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Abstract
Trespassing is the leading cause of rail-related deaths and has been on the rise for the past 10 years. Detection of unsafe tres-
passing of railroad tracks is critical for understanding and preventing fatalities. Witnessing these events has become possible
with the widespread deployment of large volumes of surveillance video data in the railroad industry. This potential source of
information requires immense labor to monitor in real time. To address this challenge this paper describes an artificial intelli-
gence (AI) framework for the automatic detection of trespassing events in real time. This framework was implemented on
three railroad video live streams, a grade crossing and two right-of-ways, in the United States. The AI algorithm automatically
detects trespassing events, differentiates between the type of violator (car, motorcycle, truck, pedestrian, etc.) and sends an
alert text message to a designated destination with important information including a video clip of the trespassing event. In
this study, the AI has analyzed hours of live footage with no false positives or missed detections yet. This paper and its subse-
quent studies aim to provide the railroad industry with state-of-the-art AI tools to harness the untapped potential of an exist-
ing closed-circuit television infrastructure through the real-time analysis of their data feeds. The data generated from these
studies will potentially help researchers understand human factors in railroad safety research and give them a real-time edge
on tackling the critical challenges of trespassing in the railroad industry.

‘‘Trespassing on railroad property is the leading cause of
all rail-related deaths’’ (1). This statement, made by
Ronald L. Batory, the Administrator of the Federal
Railroad Administration (FRA), at the 2018 American
Public Transportation Association Rail Conference,
encapsulates the biggest problem in railroad safety today.
In the period of 2009–2016, 95 percent of railroad deaths
were caused by trespassing and grade crossing collisions.
The figure for trespassing casualties from 2013 to 2016 is
16 percent higher than 2009 to 2012 (2–4). This issue is
recognized as a major concern of safety within the U.S.,
which is supported by the U.S. House Committee on
Appropriations Fiscal Year 2018 Transportation Budget
Report which instructs the FRA to ‘‘to identify and
study the causal factors that lead to trespassing incidents
on railroad property and develop a national strategy to
prevent trespasser accidents’’ (5).

Most rail trespassing behavior does not result in inju-
ries or fatalities. These trespass events are not typically
recorded in FRA safety databases because no immediate
harm occurs. Not all trespassing events cause damage,
but they indicate certain behaviors that may lead
to severe consequences if they occur repeatedly.
Learning from these trespass events is critical to develop-
ing effective education, enforcement, and engineering

strategies for the prevention of trespassing on railroad
tracks (6).

The increase in availability of video data within the
rail industry makes acquiring data on trespassing more
viable. Closed-circuit television (CCTV) cameras can be
found throughout railroads, observing yards, bridges,
grade crossings, and stations. Deployment of CCTV
camera systems continue to grow in the U.S. following
the 2015 Fixing Americas Surface Transportation
(FAST) Act that mandated the installation of cameras
throughout passenger railroads for the promotion of
safety objectives (7). For example, Caltrain, in Palo Alto,
California has installed CCTV cameras at safety-critical
grade crossings to actively monitor and prevent illegal
incursions through an integrated alert system (8). This
trend has also expanded globally; for example, India has
an initiative to install cameras on over 11,000 trains and
8,500 stations throughout the country starting in 2018
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(9). These sources provide valuable video big data
resources for railroads, but analyzing the data accurately
in real time is challenging.

At present, most camera systems are reviewed manu-
ally by railroad staff, but limited resources and operator
fatigue (10, 11) can lead to potentially missing trespassing
events. To address this challenge, this paper describes an
artificial intelligence (AI) algorithm to ‘‘watch,’’‘‘recog-
nize,’’ and ‘‘understand’’ trespassing events in real time
using an existing video infrastructure. In addition, this
algorithm is coupled to a live alert system that sends tres-
passing alerts to designated destinations. Once this tech-
nology is practice-ready, it can be adapted to new
trespassing-critical locations to support railroad safety
decisions.

Objectives of Research

The goal of this paper is to describe an AI framework
which can analyze live video feeds in real time to gather
useful information for railroad safety purposes.
Specifically, this study aims to yield the following
deliverables:

1) Develop a methodology for AI-aided trespassing
detection and alert

2) Develop a practice-ready tool implementing the
algorithm

3) Collect and analyze trespassing data to understand
trespassing characteristics

Figure 1 shows a conceptual view of the system, in
which an AI algorithm can send live alerts to designated
personnel by analyzing and identifying trespassing events
in live CCTV feeds. In addition, trespassing events are
also recorded in a trespass event database containing

video and associated metadata (time of day, type of tres-
passing, type of trespasser, etc.).

Literature Review

A literature review was conducted to understand the state
of the art and practice in two major categories: (1) how
big video data are used within the railroad industry for
trespassing detection; and (2) how AI is used for trespas-
sing detection in other relevant domains.

Video Data and Trespassing in the Railroad

Trespassing on railroad property is primarily detected
through manual observation of video surveillance sys-
tems. An example of this was research conducted by
DaSilva et al. in which a video surveillance system was
used to detect trespassers on railroad property in
Pittsford, NY (12). In this study, a large amount of labor
was required to review the footage and obtain true quan-
tities for the number of trespasses. Minimal work has
been done that utilizes AI for trespassing, and no studies
have performed these analyses in real time, providing
alerts for proactive trespass prevention, which is a princi-
ple knowledge gap motivating this study.

Trespassing and illegal incursions at grade crossings
make up much of the fatalities in the railroad industry (2,
3). Limited research has focused on the detection of the
illegal incursions of grade crossings with AI solutions.
Research by Pu et al. in 2014 used a series of computer
vision algorithms to detect incursions with a facsimile of
a grade crossing (13). Further research by Zhang et al.
and Zaman et al. used a similar suite of AI algorithms to
detect trespass events at grade crossings (14, 15). These
studies were limited to the available archival footage and
did not analyze real-time video feeds. The live detection

Figure 1. Conceptual trespasser detection & alert system using artificial intelligence.
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of more trespassing events at both grade crossings and
right-of-ways can support railroads in two ways. The first
is the potential for faster responses to dangerous situa-
tions on their property. Second, the aggregated database
of these events can give insight into the behavioral char-
acteristics of trespassers. This information has the poten-
tial to better understand trespassing and develop the
most effective risk-mitigation strategies.

AI for Trespass Detection

AI has the potential to greatly reduce the required man-
power to detect trespassers. Evidence of this exists within
the utilization of AI algorithms in parallel industries such
as highway and aviation. An emerging type of AI algo-
rithm called Mask R-CNN has been successfully used in
analyzing big video data in circumstances similar to the
railroads trespassing problem.

Mask R-CNN is built on the established architecture
of deep convolutional neural networks (DCNNs).
DCNNs are a style of neural network that classifies
images through a specific arrangement of three kinds of
network layers: convolutional, rectified unit layers, and
pooling layers. The convolutional layers, for which this
algorithm is named, attempt to find a pre-programmed
feature (called a filter) within an image. This can be a
geometric shape, series of colors, or any other element
which is unique to what you want to classify. Multiple
filters are tried across the entire image and are aggre-
gated into a single image in the pooling layer. Rectified
unit layers (ReLU) remove anything that does not match
resulting in an image only showing what may match. If
these steps are repeated in the algorithm, convolving,
pooling, and convolving again, the algorithm becomes
deep, resulting in a deep convolutional neural network
(16).

Since Krizhevsky et al.’s 2012 research publication
using DCNNs for image classification (17), which was
used to win the ImageNet Large Scale Visual
Recognition Challenge (LSVRC-2012) contest (correctly
classifying 1.2 million images), the use of DCNNs in
image classification has rapidly increased in popularity.
Subsequent research based on Krizhevsky’s work, for
example Regional CNN (18), Fast R-CNN (19), and
Faster R-CNN (20), built upon the existing structure of
DCNNs to include features such as bounding boxes.
This differed from traditional DCNNs by being able to
identify the location of an object in an image, rather than
its mere presence.

In 2017, a state-of-the-art descendent of this previous
research called Mask R-CNN was published within
Facebook’s AI Research (FAIR) division (21). A primary
benefit of Mask R-CNN is the increased precision in
object recognition by being able to tell if individual pixels

are part of an object. Also, Mask R-CNNs are compati-
ble with existing, large-scale training datasets such as the
Common Objects in Context (COCO) dataset. This data-
set consists of over 328,000 labeled images of everyday
scenes built for use in object-recognition research, and
gives computer vision algorithms valuable training data
to recognize commonly seen objects like people, cars, and
trains (22). These features of Mask R-CNN allow for
rapid deployment of AI to object-recognition tasks.

In computer vision Mask R-CNN has several distinct
advantages over other algorithms. It has been extensively
tested in many domains while maintaining a high level of
accuracy. This extensive testing has led to the creation of
a plethora of transferrable training data, easing the
application of Mask R-CNN to new scenarios (22).
Mask R-CNN is also invariant to changing environmen-
tal conditions in ways that traditional computer vision
techniques, for example background subtraction (13–15)
and blob analysis (23), are not. Finally, Mask R-CNN
can continually improve its accuracy through back-
propagated validation, using every successful classifica-
tion as positive reinforcement for future classifications.

The development of faster and more accurate neural
network architectures has led to an increase in practical
applications. The detection and tracking of pedestrians
using these methods have been extensively studied (24).
These research initiatives have used convolutional neural
networks to track people for a variety of purposes which
closely mirror the needs of trespassing, for example
autonomous driving (25–27), traffic safety (28, 29), and
surveillance (30–35). The variance in the literature con-
sists in the adjustment of variables of a convolutional
neural network (number of layers, orientation of layers,
application of study, etc.) for maximal accuracy and
quickest processing speed. Trespassing detection partially
consists of tracking pedestrians on railroad property,
therefore the methodologies outlined in the literature
have many parallels to this research.

Many industries, including railroads, have used con-
volutional neural networks in other capacities. These
applications range from airplane recognition in imagery
(36) to the tracking of ships in ports (37) to roadway
crack detection (38). Within the railroad industry,
research by Gibert et al. used convolutional neural net-
works to identify missing track components in inspection
photos (39).

Another commonly used computer vision technique is
region of interest (ROI), which was used in a study to
count pedestrians and cyclists crossing the frame of view
of a CCTV camera. A user of the system can define a
polygon of pixels within the frame, which AI algorithms
can use for reference. Positive crossings were only
recorded if identified pedestrians and cyclists passed
through the ROI (40).
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Knowledge Gaps and Intended Contributions

Currently, AI-driven video analytics are new to the rail-
road industry, and the monitoring of railroad live feeds
occurs largely on a manual basis. This research aims to
narrow this gap by providing an AI-aided trespass detec-
tion framework to collect trespassing data that inform
engineering, education, and enforcement strategies for
trespass prevention.

AI-Aided Trespass Detection Framework

Detection of trespassing events in video feeds has many
challenges. There are a wide variety of configurations,
environmental variables, and technical features of live
data streams watching railroads. An AI built for trespass
detection must have several fundamental performance
qualities. It must accurately identify pedestrians and
vehicles within the frame, unhindered by video artifacts,
shadows, and other distortions. Secondly, the AI must
maintain accuracy in diverse environmental conditions
(e.g., rain, snow, day, night, and fog). Finally, when ana-
lyzing a live video stream, the AI must be able to process
the frames with enough speed to maintain a fast response
time to possible trespassing events.

To address these challenges a generalized AI frame-
work for trespass detection which utilizes the combined
techniques of ROI (40) and Mask R-CNN (21) is pro-
posed (Figure 2). After defining the ROI, the Mask R-
CNN analyzes frames of the live video feed. If an
unauthorized person or vehicle enters the ROI an alert
would be sounded, and relevant trespass data would be
recorded to a database for later review and analysis.

A key part of Mask R-CNN performance is the train-
ing dataset, which allows it to recognize objects. The

COCO dataset, consisting of many labeled images of
everyday scenes built for use in object-recognition
research, was utilized for this purpose. It was selected
because of its depth (330,000 Images), diversity (80
object categories), and timeliness through its continual
growth and refinement (22). In addition, the COCO
dataset includes pre-generated boundaries around recog-
nized images allowing for better object recognition. By
providing the Mask R-CNN with this dataset it can
recognize people, cars, trains, and other objects within
the ROI.

If an illegal object is detected within the ROI a sub-
routine of the AI will execute two simultaneous com-
mands. First, an alert SMS text or email is relayed to a
pre-determined user. This can be a railroad safety official
who can decide of possible reparatory actions. Second, a
clip of the trespass incident is recorded and metadata, for
example object detected, time, location, video file name,
and so forth, are stored in a trespass event database.
These metadata are automatically generated by the AI,
demonstrating that context of the image can be extracted
and interpreted. Trespass data can provide valuable
information about hazardous environments and beha-
viors that lead to trespassing events, which can inform
education, enforcement, and engineering strategies for
trespass prevention. In addition, the aggregation of these
trespass events has the potential to enhance railroad risk
analyses in the future.

The AI framework should be trained to verify its
accuracy by having the algorithm analyze a video dataset
with established results. Comparing the results of the
dataset to the known number of trespasses verifies the AI
algorithm’s performance. Additional datasets, including
varying environmental conditions, should be tested with
the algorithm to verify its performance under diverse
circumstances.

This framework is intended to be implemented on live
streams of railroad property, which leads to the consider-
ation of several concerns which will be addressed in the
ongoing work:

� Ethics—Ensuring the privacy of individuals cap-
tured in the analysis;
s Plan: Implement colored masks over detected

people and vehicles with Mask R-CNN.
� Economics—Balancing cost and benefits of the

technology;
s Plan: Perform costs analysis to ensure the most

effective technological solutions have been
utilized.

� Accuracy—Continually improving accuracy with
growing database;
s Plan: Analyze false alarms and missed detec-

tions, and incorporate solutions into the AI.

Figure 2. General AI framework for railroad trespass detection.
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� Demand—Adding data types and metrics as per
stakeholder request;
s Plan: Add relevant contextual metadata as

requested.
� Support—Responding to system failures and cor-

recting errors;
s Plan: Continual communication is maintained

with industry partners to meet operational
needs.

� Adaptability—Ensuring the ability to perform
under unforeseen or untested scenarios;
s Plan: Expand testing and training data to new

scenarios and to ensure consistency in any
environment.

� Availability—Maintaining access for stakeholders;
s Plan: Develop easy-to-use dashboard to view

trespass data and analyze new data streams.

Trespass Detection Applications

Most rail casualties result from trespassing in the form
of grade crossing collisions and incursions on railroad
right-of-ways (2, 3). Almost all prior studies in the field
of trespassing and grade crossing safety have focused on
the accident data (41, 42) without considering trespass
events that do not result in accidents. These trespass
events share similar behavior characteristics to accidents,
with the exception that they do not result in immediate
harm. Repeated trespass events have the potential to lead
to severe consequences, and learning from these incidents
can inform proactive risk management strategies in the
future.

This framework was tested on two different safety-
critical scenarios: grade crossings and right-of-ways.
Grade crossings are highway–rail intersections with
active signalization where pedestrians and vehicles are
alerted to an approaching train. Trespasses at grade
crossings are defined as pedestrians and vehicles that
enter the crossing after the signal lights are activated.
Only pedestrians and vehicles who enter the ROI after
the signal lights are active trigger trespassing alerts;

therefore, the algorithm can differentiate between legal
and illegal passes. Passive grade crossings, which lack
active signalization like lights, arms, and gates, were not
addressed in this study because of lack of available video
coverage of these locations.

Right-of-way locations are defined as railroad prop-
erty with no intersection or crossing and all incursions
are deemed illegal, except for authorized railroad person-
nel. This categorization represents the two fundamentally
different types of locations where trespassing occurs and
was analyzed by the same generalized trespass detection
framework.

In the preliminary investigation of potential data
sources to test this framework it was discovered that
there exists a dearth of publicly available camera streams
of railroads. These streams were originally intended for
railroad enthusiasts to view for entertainment, but pro-
vide a high-quality (high resolution, high frame rate, reli-
able up time, etc.) data source for railroad safety
research. To select an appropriate stream several vari-
ables were searched for:

� Clear view of signal lights for grade crossings
� Urban population to increase the chance of tres-

passing events (43)

With these factors, three streams were identified for
analysis. Figure 3 shows a typical view of the locations.

The selection of one grade crossing in Ashland,
Virginia and two right-of-ways in Thomasville, North
Carolina was based on several reasons: 1) availability of
video streams with a clear view of signal lights, 2) demon-
stration of the flexibility to different trespassing environ-
ments. In the future, the search for live video feeds will
be expanded to examine a greater number of grade cross-
ings and right-of-ways alike.

AI Algorithm Flow Chart

The AI will parse the video live stream, prompt the user
to identify the ROIs within the frame, detect whether
people or vehicles are in the ROI and send alerts if a

Figure 3. (a) Selected grade crossing stream; (b) selected first right-of-way stream; (c) selected second right-of-way stream.
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trespass has occurred. The detailed steps are presented
below. The algorithm can analyze both grade crossings
and right-of-ways based on the activation of a single sub-
routine which demonstrates the framework’s adaptability
to different trespassing use cases throughout the railroad
industry with no adjustments. This special subroutine
detects the activation of flashing lights that indicate an
approaching train. A diagram of this application frame-
work can be seen in Figure 4.

Step 1 Parsing the Live Stream. The first step of the AI is to
establish a connection to the live stream of the selected
location. After raw video data are provided, for example
via internet live stream, the program will proceed to step
2.

Step 2 Draw Region of Interest. The second step of the pro-
gram is to identify the region(s) of interest. A user will
be prompted with a static image of the video feed and
the user can sequentially select the outer limits of the
trespass area. The borders of the ROI will be repre-
sented by a green line and can be closed by selecting
the first point. Multiple ROIs can be identified in the
same frame and a differentiation between ‘‘right-of-
way’’ and ‘‘grade crossing’’ can be made. The difference
between these two is that any object (person, motor-
cycle, bicycle, car, or truck) except authorized railroad
personnel detected within the ‘‘right-of-way’’ ROI will
be deemed illegal and trigger an alert. Conversely, the
‘‘grade crossing’’ area will only trigger an alert if the
algorithm detects that the signal lights are active.
Several examples of region’s of interest can be seen in
Figure 5.

Step 3 Trespass Detection. The third step in the algorithm
utilizes the Mask R-CNN framework (21). Each frame
analyzed is checked for objects within the selected
ROI. If a grade crossing ROI is identified a subroutine
will actively check for the initiation of a crossing signal
light. When that light activates, anyone who enters the
ROI is deemed trespassing. Both freight and passenger
trains are also identified by the algorithm but are
deemed as legal occupiers of the ROI, and therefore do
not trigger alerts. A limitation of the algorithm is its
current inability to differentiate between authorized
railroad personnel and trespassers. Future research will
aim to resolve this by providing the Mask R-CNN with
training data to filter out authorized railroad personnel
and workers based on the unique characteristics of
their attire. In the current framework, these events are
manually filtered out.

Step 4 Alert and Database Population. The final step of the
AI is twofold: send an alert text message or email to a
designated user and record the trespassing event video
and metadata to a database. The alert text messages or
email can be directed to railroad safety officials for

Figure 4. Detailed trespassing framework for railroad
trespassing (including both grade crossing and right-of-way).

Figure 5. (a) ROI of grade crossing stream; (b) ROI of first right-of-way stream; (c) ROI of second right-of-way stream.
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immediate action. The database contains information on
time, object detection, identified zone (grade crossing vs.
right-of-way) and name of the associated video file.

Al Development and Testing Process

To ensure that this AI achieved the highest accuracy and
minimized the number of missed detections and false
alarms a three-part training and testing plan was put into
place (Figure 6). The first step of this plan was the initial
development of the AI using several hours of training
data. These training data were acquired by recording the
live stream of the selected grade crossing location for a
duration of 9 h, capturing diverse environmental and
traffic conditions. The research team established a known
quantity of trespasses through manually inspecting the
training data. The program then analyzed this footage
and modifications were made to the program until 100%
accuracy was achieved.

The second step of this development process was the
execution of a longer training period of the same grade
crossing used to initially develop the program. This training
phase differed from the initial one because the number of
trespasses was not known beforehand but was acquired
through meticulous manual reviewing of archival footage
of the live stream. False positives and missed detections
during this 120 h analysis were identified, the AI was modi-
fied, and the archive was re-analyzed by the AI to ensure
any problems had been resolved. False positives are the
incorrect alert to a trespassing event when none occurred,

and false negatives are missed trespasses which were not
identified by the tool. Both errors were identified through

meticulous manual reviewing of the raw video data.

Changes to the AI were made and the video data were

reprocessed ensuring that the errors were not repeated. The

solutions to these issues ensured that that this error would

not occur again in future scenarios with similar circum-

stances. The procedure followed by the team that identified

false positives and missed detections is discussed later.

Tool Validation

The third and final step of this analysis was to test the AI
on two new locations. Two right-of-ways were selected
for this portion of the analysis and a cumulative 100 h of

live video reviewed. These locations were selected because

of the availability of high-quality video streams that met

the previously established criteria. This final step of

implementing the program on two completely new loca-

tions shows that the algorithm developed in this study is

generalized and can accurately identify trespassing on

video feeds throughout the railroad industry without sig-

nificant modification.

Grade Crossing Results (Training)

During the 120 h of live footage of the grade crossing
between 7/19/2018 and 7/25/2018, 140 positively identi-
fied trespassing events were reported via the alert system.

The analysis period included a multitude of varying envi-

ronmental conditions including heavy rainfall, fog, and

many day/night cycles. The AI was automatically able to

differentiate between the type of trespasser, and Figure 7

shows a breakdown of the results acquired during the

analysis period. Six categories (Car, Truck, Bus, Person,

Bicycle, Motorcycle) of trespassers were searched for by

the AI algorithm. The ability of Mask R-CNN and sup-

plied training data of the COCO dataset allowed for the

identification of over 80 object categories (21, 22). Those

selected for detection in the AI algorithm were Car,

Truck, Bus, Person, Bicycle, and Motorcycle. This differ-

entiation adds a dimension to the trespassing dataset and

can inform sophisticated trespassing prevention solutions

through detailed demographic analysis.
The most common type of violation witnessed in this

study at the grade crossing was the passage of vehicles

while the signalized intersection lights were activated. In

total, 116 events of this kind were detected, making up

83% of all detected trespassing events at this location.

Figure 8 shows several typical detected examples of this.

The color overlay of the vehicle was generated automati-

cally by the AI and indicates a recognized object. The

masking also preserves privacy.

Figure 7. Distribution of grade crossing trespasser by type.

Figure 6. Algorithm development and testing flowchart.
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The second most common trespassing events wit-
nessed in this study were the illegal incursion of pedes-
trians while the active signalized gates were down. Some
24 events of this kind were detected, making up 17% of
all totally detected trespassing events at this location.
Figure 9 shows several typical detected examples of this.
The color overlay of the individual represents a recog-
nized object by the AI.

Both event types represent two typical non-
conforming behaviors at grade crossings. The drivers
and pedestrians who traverse the crossing while the gates
are lowering have the confidence that they have enough
time to pass the intersection before the train arrives.
Individuals who crossed the intersection while the gates
were rising assume that the crossing is now safe, disre-
garding the possibility that a second train may be
approaching and will reactivate the gates. Both these
trespass events have potentially catastrophic conse-
quences, which are represented by the multitude of casu-
alties and fatalities at grade crossings (2, 3).

These events were recorded to a local trespass data-
base and, if expanded, commonalities in trespass beha-
vior can be understood. If data gathered by this AI
indicate trends, such as increased trespasser activity dur-
ing regular time periods during the day, the presence of
law enforcement may deter a large portion of illegal
behavior (44). In another example, if at the selected
grade crossing it is discovered that most trespasses occur
from a roadway direction, the installation of additional

active signalization and barriers to that direction may
mitigate excessive crossing (44). In the future, expansion
of this research to more locations and the aggregation of
a large trespass event database could highlight trends
and inform solutions to the trespassing problem.

An additional feature of the Mask R-CNN (21) is its
ability to automatically anonymize the trespasser.
Within the United States privacy in big data is of para-
mount concern (45, 46). This is verified by surveys con-
ducted in which 88% of Americans stated that they ‘‘do
not wish to have someone watch or listen to them with-
out their permission’’ and 63% of respondents ‘‘feel it is
important to be able to go around in public without
always being identified’’ (47). The overlay of colored
masks on detected trespassers prevents the identification
of the individual. Similarly, masks over vehicles obscure
the license plate sufficiently to prevent identification,
therefore maintaining the privacy of the driver.

Right-of-Way Results (Testing Phase)

In the final portion of the study two completely new
locations were tested by the AI to demonstrate the flexi-
bility of this algorithm to different trespassing scenarios.
On the first right-of-way location the AI analyzed 69 h
of live footage between 7/21/2018 and 7/27/2018. During
this time period, 10 trespassing events were recognized
by the AI under several distinct environmental condi-
tions, including rain, fog (Figure 10a), and nighttime

Figure 8. (a) Vehicle driving around deployed gates from far roadway; (b) vehicle driving around deployed gates from near roadway; (c)
school bus crossing as gates are closing.

Figure 9. (a) Pedestrian walking behind gates; (b) pedestrian crossing behind train; (c) multiple pedestrians crossing behind train; (d)
pedestrian waiting on railroad tracks.
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(Figure 10b). During these times, the AI was able to cor-
rectly identify trespassers despite the sub-optimal detec-
tion conditions.

To date, the AI is 100% accurate (no false positives,
no false negatives) at this location. Most of the trespasses
detected at this location show individuals walking along
the railroad tracks, instead of the sidewalk on the road-
way to the north of the camera’s view. It is unclear why
these individuals made the choice to trespass on railroad
tracks, but the aggregation of these events can inform
proactive strategies toward preventing accidents. A fea-
ture of the AI is the live alert system that sends text mes-
sages or emails to a user-defined destination. In a
trespassing scenario, it is conceivable for the AI to
inform railroad staff that a trespasser is present along
their property. At this point law enforcement could be
contacted and a trespasser could be removed before
potentially catastrophic consequences occur (44).

At the second right-of-way location, the AI analyzed
48 h of live footage between 7/29/18 and 7/30/18, success-
fully detecting 109 trespassing events. This live stream
overlooks a stretch of track leading to a grade crossing
that can be seen at the far upper-right of the screen. The
detection of grade crossing-specific trespasses was impos-
sible at this location because of an obstructed view of the
active signalization and extreme distance of crossing in
the frame. Despite these limitations a right-of-way ROI

was identified, and trespassing events were detected.
Some of these events can be seen in Figure 11.

Some cases captured by the AI appear to show tres-
passers using the railroad property as a shortcut to travel
between a parking lot to a downtown area. If, after
aggregating this information into a larger trespass event
database, this trend proves to be a common occurrence,
it is possible to develop solutions to this trespassing prob-
lem. For example, the installation of fencing along the
railroad right-of-way or the construction of a dedicated
walkway at the far grade crossing may deter trespassing
on the railroad tracks here. Learning from trespass events
has the potential to inform education, enforcement, and
engineering solutions to the most severe safety problem
faced by the railroad industry today.

Live Video Data Analysis Tool

The AI algorithm previously described will be integrated
into a web-based video analytics tool that Rutgers
University has developed. This tool streamlines the auto-
matic analysis of live video data from various sources.
The program can analyze live feeds through following
steps:

� Step 1: Log in to the web-based application tool
� Step 2: Insert the URL for the railroad live stream

Figure 11. (a) Trespasser crossing tracks from parking lot to downtown area; (b) trespassers crossing in evening conditions; (c) adult
and child trespassers crossing railroad tracks; (d) two trespassers loitering on tracks near the parking lot area.

Figure 10. (a) Trespasser detected crossing in foggy weather; (b) group of trespassers detected at nighttime; (c) trespasser detected
before crossing; (d) trespasser traveling within railroad property.
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� Step 3: Select the ROIs (grade crossing and right-
of-way)

� Step 4: (Grade crossing only) click within the pre-
sented image of the stream selecting a visible cross-
ing signal light

� Step 5: Enter either a phone number or email
address destination for live alerts

� Step 6: Click submit and processing will begin
� Step 7: Trespassing events notifications with

cropped trespassing clips will be sent to the chosen
destination and aggregated on a server for later
analysis

Tool Performance

To ensure that the AI algorithm achieved maximum
accuracy a several-step validation plan was enacted.
Four results of the analysis were possible: an illegal tres-
pass occurs, and a detection is recorded (true positives);
no illegal trespass occurs but a detection is recorded (false
positive); a trespass occurs, and no detection is recorded
(false negative); and no trespass occurs, and no detection
is recorded (true negative). In the training section, the AI
analyzed 129 h of live video data and reported a con-
glomeration of correct and incorrect trespassing identifi-
cation as compared with ground truth data acquired by
manual review of archival footage. These mistakes were
corrected by improving the algorithm, and a recording of
the live feed was reprocessed with the updated algorithm
to ensure that the false positives and false negatives
would not occur again, resulting in the algorithm achiev-
ing 100% accuracy at this point.

In the testing phase, two right-of-ways were analyzed
with no intermittent program modifications. Over 100
live hours of combined right-of-way footage was manu-
ally reviewed and compared with the results generated by
the algorithm. To date, the program was 100% accurate
(no false negative or false positive). The research team is
continuing to expand the amount of live video data ana-
lyzed to ensure the performance is consistent in all sce-
narios that might be encountered.

Contributions to Research and Practice

Contributions to Academic Research

This framework is the first use of Mask R-CNN algo-
rithm for trespassing detection in the railroad industry.
This AI provides a structure for automatically gathering
information from railroad live feeds. Previously, collect-
ing data on railroad trespasses required extensive manual
labor. With the advent of this AI technology, accumulat-
ing large datasets of trespassing events for human factors
research in trespassing is achievable.

Contributions to Practice

The practical contribution of this framework is the tool
created to implement its functionality. Without requiring
practitioners to program their own algorithms, the tool
can analyze railroad feeds in real time to supplement
human-based surveillance. Manually reviewing the exten-
sive CCTV network is laborious and can be made easier
with the implementation of the framework described in
this research. The framework can automatically gather
previously inaccessible data on trespassing to inform
long-term strategic education, enforcement, and engi-
neering solutions. If this practice-ready tool is implemen-
ted, the live alert function allows for immediate railroad
response to potentially dangerous situations. Evaluation
of this tool’s effectiveness should be mapped through
close examination of trespassing rates before and after
implementation.

Conclusion

This paper proposes the use of an AI algorithm for the
automatic detection of trespassing events. The collected
trespass data can help better understand trespassing
behaviors and characteristics in support of developing
informed risk-mitigation strategies related to engineering,
education, or enforcement. The algorithm was implemen-
ted on three live streams within the United States, includ-
ing one grade crossing and two right-of-ways. During the
study, the AI correctly detected all trespassing events at
the selected locations and achieved an accuracy of 100%
during the analyzed period. The live alerts generated in
this research could be potentially used for a series of tres-
passing research activities in the future. This research
indicates a promising application of AI to real-time video
analytics for trespassing and potentially other challenges
within the railroad industry.

Future Work

To further validate this framework, the amount of data
reviewed will be increased. This will allow the AI algo-
rithm to experience more environmental conditions and
possibly more trespassing events. A limitation of the cur-
rent AI is the inability to differentiate between authorized
personnel and trespassers. Future research will apply
transfer learning techniques to update the AI’s library to
recognize authorized personnel through the identification
of their personal protective equipment and other unique
features. These techniques will also be used for future
research into the recognition of debris and nonmoving
objects on railroad tracks that may cause hazards for
locomotives.

Once the AI has achieved an acceptable level of accu-
racy and can reliably recognize and alert to all relevant
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trespassing events, this application will be piloted with a
railroad industry partner. In this partnership additional
connections for the live alerts, such as audio warnings at
the grade crossing or right-of-way locations, would be
tested. Another future application may be using the
developed AI algorithm to detect trespassing from front-
facing cameras on the locomotives. In addition, future
research will focus on utilizing the tool for countermea-
sure performance analysis. This will be accomplished by
evaluation of behavioral trespass data before and after
the implementation of trespass-prevention strategies.
Future research is also planned to use these tools to
understand the behavior of individuals in the pursuit of
suicide prevention on railroad property.
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