contains 2.6 years of data, it is still not sufficient to describe the time-
developing trend of the BDD index over decades or even centuries. Nevertheless, how the deformation of a bridge develops
in the far future (e.g. several decades) seems not of urgent importance. And the TTD model can still be used for the prediction
of BDD index in the coming years, as presented in Section 6.2.

6.2. Prediction for the following 3 years

A direct application of the fitted TTD equations is the prediction of TDD component in the future. The fitting performance
of the three models are illustrated in Fig. 14. To avoid the disturbance of temperature effect, the results of TTD equations
with temperature of 20 �C (simply as a reference) are also presented in Fig. 14. As shown in Fig. 14(a), the results of the three
TTD equations almost coincide with each other within the time range from January 2015 to August 2017. However, when it
comes to a long-term time scope, e.g. 5 years in Fig. 14(b), the curves of the three TTD equations disperse. The L-TTD equation
shows a linear trend, and the E-TTD and H-TTD equations gradually deviate from L-TTD. In the long-term prediction (right),
we assume there would be similar temperature fluctuation in the following years, so we can observe a gradually increasing
trend, as well as the BDD fluctuation with respect to the changing temperatures.

The predicted amounts of increase of bridge deformation in 0.5 years, 1 year, 2 years and 3 years are given in Table 2, with
the 95% confidence bounds in brackets. It is expected that the bridge deformation will increase by 0.5 mm in 2 years, and
0.7 mm in 3 years according to the three TTD models. The predicted amounts of the E- and H-TTD equations are a little
bit smaller compared to the L-TTD equation. Additionally, the 95% confidence bounds of E- and H-TTD are much larger than
L-TTD since the fitting parameters are much more sensitive for nonlinear regression (e.g. exponential and hyperbolic for E-
and H-TTD in this case) than for linear regression (e.g. L-TTD). It can be explained at the same time with the large range of
confidence bounds of each fitting parameter presented in Table 1.
7. Discussion

7.1. Model uncertainty

There are two main factors contributing to the prediction accuracy of the TTD model: (1) frommodel aspect: the selection
of parameters in the TTD model and (2) from data aspect: the reliability of the dataset in use.

From model aspect, as mentioned in Section 2.2, PD is mainly caused by the cross-section thermal gradient, which is
determined by ambient climatic conditions, such as solar radiation, daily ambient temperature variation, and wind speed.
Additionally, Section 2.3 shows that TDD mainly depends on the development of concrete creep and shrinkage, which is
influenced by many factors, including relative humidity, temperature, size effect, stress-strength ratio and age at loading
and etc. However, in Section 5, only the two most important and general parameters are selected for modeling, that is
the highest ambient temperature T and time t.
Fig. 14. The fitting performance of the three models. The short term (left) and the long-term (right) prediction of TDD according to the E-TTD, H-TTD and L-
TTD equations. Note that in the long-term perdition (right), we assume there would be similar temperature fluctuation in the following years.
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Table 2
The predicted amount of increase of deformation on the median value BDD indexes in the following 3 years. The value in brackets is the 95% confidence bounds.

Type of model Amount of permanent bridge deformation increase (mm)

0.5 years later 1 year later 2 years later 3 years later

E-TTD 0.208
(�0.018, 0.433)

0.305
(0.017, 0.593)

0.499
(�0.004, 1.00)

0.692
(�0.132, 1.516)

H-TTD 0.207
(�0.019, 0.433)

0.305
(0.020, 0.590)

0.497
(0.010, 0.985)

0.686
(�0.096, 1.467)

L-TTD 0.209
(0.016, 0.401)

0.311
(0.113, 0.509)

0.515
(0.305, 0.726)

0.719
(0.491, 0.947)
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From data aspect, four factors contribute to the prediction accuracy of the TTD model: (1) the ambient temperature is
obtained from the weather reports of the nearest city along the rail line, it is not exactly the temperature on the bridge sur-
face; (2) the temperature readouts are only accurate to 1�centigrade; (3) only the maximum and minimum ambient temper-
atures are provided and the exact temperatures when the inspection car is present are unknown; (4) the estimation of BDD
index may be influenced by track slab and rail geometry, since the BDD are defined and calculated from track inspection
dataset. The fitting performance and residual errors are illustrated in Fig. 15, with more detailed weather conditions on
the day the track geometry inspection is carried out (the data is given in Table A3 in Appendix). It can be found that the gen-
eral development trend of the fitting of BDD is consistent with the real estimated BDD indexes. At some times, the residual
error even reaches 0.2 mm.

There is a significant decrease of the BDD index to be found on July 8, 2017, as highlighted in red. At the same time, the
highest ambient temperature witnessed is relatively low compared to the two nearest inspection runs. Moreover, it is found
that there was rain on July 8, 2017, and the sharp drop of the BDD can be explained by the reduction of the temperature
gradient due to a cooling effect of the rain. Moreover, it should be noted that the weather condition can be quite complicate,
since for a rainy day it could be a light rain or a heavy rainfall. Similarly, for a cloudy day, the cloud may lead to different solar
radiation energy absorbed by the bridge, and the degree of howmuch cloud exists beyond the bridge is hard to be quantified.
As a result, the exact weather conditions are the major but uncertain factor contributing to the residual fitting error.
7.2. Application prospects

Since the track geometry inspection data is easily accessible, the BDA model proposed in this paper can be applied to
other rail lines and an assessment of bridge deformation can be carried out. Moreover, combining with the ambient climatic
condition recorded by the National Weather Service, the TTD-model can be used to make a prediction on the development
trend of bridge deformation in the following years. With the increasing amount of track geometry inspections year by year,
Fig. 15. Temperatures related to the track inspection runs. Different symbols represent different types of weather. The legends maxT and minT of Fig. 15(c)
represent the maximal and minimal temperatures, respectively. See Table A3 in Appendix for details. The date of the highlighted data is July 8, 2017. Only
the case of E-TTD is presented since the three fitting equations are similar to each other.
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the fitting performance of TTD equations can be enhanced. The predictions can be tested and the TTD-model will be cor-
rected and updated each time a new track geometry inspection is carried out.

It should be noted that the method proposed in this paper does not aim at estimating the deformation of one single bridge
span, but towards a range of bridges which may contain hundreds of bridge spans. It is effective under statistical significance.

What’s more, the methods and some conclusions given in this paper are of reference value for research topics on bridge
condition evolution, rail geometry degradation and prediction-based infrastructure maintenance.
8. Conclusions

This paper proposed a novel approach to evaluate railway bridge deformation based on track geometry inspection big
data, which is primarily used for assessing track conditions.

The Bridge Deformation Assessment model with a sophisticated signal processing process, including MMA filtering, peak
and valley estimation and curve fitting, is proposed to manipulate track geometry inspection data for extracting bridge-
related components. Then, a Bridge Dynamic Deformation (BDD) index is defined to quantify bridge deformation based
on the extracted bridge-related waveforms. The Temperature-Time-Deformation (TTD) model is established to describe
bridge deformation with respect to ambient temperature and length of service time. Three types of TTD equations are pro-
posed, including exponential-, hyperbolic- and linear-TTD equations.

A track geometry inspection dataset over 2.6 years with 563 bridge spans is applied as a case study. It is found that the
BDD index changes with ambient temperature by 0.02 mm/�C on average and increases with time by 0.2 mm/year during the
2.6-year period. Furthermore, a prediction of the amount of increase of the BDD index over the following 3 years is given
with a 95% confidence level. It is expected that the BDD index will increase by 0.5 mm in 2 years, and 0.7 mm in 3 years
according to the TTD model.

Finally, the model uncertainty is discussed from data aspect and model aspect, including the selection of parameters in
the TTD model and the reliability of the dataset in use. It is found that the exact weather conditions are the major uncertain
factor contributing to the residual fitting error. The methods and some conclusions given in this paper are of reference value
for research topics on bridge condition evolution, rail geometry degradation and prediction-based infrastructure
maintenance.
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Appendix
Table A1
Abbreviations and Assumptions.

Abbreviations Explanation

TD Temporary deformation of bridge
PD Periodical deformation of bridge
TDD Time-developing deformation of bridge
MMA Multiple moving average filtering
BDD bridge dynamical deformation index
BDA-model Bridge deformation assessment model
TTD Temperature-Time deformation model
E-TTD TTD equation with exponential function component
H-TTD TTD equation with hyperbolic function component
L-TTD TTD equation with local linear function component

Table A2
Assumptions and rationales.

Assumptions Explanation Rationale

BDD waveform assumption
(Section 4.1)

For simply supported beams, the deflection curve
equation under loads is similar to a parabola with
zero values at the two hinge supports. In this
paper, quadratic parabolic equation is applied to
fit the BDD waveform.

This assumption is based on common knowledge
frommechanics of materials. A quadratic parabolic
equation is applied to fit the BDD waveform for
simplification. Since there is a lot of noise (random
track irregularity) in the measured data, using a
higher order parabolic equation may lead to over-
fitting.

BDD superposition assumption
(Section 5.1)

The three components of bridge deformation (TD,
PD and TDD) are independent of each other, and
the magnitude of bridge deformation from the
three components is small and obeys the principle
of superposition.

1) TD, PD and TDD are caused by different and
independent factors.

2) The bridge deformations from TD, PD, and TDD
are much smaller than the bridge span (32 m).

TD assumption
(Section 5.2)

The dynamical load F can be taken as a constant. The track inspection cars do not carry passengers,
and the weight of the inspection car can be taken
as a constant. The inspection speed is always the
same when running on the same track section, so
the dynamical load F can be taken as a constant.

PD assumption
(Section 5.3)

Periodical BDD is approximately proportional to
the ambient temperature for a complex field
environment over long-term observation.

In fact, PD is related to multiple ambient climatic
conditions, such as solar radiation, daily ambient
temperature variation and wind speed. However,
in complex field environments, the exact ambient
variables change with a lot of uncertainty. A
simple treatment is by a linear approximation and
only considers the influence of ambient
temperature. This assumption becomes invalid
when the ambient temperature is below 0 �C
because of the influence of frost [51].

TDD assumption
(Section 5.4)

1) Initially there is no creep or shrinkage effect of
concrete; 2) As time goes by, the creep and
shrinkage effect will not increase infinitely.

Since TDD is mainly caused by creep and shrinkage
of concrete, the evolvement of TDD over time is
assumed to be similar to the condition evolution of
concrete, which can be found in [24–36,40–41].

17



Table A3
Temperature and weather on the day the inspection data is obtained, with bridge dynamic deformation estimated from the inspection data.

Days from Jan.1 2010 Temperature and weather Bridge dynamic deformation (BDD index) (mm)

maximum minimum weather median average standard deviation

1831 10 5 rainy �0.62 �0.56 0.77
1844 12 2 cloudy �0.66 �0.61 0.81
1866 15 2 sunny �0.60 �0.53 0.74
1882 13 7 rainy �0.37 �0.37 0.56
1890 14 7 cloudy �0.49 �0.45 0.65
1902 16 11 sunny �0.39 �0.41 0.58
1921 18 8 cloudy �0.18 �0.21 0.46
1933 23 14 cloudy �0.17 �0.21 0.47
1950 29 15 cloudy �0.10 �0.11 0.41
1963 33 21 cloudy �0.08 �0.08 0.37
1981 30 20 cloudy 0.01 0.01 0.41
2011 30 19 cloudy �0.04 �0.05 0.38
2024 33 21 cloudy �0.13 �0.18 0.45
2041 34 20 cloudy �0.05 �0.07 0.36
2055 29 20 sunny �0.19 �0.27 0.46
2078 25 19 rainy �0.31 �0.41 0.60
2085 25 18 sunny �0.22 �0.29 0.49
2110 27 16 cloudy �0.06 �0.08 0.41
2122 23 18 rainy �0.29 �0.36 0.55
2136 21 10 cloudy �0.25 �0.31 0.54
2165 12 8 sunny �0.41 �0.43 0.65
2178 8 4 sunny �0.38 �0.37 0.63
2195 15 7 rainy �0.46 �0.47 0.71
2209 10 4 rainy �0.44 �0.41 0.69
2239 17 4 cloudy �0.31 �0.32 0.61
2245 16 6 cloudy �0.23 �0.28 0.59
2257 24 12 rainy �0.18 �0.21 0.49
2272 17 10 rainy �0.24 �0.27 0.47
2288 21 15 rainy �0.02 �0.05 0.41
2300 29 15 cloudy 0.02 0.02 0.41
2318 25 17 rainy 0.10 0.15 0.46
2330 29 17 rainy 0.23 0.33 0.54
2349 34 21 rainy 0.23 0.36 0.56
2361 36 24 cloudy 0.33 0.42 0.60
2379 30 24 rainy �0.09 �0.17 0.47
2391 35 23 cloudy 0.20 0.32 0.58
2408 33 23 rainy 0.15 0.24 0.54
2439 28 19 sunny 0.04 0.05 0.49
2453 23 17 rainy 0.00 �0.03 0.46
2472 18 14 rainy 0.07 0.14 0.53
2483 22 18 rainy �0.03 �0.07 0.49
2501 16 9 rainy �0.10 �0.17 0.54
2514 21 12 cloudy �0.08 �0.13 0.51
2531 16 4 cloudy �0.11 �0.21 0.59
2532 14 5 cloudy �0.11 �0.21 0.59
2544 11 8 rainy �0.19 �0.24 0.58
2561 13 8 sunny �0.17 �0.22 0.57
2572 10 4 sunny �0.21 �0.25 0.62
2592 13 8 rainy �0.16 �0.21 0.57
2620 13 6 sunny �0.03 �0.07 0.50
2638 15 8 sunny �0.20 �0.26 0.58
2663 28 14 cloudy 0.15 0.20 0.50
2669 23 14 rainy 0.12 0.18 0.50
2680 23 13 rainy 0.21 0.32 0.58
2689 33 17 cloudy 0.29 0.46 0.67
2712 31 18 cloudy 0.32 0.49 0.72
2725 28 20 cloudy 0.30 0.48 0.70
2741 28 21 rainy 0.13 0.23 0.55
2755 31 24 rainy 0.37 0.54 0.76
2773 33 24 sunny 0.48 0.66 0.88
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