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A Data-Fusion Approach for Speed Estimation and
Location Calibration of a Metro Train Based on

Low-Cost Sensors in Smartphones
Yuan Wang, Jianli Cong, Ping Wang, Xiang Liu , and Huiyue Tang

Abstract— Since the GPS is unavailable in underground envi-
ronment, it is extremely challenging to measure the speed and
location of a metro train. This paper proposes a novel data-
fusion approach for speed estimation and location calibration
of a metro train in underground environment, simply using the
data from the 3-axis accelerometers in smartphones. Firstly, we
place multiple smartphones in different cars of a train to measure
the longitudinal, lateral and vertical accelerations, then propose
a method to transform the measured accelerations from the
coordinate systems of smartphones to that of the metro train. In
the data fusion model, the initial estimations of train speed and
position are obtained by the integral and double integral of the
longitudinal accelerations. The lateral and vertical accelerations
are used to provide absolute reference for speed estimation,
where the local time delay and waveform similarity between
the measured accelerations in different smartphones are defined
and estimated to obtain the time-delay-based speed. Finally, a
more accurate estimation of train speed is obtained by fusing
the integral-based speed and the time-delay-based speed. A case
study is conducted on Chengdu Metro Line 7 in Chengdu, China.
The results show that, taking the interval length between adjacent
stations as ground truth, our data-fusion approach achieves
higher accuracy than the direct integral method, with the relative
errors reduced from 9.5% to 1.6%.

Index Terms— Data fusion, speed estimation, location calibra-
tion, coordinate system transformation, metro train.
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I. INTRODUCTION

SPEED estimation and location calibration are very impor-
tant for safe and efficient operation of trains, since i) the

real-time measurement of speed and location can be used
by the Automatic Train Control (ATC) system, to determine
the change of traction/braking force [1]. ii) Speed-location
curves can be used to analyze the train dynamics [2], which
builds a foundation for finding the optimal train control
strategies [3].

There are typically two approaches for improving the accu-
racy of speed estimation and train positioning: i) improving
the measurement equipment with cutting-edge techniques and
ii) developing new algorithms to fuse the measured data from
different sources to achieve higher accuracy. Firstly, there are
quite many techniques for speed and location measurement,
such as Global Navigation Satellite System (GNSS) [4]–[10],
Doppler radar [11], ultra-wideband radios [12], tachometers
[13], [14] and various methods based on inertial measurement
unit (IMU) sensors [4], [10], [15]–[17]. Secondly, a lot of
data-fusion algorithms are developed to fuse different data
sources. GNSS and IMU are the most commonly used data
sources for train positioning [18]–[27]. Kalman Filter (KF)
[28] and its variants, such as Extended Kalman Filter (EKF)
[29], Unscented Kalman Filter (UKF) and Cubature Kalman
Filter (CKF) [30], [31], are the most poupular algorithms
for GNSS/INS integration. Furthermore, Particle Filter (PF)
[32], [33] is also useful for GNSS/INS integration. There is
a detailed review regarding those techniques and data-fusion
algorithms [4]. In particular, using tachometers is an effective
approach for speed estimation [14], and fusing the data from
tachometers and IMU can further improve the results of speed
and position estimation [13].

Map matching is a useful approach for train positioning.
In [34], [35], the rail track curvatures are identified using low-
cost IMU sensors, and the angular rate and the longtitudinal
speed are measured by a yaw gyro and an odometer, respec-
tively. Then Kalman filters are utilized to fuse the yaw rate
and the tachometer signals. Similar approaches can be found
in [36]–[38], where a precise digital map is used as an essential
reference to relate the measured sensor data to track geometry.
The benefit of map matching is that it introduces an absolute
reference, which can be used to update the current position
information and restrain the accumulation of positioning error.
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Notably, a precise digital map is essential for using the map
matching method.

Unfortunately, none of the existing approaches can satisfy
our requirements. The difficulties and challenges are given as
the following points:

i) Generally, metro trains run in underground environment,
where the Global Positioning System (GPS) signals can-
not be received, so the GNSS is not available. All the
GNSS/INS integration algorithms cannot be used.

ii) Both Doppler radar and ultra-wideband radio techniques
need systematic equipment, which are much more expen-
sive and inconvenient than using smartphones.

iii) IMU sensor seems promising, but it suffers from inertial
drift [39]. The integral of the measured acceleration over
several kilometers may lead to a position error of several
hundred meters.

iv) As for the map matching approach, the problem is that,
for metro lines, the curved tracks generally locate near the
stations. When the trains run across these curved tracks,
the accelerations and decelerations can make the inertial
signals unstable, which may result in large positioning
errors.

v) Although trains are usually equipped with more accurate
accelerometers and tachometers, which can provide accu-
rate speed and location, all the information from those
sensors are not accessible to other mobile devices because
of security issues.

This paper aims to develop a novel data-fusion approach
to estimate the speed and position of a metro train that runs
in underground environment, simply using the data from the
3-axis accelerometers in smartphones. As illustrated in Fig. 1,
instead of using one smartphone, we use multiple smartphones
to measure the accelerations of different cars of a metro
train. This paper is based on following considerations: i) the
longitudinal (the running direction of the train) accelerations
provide detailed but biased information of speed and location
by integral and double integral, respectively. ii) The vertical
(the opposite direction of gravity) accelerations, the lateral (the
direction perpendicular to both the longitudinal direction and
the vertical direction) accelerations, and the relative distance
between smartphones can provide absolute reference for speed
estimation. iii) The accuracy of speed estimation and location
calibration can be improved by fusing the longitudinal, lateral
and vertical accelerations from multiple smartphones.

The contributions of this paper are presented as follows.
i) This paper proposes a novel data-fusion approach for

speed estimation and location calibration of a metro train
in underground environment, simply using the data from
the low-cost 3-axis accelerometers in smartphones, which
can (1) be used when GPS signals are not available,
(2) restrain the influence of inertial drift, and thus improve
the accuracy of speed and position estimation. Taking the
interval lengths between adjacent stations as ground truth,
mostly, the estimation errors of our data-fusion approach
are below 20 meters, where the mean value of the interval
lengths between adjacent stations is 1310 meters, so the
relative error is 1.6%. By contrast, the relative error of the

Fig. 1. Smartphones on a metro train, at least one smartphone in each car.

direct integral method is 9.5%. Our data-fusion approach
can be used to provide speed and location information
for riding smoothness assessment and noise assessment
of underground rail lines using mobile device.

ii) This paper proposes a method to transform the measured
accelerations from the coordinate systems of smartphones
to that of the metro train. With this method, it is no
longer required to adjust the directions of the smartphones
and fix them to specific positions during the measuring
process. The measurement based on the 3-axis accelerom-
eters of smartphones becomes much more convenient.

This paper is organized as follows. Section II introduces
the tools and methods for data acquisition and preprocessing,
where the measurement condition and the method for correct-
ing the coordinate system are given. Section III introduces the
data fusion approach for estimating the speed and location
using the 3-axis accelerations measured by smartphones.
Section IV uses a case study carried out on Chengdu Metro
line 7 to demonstrate the data-fusion approach proposed in
this paper. Section V discusses the factors that influence the
performance of the data fusion approach. Section VI gives the
conclusion.

II. DATA ACQUISITION AND PREPROCESSING

A. APP Design and Measurement Condition

We have designed an exclusive Android APP to record the
acceleration of metro train. The sampling frequency is 100Hz.
Data acquisition is conducted on an in-service metro train
consisting of six cars. In each car, there is a smartphone placed
(not fixed for the consideration of convenience) on the floor,
and close to the front bogie. There are totally 28 stations on
the metro line, so there are 27 intervals. It takes 1.14 hours
for the train to travel from the first station to the last station,
which is called one run. The data of three runs are recorded
in our tests.

After data acquisition, it is necessary to do data preprocess-
ing, including the following steps:

i) Outliers elimination. The thresholds for the absolute
values of the longitudinal, lateral and vertical accelera-
tions are all set to 1.5m/s2.
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Fig. 2. The coordinate systems of the metro train and the smartphone.

ii) Signal resampling. The sampling frequency of the raw
data is 100Hz, but there is a little variance, so re-sampling
is performed based on cubic spline interpolation.

iii) Time synchronization. Since the timestamps of different
smartphones are different, we use the correlation function
to estimate the time difference and then synchronize the
data of all smartphones.

B. Coordinate System Transformation

The coordinate systems of a metro train and a smartphone
are shown in Fig. 2, where X , Y and Z denote the lateral,
longitudinal and vertical directions of the coordinate system
of the metro train, respectively, and x , y and z denote the
lateral, longitudinal and vertical directions of the coordinate
system of the smartphone, respectively. Since the smartphone
is simply placed on the floor of a car rather than fixed on
it, the coordinate system of the smartphone may be different
from that of the metro train. The measured accelerations are
originally in the coordinate system of the smartphone. Since
the measured accelerations are used to estimate the speed and
position of the metro train, it is necessary to develop a method
to transform the accelerations from the coordinate system of
the smartphone to that of the metro train.

There are two principles for coordinate system
transformation:

Principle 1: The vertical direction of the metro train is
defined as the opposite direction of gravity;

Principle 2: The longitudinal and lateral accelerations of
the metro train are independent and unrelated.

Coordinate system transformation includes two steps:
1) the transformation of the vertical direction;
2) the transformation of the longitudinal and lateral

directions.
1) The Transformation of the Vertical Direction: Fig. 3(a)

shows the transformation of the vertical direction. The color
orange (X-Y -Z ) represents the coordinate system of the metro
train, the color blue (x-y-z) represents the coordinate system
of the smartphone.

According to Principle 1, the vertical direction of the metro
train (the direction of the Z axis) is the opposite direction of
gravity. Considering that the tracks in metro stations are nearly
horizontal, when a train stops at a station, the accelerations
along the X axis and Y axis of a metro train are both zeros,
only the accelerations along the Z -axis are non-zero values due

Fig. 3. The coordinate system transformation. (a) shows the transformation
of the vertical direction, and (b) shows the transformation of the longitudinal
and lateral directions. Color orange (X-Y -Z ) represents the coordinate system
of the metro train, color blue (x-y-z) represents the coordinate system of the
smartphone, and color green (x ′-y′-z′) represents the coordinate system just
after the transformation of the vertical direction.

to gravity. Therefore, only the accelerations measured when
the train stops at a station are used for the transformation of
the vertical direction.

Let asp = [ax ay az]T denote the 3-axis accelerations
output by a smartphone, and a′ = [ax ′ ay′ az′ ]T denote the
accelerations after the transformation of the vertical direc-
tion. Define the unit vector along the vertical direction Z is
a′ = [0 0 1]T . When a′ is measured by a smartphone, the
output of the smarphone is asp.

The transformation of the vertical direction can be achieved
by finding a matrix R satisfying

a′ = Rasp (1)

The mapping in (1) is equivalent to rotate asp to the direc-
tion of the z axis in the coordinate system of the smartphone.
Denote uz = [0 0 1]T as the unit vector along the z axis in
the coordinate system of the smartphone. The matrix R also
satisfies (2).

uz = Rasp (2)

According to the Rodrigues’ rotation formula, matrix R can
be obtained by

R(n, ϕ) = I cos ϕ + (sin ϕ)K + (1 − cos ϕ)nnT (3)

where, I is the identity matrix. n = [nx ny nz]T is the rotation
axis, which is perpendicular to both uz and asp, as defined in
(4).

n = asp × uz∣∣asp × uz
∣∣ =

[ ay√
a2

x + a2
y

−ax√
a2

x + a2
y

0
]T

(4)
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where, asp × uz is the cross product of asp and uz .
∣∣asp × uz

∣∣
is the magnitude of asp × uz .

Matrix K is determined by n, as defined in (5).

K =
⎡
⎣ 0 −nz ny

nz 0 −nx

−ny nx 0

⎤
⎦ (5)

ϕ is the angle between uz and asp, as defined in (6).

ϕ = arccos

(
asp · uz∣∣asp

∣∣ |uz |

)
(6)

where, asp · uz is the dot product of asp and uz .
∣∣asp

∣∣ and |uz|
are the magnitudes of asp and uz , respectively.

2) The Transformation of the Longitudinal and Lateral
Directions: The transformation of the longitudinal and lateral
directions is performed after the transformation of the vertical
direction. As shown in Fig. 3(b), by the transformation of the
vertical direction, new coordinate system x ′-y ′-z′ is obtained,
which is plotted in green. The directions of Z axis and z′
axis are the same, and the plane X-Y are the same with plane
x ′-y ′. However, there is an angle θ between X axis and x ′
axis. Besides, θ is also the angle between Y axis and y ′ axis.

The transformation of the longitudinal and lateral direction
can be achieved by estimating the angle θ .

Let atr = [aX aY aZ ]T denote the accelerations after
the transformation of the longitudinal and lateral directions.
Notably, atr are also the accelerations in the coordinate system
of the metro train.

Consider the x ′-y ′ plane, if the [ax ′ ay′ ]T rotates clockwise
by angle θ , the rotated vector [aX aY ]T can be calculated
by (7). [

aX

aY

]
=

[
cos θ sin θ

− sin θ cos θ

] [
ax ′
ay′

]
(7)

Since the directions of Z axis and z′ axis are the same after
the transformation of the vertical direction, we have aZ = az′ .
Define uZ = [0 0 1]T as the unit vector along the Z axis in
the coordinate system of the metro train, and R(uZ , θ) as the
matrix for the transformation of the longitudinal and lateral
directions, we get

atr = R(uZ , θ)a′ (8)

where,

R(uZ , θ) =
⎡
⎣ cos θ sin θ 0

− sin θ cos θ 0
0 0 1

⎤
⎦ (9)

According to Principle 2, the longitudinal and lateral
accelerations of the metro train are independent and unrelated.
Thus the angle θ can be estimated by minimizing the absolute
value of the covariance between aX and aY .

Let θ∗ be the optimal estimated value of θ , we have

θ∗ = arg min
θ

|E ((aX − E(aX ))(aY − E(aY )))| (10)

Considering E (ax ′) = 0 and E
(
ay′

) = 0, we get

E (aX ) = 0, E (aY ) = 0 (11)

Fig. 4. The measured waveforms of the longitudinal and lateral accelerations
(Interval 14 of Run 1).

Combining (7) and (11), we obtain that

E ((aX − E(aX ))(aY − E(aY ))) = E(aX aY )

= E
(
(−a2

x ′ + a2
y′) sin θ cos θ + ax ′ay′(cos2 θ − sin2 θ)

)
= E(−a2

x ′ + a2
y′) sin θ cos θ + E(ax ′ay′)(cos2 θ − sin2 θ)

= 1

2
E(−a2

x ′ + a2
y′) sin 2θ + E(ax ′ay′) cos 2θ

= A sin(2θ + γ ) (12)

where,

A =
√

1

4
E

(
−a2

x ′ + a2
y′
)2 + E

(
ax ′ay′

)2 (13)

Therefore, we can get θ∗ by

θ∗ = kπ

2
− 1

2
arctan

(
2E(ax ′ay′)

E(−a2
x ′ + a2

y′)

)
, k ∈ Z (14)

Finally, employing (1), (3), (8), (9) and (14), we obtain that

atr = R(uZ , θ∗)R(n, ϕ)asp (15)

where, atr are the 3-axis accelerations in the coordinate system
of the metro train, and asp are the 3-axis accelerations in the
coordinate system of the smartphone.

After the data preprocessing, a sample of the measured
longitudinal and lateral accelerations is presented in Fig. 4.
It can be found that there is no delay between the longitudinal
accelerations measured by different smartphones. In contrast,
the lateral accelerations show obvious time delays as the car
number increases. Notably, in addition to the integral of the
longitudinal accelerations, the time delays of the lateral and
vertical accelerations provide another way to estimate the
running speed of the metro train. The next section will present
a model to fuse all the available data to improve the precision
of speed and location estimation.
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III. SPEED ESTIMATION AND DATA FUSION

A. Direct Integral Method

Let v(t) and p(t) denote the speed and position of the metro
train. When the speed v(T ) and the longitudinal acceleration
aY (τ ), τ ∈ [T, t) are known, the speed v(t) can be estimated
by direct integral, as shown in (16).

v(t) = v(T ) +
∫ t

T
aY (τ )dτ (16)

When the position p(T ), the speed v(T ) and the longitudi-
nal acceleration aY (τ ), τ ∈ [T, τ1] are available, the position
p(t) can be estimated by,

p(t) = p(T ) +
∫ t

T
v(τ1)dτ1

= p(T ) + (t − T )v(T ) +
∫ t

T

∫ τ1

T
aY (τ )dτdτ1 (17)

It is worth noting that the estimation of speed and position
only based on the integral methods shown by (16)-(17) will
lead to error accumulation as time increases, which is known
as inertial drift phenomenon [39].

B. Data Fusion Approach

In the data-fusion model, the lateral and vertical accelera-
tions are used to provide additional speed reference, therefore
the accumulated error caused by the direct integral method can
be restrained.

There are two basic assumptions:

i) The coupler stiffness of the metro train is large enough
that the speed difference between the cars can be ignored;

ii) The relative distance between any two smartphones keeps
constant.

The data fusion approach contains three parts:

i) Time delay estimation: This part estimates the time delays
between the lateral or vertical accelerations from different
smartphones.

ii) Time-delay-based speed estimation: This part obtains the
time-delay-based speed points based on the estimated
time delays and the relative distances between smart-
phones. The time-delay-based speed points are used to
find the optimal estimated speed.

iii) Speed correction: This part introduces a method to correct
the integral-based speed based on the optimal estimated
speed.

Notably, only the vertical acceleration aZ and the lateral
acceleration aX are used in i) Time delay estimation and ii)
Time-delay-based speed estimation. To make the following
deduction clear and concise, a is used to denote aZ or aX

in i) and ii), and the results can be applied to both the vertical
and lateral accelerations.

1) Time Delay Estimation: Firstly, the acceleration signals
from Smartphones #i and # j are denoted by

ai = {ai(0), ai (�t), ai (2�t), . . . , ai (N�t)}
a j = {a j (0), a j (�t), a j (2�t), . . . , a j (N�t)} (18)

We define the local time delay δ(ai , a j ) and the local
waveform similarity ρ(ai , a j ) at time T as{

δ(ai , a j ) � arg max−
≤ε≤
 Cov
(
ai (s, T ), a j (s, T + ε)

)
ρ(ai , a j ) � Corr

(
ai (s, T ), a j (s, T + δ(ai , a j ))

)
(19)

where, Cov (·) and Corr (·) are the operators for covariance
and correlation coefficient, respectively. s denotes the match-
ing length. ai (s, T ) and a j (s, T ) are sequences with central
time T and length s, defined as

ai (s, T ) =
{

ai (T − (
s

2
− 1)�t), ai (T − (

s

2
− 2)�t),

. . . , ai (T + (
s

2
− 1)�t), ai

(
T + s

2
�t

)}
(20)

a j (s, T ) =
{

a j (T − (
s

2
− 1)�t), a j (T − (

s

2
− 2)�t),

. . . , a j (T + (
s

2
− 1)�t), a j

(
T + s

2
�t

)}
(21)

It can be interpreted that the local time delay δ(ai , a j ) is
defined as the local time shift ε that maximizes the covariance
between ai (s, T ) and a j (s, T + ε). The local waveform simi-
larity ρi, j is defined as the normalized correlation coefficient
between ai (s, T ) and a j (s, T + δ(ai , a j )).

To simplify the notation, we define

δi, j = δ(ai , a j ), ρi, j = ρ(ai , a j ) (22)

Furthermore, for t < 0 or t > N�t , we specify ai (t) = 0,
a j (t) = 0.

The definitions of the local time delay and the local wave-
form similarity have been introduced in our previous work
for position sychronization of historical track inspection data
[40]. Note that δi, j may not be equal to δ j,i according to the
definition in (19). We do not use the correlation function to
estimate the time delay because the local waveform similarity
ρi, j may be biased when the local time delay δi, j is large and
the matching length s is small.

The local time delays between the accelerations of different
smartphones are caused by the relative distance between the
smartphones and some significant features of track, such as
track geometry irregularities due to turnouts, curvatures and
ramps. As illustrated in Fig. 5, Car #i runs across a rail defect
that can cause a large waveform, which is recorded by Smart-
phone #i . After a time interval δi, j , Car # j runs across the
same position and encounters a similar large waveform, which
is recorded by Smartphone # j . Since δi, j can be estimated by
(19), and the relative distance between the Smartphones #i
and # j is known, the train speed at time T can be estimated.

2) Time-Delay-Based Speed Estimation: We establish a
model to describe the mathematical relation between the
relative distance between smartphones and the local time
delay δi, j .

Based on (19)-(22), we can obtain the local time delay δi, j

and the local waveform similarity ρi, j . Let vi, j (t) denote the
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Fig. 5. The time delay of the lateral or vertical accelerations.

train speed between T and T +δi, j , and pi, j denote the relative
distance between Smartphones #i and # j , the relation between
pi, j and vi, j (t) is shown in (23).

pi, j =
∫ T +δi, j

T
vi, j (t)dt (23)

Let aY,i (t) be the longitudinal acceleration of Smartphone
#i . vi, j (t) can be estimated by using (24).

vi, j (t) = vi, j (T ) +
∫ t

T
aY,i (τ )dτ (24)

Employing (23) and (24), we can obtain that

pi, j = vi, j (T )δi, j +
∫ T +δi, j

T

∫ t

T
aY,i (τ )dτdt (25)

Therefore, vi, j (T ) can be obtained by

vi, j (T ) = 1

δi, j

(
pi, j −

∫ T +δi, j

T

∫ t

T
aY,i (τ )dτdt

)
(26)

where, vi, j (T ) is called time-delay-based speed, since it is
estimated based on the time delay between the accelerations
from Smartphones #i and # j .

For each δi, j (i �= j), there is a vi, j (T ), hence a vector v

can be constructed as follows.

v = [
vT

1 vT
2 . . . vT

n

]T
(27)

where, vi is

vi = [
vi,1 . . . vi,i−1 0 vi,i+1 . . . vi,n

]T (28)

where vi, j = vi, j (T ). Note that vi, j (T ) is meaningless when
i = j , so the value of vi,i (T ) is set to zero.

It can be found that, in vector v, there are n(n − 1) time-
delay-based speed points for time T . However, according to
the basic assumption, the speed difference between cars can
be ignored, so the train speed at time T is unique. To obtain
the optimal estimated speed v∗ (T ), we propose the following
optimization model.

min
v∗(T )

1

2
(v∗(T ) − v)T diag (w) (v∗(T ) − v) (29)

where, v∗(T ) is a n(n −1)×1 vector that all the elements are
v∗(T ). diag(·) is an operator for generating a diagonal matrix

based on a given vector. w is the weight vector for balancing
the uncertainties of vi, j (T ). As shown in (30) and (31), w

depends on the local waveform similarity ρi, j .

w = [
wT

1 wT
2 . . . wT

n

]T
(30)

where, wi = [
wi,1 wi,2 . . . wi,n

]T
, with

wi, j

{
0, i = j or ρ < ρ0

ρi, j , otherwise
(31)

where, ρ0 is a threshold for filtering out the unreliable wave-
form matching pair.

Finally, the optimal estimated speed v∗ (T ) can be
obtained by

v∗(T ) = 1

‖w‖wT v (32)

3) Speed Correction: Here the integral-based speed is cor-
rected using the optimal estimated speed.

Firstly, let vint denote the integral-based speed sequence,

vint = {vint(0), vint(�t), vint(2�t), . . . , vint(N�t)} (33)

where, �t is the sampling interval, in this paper �t = 0.01s.
Then, let vtd denote the time-delay-based speed sequence,

vtd = {vtd(T0), vtd(T1), . . . , vtd(TM )} (34)

where, T0 < T1 < · · · < TM and vtd (T0) = vtd (TM ) = 0,
indicating that the train stops at the beginning and end of a
rail interval.

Next, let vgap denote the difference between the integral-
based speed and time-delay-based speed at time points
tgap = {T0, T1, · · · , TM }, which can be calculated by (35).

vgap = {vtd(T0) − vint(T0), vtd(T1) − vint(T1),

. . . , vtd(TM−1) − vint(TM−1), vtd(TM ) − vint(TM )}
(35)

Let vupdate denote the differences between the integral-
based speed and time-delay-based speed at time points
tupdate = {0,�t, 2�t, . . . , N�t}, which can be calculated by
interpolation, as shown in (36),

vupdate = interp
(
tgap, vgap, tupdate

)
(36)

where, interp (·) is an interpolation operator for calculating the
values at tupdate, with given tgap and vgap .

Finally, the speed estimated by data fusion, denoted as vfuse,
can be obtained by

vfuse = vint + vupdate (37)

IV. APPLICATION AND RESULTS

The case study was conducted on Chengdu Metro Line 7
in Chengdu, China. As mentioned in Section II, we use six
smartphones to measure the 3-axis accelerations of the six cars
of a metro train, respectively. The tests cover 28 stations of
the metro line, so the measured data of 27 intervals can be get.
Each run from the first station to the last station takes about
1.14 hours, and for comparison, we collect three runs of data.
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Fig. 6. Three typical cases with the time-delay-based speed (cyan), optimal
estimated speed (red), direct integral speed (blue) and data fusion speed
(black). (a), (b) and (c) are the results for intervals 5, 12 and 22, respectively.

After the data preprocessing, we implement the data fusion
approach and get the results of speed estimation. Fig. 6 shows
three typical cases of speed-time curves, where (a), (b) and
(c) are the results for intervals 5, 12 and 22, respectively.
The blue dotted line represents the speed estimated by direct
integral of longitudinal acceleration. The scattered cyan points
are time-delay-based speed points obtained by (26). The small
red boxes represent the optimal estimated speed obtained by
(32). The black curve is the final data-fusion speed. It can be
read from Fig. 6 that although the estimated time-delay-based
speed points are scattered, they are obviously different from
the integral-based speed.

The interval length between two adjacent stations is taken
as the ground truth to demonstrate our data-fusion approach,
since the interval length is known in advance according to the
infrastructure information.

Fig. 7(a) shows the estimated interval lengths obtained by
the direct integral method and the data fusion approach, with
comparison to the ground truth. The black dotted line is the
ground truth, namely function f (x) = x . The scattered points,
including the blue circles and red triangles, are the estimated
interval lengths. The closer the scattered points to the ground
truth, the higher the accuracy of interval length estimation. The

Fig. 7. The comparison between the estimated interval lengths and the ground
truth. (a) shows the estimated lengths based on the direct integral method and
the data fusion approach; (b) shows the distributions of the estimated errors
of test runs 1,2 and 3, where DI refers to Direct Integral and DF refers to
Data Fusion.

blue circles represent the estimated interval lengths obtained
by double integral of the longitudinal accelerations, and the red
triangles represent the estimated interval lengths obtained by
the data-fusion approach. It can be found that the blue circles
are farther from the ground truth for longer interval lengths,
indicating that the error accumulates as the length gets longer.
By contrast, the red triangles gather around the ground truth,
even closer for longer interval lengths.

Fig. 7(b) illustrates the estimated errors of the interval length
from statistical view using boxplots, where DI 1, 2 and 3 are
the labels for the estimated errors of the direct integral method
in test runs 1, 2 and 3, respectively. DF 1, 2 and 3 are the labels
for the estimated errors of the data fusion approach in test
runs 1, 2 and 3, respectively. It is obvious that the estimated
errors of direct integral method are large, some of which even
exceed 450 meters. By contrast, the estimated errors of the
data-fusion approach are much smaller, most of which are less
than 20 meters. Considering that the mean value of interval
lengths of adjacent stations is 1310 meters, the relative error of
data-fusion approach is 1.6%, while that of the direct integral
method is 9.5%.
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V. DISCUSSION

This section discusses the influence of different factors on
the performance of the data fusion approach. The major factors
include, i) the maximal running speed of the metro train, ii) the
noise of the accelerometers in smartphones, iii) the number
of smartphones, iv) the interval length between two adjacent
stations, v) the diversity of rail parameters.

Theoretically, for any given time T , there is a v∗ (T ).
However, the uncertainty of v∗ (T ) relies heavily on the local
waveform similarities ρi, j . When the train speed is relatively
low, the lateral and vertical accelerations are small and easily
buried in the noises. Consequently, the waveform matching
between different smartphones fails, ρi, j is smaller than ρ0 and
the estimated δi, j is unreliable. If most of δi, j are unreliable,
there are too many zeros in the weight vector w that the final
estimated v∗ (T ) becomes meaningless. Situation becomes
better when the train speed increases. The cars fully vibrate
under the influence of track geometry irregularities, making
waveform matching easier.

Also, the number of smartphones in use has significant
influence on the performance of speed and position estimation.
One or two smartphones may suffers from great uncertainties.
Using more smartphones and fusing their data can effectively
improve the reliability of speed and position estimation.

Furthermore, as mentioned in Section IV, for long interval
lengths, the performance of the data-fusion approach is much
better than the direct integral method, but for short interval
lengths, the data-fusion approach doesn’t show any advantages
over the direct integral method. This is because for a long
interval, the maximal speed of the train is higher and the rail
parameters are more diverse, such as more curvatures, which
makes the waveform matching more reliable, and provides
more clues for speed estimation.

VI. CONCLUSION

In this paper, a novel data-fusion approach is proposed for
speed estimation and location calibration of a metro train in
underground environment, where only the data from the 3-axis
accelerometers in smartphones are used. Results show that our
data-fusion approach proposed reaches much higher accuracy
in speed estimation than the direct integral method, because the
data-fusion approach can effectively restrain the accumulated
error of acceleration integral. And mostly, the total estimated
error of the interval length between two adjacent stations are
below 20 meters comparing to the ground truth value, even
better for longer interval length. In our tests, the mean value
of interval length between adjacent stations is 1310 meters,
the relative error of our data-fusion approach is 1.6%, while
that of the direct integral method is 9.5%, indicating that
our data-fusion approach significantly improves the accuracy
comparing to the direct integral method.
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