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Abstract

Electric locomotives provide high tractive power for fast acceleration of heavy-haul freight trains,
and significantly reduce the energy consumption with regenerative braking. This paper proposes a
reinforcement learning (RL) approach for the optimal control of multiple electric locomotives in a
heavy-haul freight train, without using the prior knowledge of train dynamics and the pre-designed
velocity profile. The optimization takes the velocity, energy consumption and coupler force as ob-
jectives, considering the constraints on locomotive notches and their change rates, speed restrictions,
traction and regenerative braking. Besides, since the problem in this paper has continuous state s-
pace and large action space, and the adjacent actions’ influences on states share similarities, we pro-
pose a Double-Switch Q-network (DSQ-network) architecture to achieve fast approximation of the
action-value function, which enhances the parameter sharing of states and actions, and denoises the
action-value function. In the numerical experiments, we test DSQ-network in 28 cases using the data
of China Railways HXD3B electric locomotive. The results indicate that compared with table-lookup
Q-learning, DSQ-network converges much faster and uses less storage space in the optimal control
of electric locomotives. Besides, we analyze 1)the influences of ramps and speed restrictions on the
optimal policy, and 2)the inter-dependent and inter-conditioned relationships between multiple opti-
mization objectives. Finally, the factors that influence the convergence rate and solution accuracy of
DSQ-network are discussed based on the visualization of the high-dimensional value functions.

Keywords: reinforcement learning, Double-Switch Q-network, optimal control, electric locomotive,
heavy-haul freight train

1. Introduction

Heavy-haul freight trains with electric locomotives are of significant importance for long-distance
and large-capacity freight transportation in China [1]. The high-power electric locomotives in China,
such as HXD3B, can 1) provide large tractive power for fast acceleration of heavy-haul freight trains,
for example, the tractive power of a HXD3B locomotive is 9600kw, 2) use regenerative braking to5

transform the kinetic energy into electric energy, and return it to the traction power supply system,
and 3) reduce the coupler forces through the coordination of traction and braking forces from different
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locomotives. The control strategies of electric locomotives have significant influences on the safety
and efficiency of heavy-haul freight trains.

The optimal control of heavy-haul freight trains requires a tradeoff between multiple objectives.10

We always expect to maximize the velocity while minimizing the energy consumption and coupler
force. However, these objectives cannot be achieved simultaneously. For example, when a heavy-
haul freight train is running on an upward ramp, the energy consumption increases significantly with
the increase of velocity. Besides, the acceleration of wagons depends on the coupler force, and the
mechanical resistance and aerodynamic drag increase with the increase of velocity. As a result, the15

coupler force also increases with the increase of velocity.
Moreover, it is difficult to find the optimal control strategies for electric locomotives in a heavy-

haul freight train, since the in-train dynamics of heavy-haul freight trains is much more complicated
than the passenger trains, in three aspects,

1) The large number of railway vehicles in a train [2]: The total number of railway vehicles in a20

heavy-haul freight train can be greater than 200, including different types of locomotives and wagons.
A heavy-haul freight train can weigh more than 10000 tons, and reach several kilometers in length.
Thus, a train can cover several ramps and curves, a small change in control strategies may result in
drastic changes of in-train impulse. In contrast, a CRH2A high-speed train consists of eight vehicles,
and weighs about 400 tons when carrying passengers. Hence, the train dynamics is much simpler.25

2) The nonlinear constraints on the traction/braking force and its change rate [3]: Taking the
HXD3B electric locomotive as an example, the control handle of the locomotive has discrete notches.
At each notch, the traction/braking force changes nonlinearly with the increase of velocity. Besides,
for a heavy-haul freight train, the response of mechanical system is slow. Thus, the control signals
should not change rapidly considering the safety. By contrast, some high-speed trains and metro trains30

can run at a constant acceleration, so the traction/braking force can even be continuous.
3) Unpredictable sensor faults and actuator faults [4]: Since heavy-haul freight trains are mainly

used for long-distance transport of coals or other minerals, generally, the rail lines are far from cities
and influenced by uncontrollable environment factors, such as weather, topography, the condition of
infrastructure. The sensors can be faulty, and it is not easy for the traction/braking forces output from35

the mechanical system to track the control signals. By contrast, the high-speed trains and metro trains
are mainly used for passenger transport, and runs in or between cities. Thus, the environment is much
more comfortable.

Considering the aforementioned difficulties, a method based on machine learning has been pro-
posed for heavy-haul train operation [5]. However, the existing work is focus on the pneumatic brake40

control on steep descent, the control strategies of electric locomotives are not discussed in detail. In
this paper, we aim to develop an efficient algorithm for an intelligent agent to learn the optimal control
strategies of multiple electric locomotives in a heavy-haul freight train, which can be used without
the prior knowledge of train dynamics and pre-designed velocity profiles, and satisfy the nonlinear
constraints on the control inputs.45

Reinforcement learning (RL) is one of the machine learning methods, which is specific in deci-
sion optimization and prediction. The agent interacts with the environment, learns the knowledge and
optimizes the decisions for achieving a goal [6, 7]. RL agent stores the knowledge in different forms,
such as lookup tables, and parameterized functional form. For the optimal control of electric loco-
motives in a heavy-haul freight train, the state space is continuous, action space is large and adjacent50

actions share similarities, so the neural network, one of the nonlinear functional form, will get good
performance. In particular, we propose a novel architecture, named Double-Switch-Q-network (DSQ-
network), for a fast approximation of the action-value function. DSQ-network is an improvement
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based on the traditional Q-network [8], which encoding the action space, and is designed specifically
for the optimal control of multiple electric locomotives in a heavy-haul freight train. It gets excellent55

performance in the simulation environment when using the data of China Railways HXD3B electric
locomotives. Notably, encoding both the state space and action space is common, however, the DSQ-
network architecture changes the way of using state features and action features in the parameterized
functional form compared with the existing literatures. To our best knowledge, the DSQ-network
architecture has never been used elsewhere.60

2. Literature review

The literature review covers three aspects: 1) the train control methods and their dependency on
the train’s dynamic model. 2) the advantages of using RL approach to solve our problem. 3)Why
DSQ-network is effective in the control of multiple electric locomotives in a heavy-haul freight train.

Energy-efficient train operation can be achieved with different methods [9, 10], such as Lagrangian65

analysis [11], maximum principle [12, 13, 14, 15], genetic algorithm [16, 17, 18], pseudospectral
method [19, 20], dynamic programming [21], and ant colony optimization [22]. The results provide
useful guidance for safe, efficient and environment-friendly train operation. However, the aforemen-
tioned literatures are focus on minimizing the energy consumption, where the coupler force between
the connected railway vehicles in a train isn’t taken into consideration, but for heavy-haul freight70

trains, the coupler force has significant influences on the safety and maintenance cost [23].
Taking into account the coupler force, the operation strategies of heavy-haul trains are improved

with the evolution of the multi-particle train model. In early works, the linearized train model is used
for the closed-loop control design based on Linear Quadratic Regulation (LQR) theory [2, 24, 25].
Meanwhile, the optimal scheduling methods are proposed to obtain the equilibrium point, and thereby75

improve the performance of closed-loop controllers [26]. Besides, based on the nonlinear regulator
theory, velocity regulator has been designed specifically for the situation where only locomotives’
velocities are measurable [27], and based on which, fault-tolerant control scheme is developed for
handing the velocity sensor faults and actuator faults [4]. Moreover, based on a discrete train model,
the optimal control of heavy-haul trains is achieved by using Model Predictive Control (MPC) [3, 28].80

In addition to the aforementioned approaches developed specifically for heavy-haul trains, we can
also draw inspirations from some other emerging approaches that can cope with complicated train dy-
namics. Firstly, since Neural Networks (NNs) are capable of nonlinear function approximation, they
have been utilized to approximating the nonlinear train dynamics when taking into account actuator
failures [29] and actuator saturations [30, 31] in the closed-loop control design. Secondly, robust con-85

trol methods, including sampled-data control [32], guaranteed cost control [33], H∞ control [34, 35]
have been used for velocity tracking control of high-speed trains, where the unknown time-varying
delays, uncertain parameters and stochastic disturbance are considered. Thirdly, Iterative Learning
Control (ILC) provides a mechanism for improving the tracking control accuracy using the repetitive
train operation information, which has been used for train control under iterative varying wind resis-90

tance parameters [36], speed delays and input saturations [37, 38]. Moreover, recently, progress has
been made in adaptive fuzzy control of nonlinear systems [39, 40]. However, these methods require a
pre-designed velocity profile, for heavy-haul freight trains which have complicated dynamics, it takes
considerable efforts to provide a well-designed velocity profile.

From another prospective, instead of using the pre-designed velocity profiles and the prior knowl-95

edge of train dynamics, RL [41] and data-mining [42] use the sampled driving experiences to opti-
mize the operation strategies of metro trains. However, since a metro train is much shorter than a
heavy-haul freight train, the coupler force isn’t considered as an optimization objective. Taking the
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coupler force as the optimization objective, the optimal air brake control for heavy-haul trains running
on downward slope has been achieved with approximate dynamic programming algorithm [43] and100

machine learning method for data imbalance [5]. Notably, although in [43], there is an simulation
environment based on the train’s dynamic model, the train operation strategies are learned from the
sampled driving experiences generated by the environment, rather than the prior knowledge of train
dynamics. However, this research is specific in the air brake control and the minimization of coupler
force, neglecting a detailed analysis on locomotive operation strategies and energy consumption.105

One of the most promising approaches to solve the problem in this paper is RL [6, 7], since there
are two important features:

1) RL is based on trial and error. The agent learns knowledge about the environment through ex-
ploration and exploitation. Hence, RL approach can be used for optimization and prediction without
prior knowledge about the environment. RL has strong adaptability for different objectives and con-110

straints, which has been used for traffic flow control [44], train rescheduling [45], and flight taxi-out
time prediction [46].

2) RL maximizes long-term reward, rather than immediate reward. Based on function approxima-
tion, RL is able to optimize the global objective function in large scale multi-stage decision problem.
For example, the computer programs developed based on RL have achieved master-level in playing115

backgammon [47], Atari 2600 games [8, 48, 49] and the game of Go [50, 51].
In this paper, instead of storing the action values in a table, we use a nonlinear function to approx-

imate the action-value function. It is because, according to a brief computational complexity analysis
given in subsection 5.2 of this paper, our problem has continuous state space and large action space.
Besides, compared with tables, nonlinear function approximation has advantages in parameter shar-120

ing of states and actions, and denoising the action-value function, thus it can get higher convergence
rate. Moreover, when using nonlinear function approximation, the action values are calculated based
on the parameters of the nonlinear functions, while the table-based methods store each action value
independently, the storage space can be saved a lot by using nonlinear function approximation.

Deep Q-network (DQN) is a successful nonlinear function approximator for playing Atari 2600125

games [8], but its performance needs to be improved when handling RL problems which have un-
certainties, large or continuous action space. By using Bayesian deep model, the uncertainties in RL
problems can be handled [52]. Besides, to address RL problems which have large discrete action space
or continuous action space, several policy-gradient-based RL algorithms are proposed [53, 54, 55].
However, in this paper, we propose a value-iteration-based RL algorithm for large discrete action s-130

pace. Furthermore, to construct discrete features for continuous state space, several coding techniques
can be used, such as sparse coarse coding [56] and tile coding [57], both of which pertain to binary
coding techniques. Besides, Continuous U Tree is proposed for the discretization of large continuous
state space [58]. Since the RL problem formulated in this paper has a continuous two-dimensional
state space, it is efficient to use tile coding to construct the state features [6, 7]. Notably, different135

from previous work, tile coding is also used to construct the features of large discrete action space.
Moreover, this paper proposes a novel nonlinear function approximator, named Double-Switch Q-

network (DSQ-network), for fast approximation of the action-value function in a large action space. In
contrast to the existing Q-network [8] that takes the state features as the inputs of a feedforward neural
network and outputs the value of each action independently, DSQ-network uses the state features140

and action features as two switch layers in the feedforward neural network, aiming to enhance the
parameter sharing of different actions. DSQ-network can significantly improve the convergence rate,
because the adjacent locomotive notches’ influences on the velocities and positions of railway vehicles
share similarities.
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3. Knowledge gaps and contributions145

It is found from the literature review that the increase of the complexity of train model and non-
linear constraints on the control inputs and train states will significantly increase the difficulties of
solving the train control problem with model-based methods, while the data-driven methods, such as
RL and data mining, don’t suffer much from the model complexity and nonlinear constraints. There
is lack of data-driven method focusing on the control strategies of multiple electric locomotives in a150

heavy-haul freight train. Moreover, the traction/regenerative braking force of a high-power electric
locomotive is controlled by a large number of discrete notches, and varies nonlinearly with the ve-
locity. so even if the optimal control of multiple electric locomotives in a heavy-haul freight train
is transformed into a RL problem, it is still challenging due to the continuous state space and large
action space. In this paper, a novel architecture for nonlinear function approximation, DSQ-network,155

is proposed to improve the convergence rate when approximating the optimal action-value function.
The contributions of this work are presented as follows.
1) This paper proposes a novel architecture for nonlinear function approximation in a RL problem,

named DSQ-network, to enhance the parameter sharing of adjacent actions in a large action space.
Compared with table-lookup Q-learning, DSQ-network gets much higher convergence rate with much160

less computation resources in a RL problem when the state space is continuous, action space is large,
and the adjacent actions’ influences on the states share similarities. The DSQ-network architecture
can also be used for intelligent control of cars, trucks and some robots which have large or continuous
action space. Notably, encoding state space and action space is common in RL, but it is the first
time to use the state features and action features as two separated switch layers, and insert the action165

features between hidden layer and output layer of a feedforward neural network.
2)Without the prior knowledge of train dynamics and the pre-designed velocity profiles, this paper

achieves the optimal control of multiple electric locomotives in a heavy-haul freight train, considering
multiple optimization objectives, i.e., velocity, energy consumption and coupler force, and satisfying
the nonlinear constraints on locomotive notches and their change rates, speed restrictions, and the170

traction and regenerative braking characteristics of electric locomotives.
3)This paper demonstrates the effectiveness and robustness of DSQ-network by using 28 cases

in numerical experiments, where the data of China Railways HXD3B electric locomotives are used.
Based on the results, we study the influences of ramps and speed restrictions on the optimal policy for
the control of electric locomotives in a heavy-haul freight train. Moreover, by changing the reward175

weights, we investigate the inter-dependent and inter-conditioned relationships of velocity, energy
consumption and coupler force. Finally, based on the visualization of the high-dimensional output
of DSQ-network, we gain insights into how the speed restrictions and ramps affect the convergence
processes and results of DSQ-network.

The rest of this paper is organized as follows. In section 4, the optimal control of multiple electric180

locomotives in a heavy-haul freight train is formulated as a standard RL problem. In section 5, firstly,
the basic principles of Q-learning and Q-network are given. Then the DSQ-network architecture is
introduced. In section 6, the algorithm for the implementation of DSQ-network in the optimal control
of electric locomotives is given. Section 7 demonstrates DSQ-network with numerical experiments.
Section 8 provides insights into the factors that influence the convergence of DSQ-network in the185

optimal control of electric locomotives. Section 9 gives conclusions.
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4. Problem formulation

In this section, firstly, we give brief definitions for the agent, environment, state, action and reward
in the optimal control of multiple electric locomotives during the operation of a heavy-haul freight
train. Then we provide mathematical description of the state space, action space and reward function.190

To facilitate the understanding of the application scenario, some terminologies regarding heavy-
haul freight train are briefly introduced.

Notch: The discrete level of the control handle of a locomotive. For the HXD3B locomotive, there
are totally 25 notches, where -12, -11, ..., -1 are the levels for regenerative braking, 0 means there is
neither traction nor braking, and 1, 2, ..., 12 are the levels for traction.195

Coupler: a connector between every two adjacent vehicles of a train.
Coupler force: the interactive force between every two adjacent vehicles. Excessive coupler force

will result in the deformation or broken of couplers.
Traction/regenerative braking characteristics: The relationship between the traction/regenerative

braking force and velocity. Generally, for each notch of a locomotive, the traction/regenerative brak-200

ing force is a piecewise function of the velocity.

4.1. Definition of the RL elements

Locomotive
Wagons

Locomotive

Ramps

Environment
Rail infrastructure setup 

Train dynamics
Agent

A human driver or on-board computer 

that makes driving decision. 

In this paper, the knowledge of the 

agent is stored in a DSQ-network

An observation from the environment. 

In this paper, the state indicates the 

velocity and position of vehicles.

State 

An observation from the environment. 

In this paper, reward is given based 

on multi-objectives.

Reward

An input into the environment. 

In this paper, the action refers to 

the control notches of the multiple 

locomotives.

Action

Figure 1: The RL framework for the optimal control of multiple electric locomotives during the heavy-haul freight train
operation.

As shown in Fig.1, agent is defined as a human driver or an on-board computer that can change the
locomotive notches, which can influence the velocities and positions of all the railway vehicles in the
freight train. Environment is defined as the freight train system that gives responses to the locomotive205

notches selected by the agent, with the railway vehicles’ velocities and positions and the evaluation
signals. The velocities and positions of the railway vehicles are defined as states. The locomotive
notches are defined as actions. The evaluation signals, including the velocities, energy consumption
and coupler force, are defined as rewards.

Environment should establish the relationship between the action and the state transition. In the210

optimal control of heavy-haul freight train, environment should contain the relationship between the
locomotive notches and the railway vehicles’ velocities and positions. This relationship is influenced
by the traction and regenerative braking characteristics of locomotives, mechanical and aerodynamic
resistance, and infrastructure resistance. The traction and regenerative braking characteristics of the
locomotives determine the locomotive forces based on the locomotive notches and velocities. Figs.2215
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Figure 2: The traction characteristics of China Railways
HXD3B electric locomotive.

Figure 3: The regenerative brake characteristics of China
Railways HXD3B electric locomotive.

and 3 respectively show the traction and regenerative braking characteristics of the China Railways
HXD3B electric locomotive, which is a high-power electric locomotive used for freight transport on
the main lines in China. From Figs.2 and 3 we can see, the locomotive notches are discrete, and the
traction/regenerative braking force varies nonlinearly with the velocity. When using the regenerative
braking mode, the kinetic energy of the heavy-haul freight train can be transformed into electrical220

energy, which can be recycled by the traction power supply system. In this paper, the environment is
simulated based on the heavy-haul freight train dynamic model in [59]. Besides, this paper simulates
the actuator faults, velocity sensor errors and coupler force sensor errors happening in the train system.

Notably, the agent does not have any prior knowledge about the train dynamics, and the environ-
ment only provides sampled data of driving experiences for the agent when interaction.225

4.2. State
Considering a heavy-haul freight train which consists of N railway vehicles, and an episode which

has Ne state transition steps, the state space at the end of the kth step is defined as

S (sk) =

{[
vk,1 pk,1

]T ∣∣∣ pk,1 ∈ [0, Pm] , vk,i ∈
[
V lim

L (pk,i),V lim
H (pk,i)

]}
(1)

where, k = 1, 2, ...,Ne and i = 1, 2, ...,N. Tk and sk denote the time point and the state at the end of the
kth step in an episode, respectively. vk,i and pk,i denote the ith railway vehicle’s velocity and position230

at time point Tk, respectively. The first vehicle’s velocity vk,1 and position pk,1 are selected as the state
variables. Pm is the upper bound for the first railway vehicle’s position pk,1. V lim

H (pk,i) and V lim
L (pk,i)

denote the highest and lowest permitted velocities at the position pk,i, where V lim
H (pk,i) is the speed

restriction, and V lim
L (pk,i) is used to prevent reverse driving when the explorations are performed.

There are two considerations in the definition of the state space, firstly, this paper uses the first235

vehicle’s velocity vk,1 and position pk,1 as the state variables, rather than those of all the vehicles in
the freight train. This way significantly reduces the dimensions of the state space, and improves the
convergence rate. Although the influence of coupler force is not taken into consideration in the defi-
nition of state, the agent can learn it by receiving rewards, and consider it when selecting locomotive
notches. Secondly, vk,i ∈

[
V lim

L (pk,i),V lim
H (pk,i)

]
considers the speed restrictions for all the vehicles240

simultaneously, rather than only the first vehicle’s speed restriction, because a freight train which
consists of hundreds of vehicles can cover several sections with different speed restrictions. Although
there are N − 1 vehicles whose velocities are not defined as state variables, the speed restrictions for
them also put constraints on the velocity of the first vehicle.

7



In an exploration episode, it is required to define the starting state s0 and terminal state sNe . In245

this paper, s0 is selected randomly from the state space, because the diversity of the starting states can
improve the solving efficiency and avoid local optimum. The terminal states form a set

S (sNe) =

{[
vNe,1 pNe,1

]T ∣∣∣∣ pNe,1 = Pm, vk,i ∈
[
V lim

L (pNe,i),V
lim
H (pNe,i)

]}
(2)

4.3. Action
Considering a heavy-haul freight train that is pulled by Nl electric locomotives. For the ilth loco-

motive in the freight train, the notch at state sk is denoted by Ml
k,il

, where il = 1, 2, ...,Nl. The notches250

of all the locomotives in the freight train are defined as action variables. During the period between
sk−1 and sk, action ak−1 is performed. The action is changed from ak−1 to ak at state sk. The action ak

is selected from the action space

A(sk) =

{[
Ml

k,1 Ml
k,2 · · · Ml

k,Nl

]T ∣∣∣ Ml
k,il ∈

[
Ml

min,M
l
max

]
,∆Ml

k,il ∈
[
∆Ml

min,∆Ml
max

]}
(3)

where, A(sk) is a set that contains all the legal actions when encountering state sk, and ak ∈ A(sk).
Ml

max and Ml
min are respectively the upper and lower bound of the locomotive notches, which are255

determined by the type of locomotives. ∆Ml
k,il

is the increment or decrement of locomotive notches at
state sk. ∆Ml

max and ∆Ml
min are respectively the upper and lower bound of ∆Ml

k,il
. ∆Ml

max and ∆Ml
min

restrict the change rates of the locomotive notches, to improve the smoothness of train operation, and
the tolerance for the slow response of the mechanical system of a heavy-haul freight train.

4.4. Reward260

After the state of a heavy-haul freight train is transformed from sk to sk+1 by taking action ak, the
agent will receive a reward signal to evaluate the train’s velocity, energy consumption and coupler
force during the state transition from sk to sk+1. A reward signal that takes into account the actuator
faults, the measurement errors of velocity sensors and coupler force sensors is defined as

rk+1 = µvrv
k+1 + µere

k+1 + µcrc
k+1 + µhrh

k+1 + µlrl
k+1 (4)

where, rv
k+1, re

k+1 and rc
k+1 are the evaluation indicators of velocity, energy consumption and coupler265

force, respectively. rh
k+1 and rl

k+1 are the penalty signals for the agent’s explorations higher than the
highest permitted velocity V lim

H and lower than the lowest permitted velocity V lim
L , respectively. µv,

µe, µc, µh and µl are the corresponding weights for rv
k+1, re

k+1, rc
k+1, rh

k+1 and rl
k+1. The mathematical

expressions are

rv
k+1 = −

∣∣∣v̂k+1,1 − Vm

∣∣∣ , re
k+1 = −

∫ Tk+1

Tk

F( f̂l)T v̂ldt, rc
k+1 = − max

Tk≤t≤Tk+1

∥∥∥ f̂c

∥∥∥
∞

(5)

270

rh
k+1 =

−c1

(
vk+1,1 − V lim

H (pk+1,1) + c2

)c3
− c4, vk+1,1 − V lim

H (pk+1,1) > 0

0, vk+1,1 − V lim
H (pk+1,1) ≤ 0

(6)

rl
k+1 =

−c5 ·
(
V lim

L (pk+1,1) − vk+1,1 + c6

)c7
− c8, V lim

L (pk+1,1) − vk+1,1 > 0

0, V lim
L (pk+1,1) − vk+1,1 ≤ 0

(7)
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In rv
k+1, v̂k+1,1 denotes the measured velocity of the first vehicle at the time point Tk+1. Vm is the

maximum velocity of locomotives, which is determined when the locomotives are designed. It can be
found that rv

k+1 increases with the increase of velocity.
In re

k+1, v̂l = [v̂l
1 v̂l

2 . . . v̂l
Nl

]T , f̂l = [ f̂ l
1 f̂ l

2 . . . f̂ l
Nl

]T , F( f̂l) = [F( f̂ l
1) F( f̂ l

2) . . . F( f̂ l
Nl

)]T .275

For il = 1, 2, ...,Nl, v̂l
il

denotes the measured velocity of the ilth locomotive in the heavy-haul freight
train, f̂ l

il
denotes the actuator force of the ilth locomotive, and F(·) is a piecewise function defined as

F(x) =

{
η−1

t x, x ≥ 0
ηbx, x < 0

(8)

where, ηt and ηb are the energy efficiency ratio of the electric traction drive system and the regenerative
braking system, respectively. F( f̂il) indicates that the heavy-haul freight train consumes electrical
energy when f̂il ≥ 0, and recycles the electrical energy transformed from the kinetic energy when280

f̂il < 0.
In rc

k+1, f̂c = [ f̂ c
1 f̂ c

2 . . . f̂ c
N−1]T . For ic = 1, 2, ...,N − 1, f̂ c

ic
denotes the measured coupler force

between the icth and the ic + 1th vehicles in the heavy-haul freight train.
∥∥∥ f̂c

∥∥∥
∞

= maxic

∣∣∣ f̂ c
ic

∣∣∣, where∣∣∣ f̂ c
ic

∣∣∣ is the absolute value of f̂ c
ic
. The evaluation indicator of coupler force is defined as the maximum

value of
∥∥∥ f̂c

∥∥∥
∞

during the period from Tk to Tk+1, because the main cause of coupler broken accidents285

is excessive coupler force.
In rh

k+1 and rl
k+1, c1, c2, · · · , c8 are all positive constants. Hence, when the agent explores the state

space beyond V lim
H (pk+1,1), rh

k+1 decreases with the increase of vk+1,1 −V lim
H (pk+1,1). Similarly, when the

agent explores the state space below V lim
L (pk+1,1), rl

k+1 decreases with the increase of V lim
L (pk+1,1)−vk+1,1.

Notably, in practice, we expect to maximize the velocity while minimizing the energy consump-290

tion and coupler force. However, in a standard RL problem, we always hope to maximize the expec-
tation of accumulative rewards. Therefore, rv

k+1, re
k+1, rc

k+1, rh
k+1 and rl

k+1 are all defined as negative
values.

5. Methodology

This section introduces the DSQ-network architecture used for approximating the optimal action-295

value function. Firstly, the basic principles of Q-learning and Q-network are introduced. Then we
give a brief analysis on the computational complexity of table-lookup Q-learning. Finally, the DSQ-
network architecture is introduced.

5.1. Principles of Q-learning and Q-network
Q-learning [60] is an off-policy Temporal Difference (TD) control algorithm. It is used to approx-300

imate the optimal action-value function and the optimal policy in a RL problem. Q-learning stores all
the action values independently in a table. The action values will be updated when the agent encoun-
ters the corresponding state-action pairs. Q-network [8] follows the basic principles of Q-learning, but
uses feedforward neural network to approximate the optimal action-value function. Different state-
action pairs share the parameters in the neural network. When an action value is updated, the values305

of many other state-action pairs are also updated. The following are the basic principles of Q-learning
and Q-network.

Firstly, let Qπ(s, a) denote the action-value function. Qπ(s, a) is defined as the expectation of the
discounted sum of the rewards after selecting action a at state s, when policy π is followed [6]. The
mathematical definition is310

Qπ(s, a) = Eπ

[
rk+1 + γrk+2 + ... + γNe−k−1rNe

∣∣∣ sk = s, ak = a
]

(9)
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where, γ is the discount factor for the future rewards, and satisfys 0 ≤ γ ≤ 1. Policy π = P(a|s) gives
the probability of selecting an action a ∈ A(s) when state s is encountered.

The optimal policy π∗ in a RL problem should satisfy

Qπ∗(s, a) ≥ Qπ(s, a), for all s ∈ S (s) and a ∈ A(s). (10)

where, Qπ∗(s, a) is the optimal action-value function, which satisfys the Bellman optimality equation

Qπ∗(s, a) = Eπ∗

{
rk+1 + γmax

a′
Qπ∗(sk+1, a′)

∣∣∣ sk = s, ak = a
}

(11)

Based on (11), both table-lookup Q-learning and Q-network obtain the optimal policy π∗ and the315

optimal action-value function Qπ∗(s, a) through iteratively updating Q(s, a). At each iteration, if there
is a state transition (s, a, r, s′), r +γmaxa′ Q(s′, a′) is used as the target value for the update of Q(s, a).

For table-lookup Q-learning [60], the formula for updating Q(s, a) is

Q(s, a)← Q(s, a) + α
[
r + γmax

a′
Q(s′, a′) − Q(s, a)

]
(12)

where, α denotes the learning rate, more specifically, α determines the weights of the current Q(s, a)
and the estimated target value r + γmaxa′ Q(s′, a′) in the updated Q(s, a).320

Q-network is a combination of the principles of Q-learning and feedforward neural network. The
feedforward neural network receives the features of state, and outputs the action values, which is
called function approximator, and denoted by Q(s, a; θ), where θ is a vector consisting of the weights
of the neural network.

According to [8], the target network and experience replay can improve the stability of Q-network.325

Thus, the loss function for training Q-network is

J(θ) = E(s,a,r,s′)

[(
r + γmax

a′
Q(s′, a′, θ̂) − Q(s, a, θ)

)2
]

(13)

where, E denotes expectation, and (s, a, r, s′) denotes a state transition step. θ̂ is the parameter vector
of the target network. We need to minimize the loss function J(θ) through iteratively updating the
parameter vector θ. Generally, the optimal parameter vector θ∗ is obtained by using stochastic gradient
descent method330

θ ← θ + α
[
r + γmax

a′
Q(s′, a′, θ̂) − Q(s, a, θ)

]
∇θQ(s, a; θ) (14)

The following discussions are all based on the above principles.

5.2. Brief discussion on table-lookup Q-learning
Table-lookup Q-learning uses a high-dimensional table to store all the action values, as shown in

Fig.4. Each element of the table is the action value for a state-action pair (s, a). When encountering
state s, the agent will select an action a based on Q(s, a), then update Q(s, a) with the formula (12).335

Notably, table-lookup Q-learning requires discretization of the continuous variables in state space
and action space. Considering a situation where the length of the rail line is 40km, and two HXD3B
locomotives, with a maximum velocity of 120km/h, are used in a freight train, if the velocity res-
olution and position resolution are respectively set to 1km/h and 0.1km, the number of elements in
state space is 400 × 120 = 48000, and in action space is 25 × 25 = 625. Hence, the total number of340

elements in the table of Q(s, a) is 30 million. In the problem of this paper, table-lookup Q-learning
has a low convergence rate, and requires large memory space. Moreover, since each Q(s, a) is updated
independently, there are a lot of noises in the action-value function.
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Figure 4: Table-lookup Q-learning.

5.3. DSQ-network architecture
Taking advantages of parameter sharing of states and actions, nonlinear function approximation345

can improve the convergence rate, use less storage space and denoise the action value function. Q-
network is a promising nonlinear function approximator, since its stability has improved a lot with
the target network and experience replay [8].
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Figure 5: DSQ-network architecture.

Unlike the existing Q-network [8] that uses state features as inputs, and outputs the value of each
action independently, the DSQ-network architecture takes the binary features of state and action as350

two switch layers, as shown in Fig.5, where both the state features and action features are constructed
by using tile-coding [6, 7].

Tile-coding converts the state vector (v, p) and action vector (M1,M2) into binary feature vectors,
where v, p, M1 and M2 denote velocity, position, notch 1 and notch 2, respectively. The two binary
feature vectors serve as two switch layers in a feedforward neural network. The state switch layer355

determines which weights between the input layer and the first hidden layer are activated, where the
weights connected to 1 are activated, and those connected to 0 are ignored. The input of each node
of the first hidden layer is a weighted sum of the network inputs which are connected to the activated
weights. The action switch layer determines which nodes in the last hidden layer should offer the
values that will be added to the final Q(s, a; θ).360
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Notably, there is a difference between the implementation processes of state coding and action
coding. Since the state space is continuous, the offsets of each tiling along the position dimension and
velocity dimension are randomly selected. By contrast, the action space is a discrete space, so it must
be ensured that each action is represented by a unique feature vector, which means each feature vector
cannot be shared by more than one action. Therefore, the offsets of the tilings for action coding are365

specified.
For state coding, a tiling is a two-dimensional grid that covers the whole state space, which is

cut into Nv × Np uniform gridlike tiles. The size of each tile is ∆v × ∆p, where ∆v and ∆p are the
tile’s lengths along the velocity dimension and position dimension, respectively. There are some basic
constraints on Nv, Np, ∆v and ∆p, as shown in (15).370

Nv · ∆v ≥ Vm, Np · ∆p ≥ Pm (15)

If one tiling is used for encoding the state, there are Nv × Np binary elements in the feature
vector. Let ϕ(s) denote the feature vector of state s, and ϕis(s) denote the isth element in ϕ(s), is =

1, 2, · · · ,Nv × Np. We have ϕ(s) = [ϕ1(s) ϕ2(s) · · · ϕNv×Np(s)]T , where ϕis(s) is determined by

ϕis(s) =

{
1, if s = (v, p) present at the isth tiles.
0, otherwise

(16)

When there are Nt tilings used for encoding the state, and Nt > 1, firstly, we obtain the itth tiling’s
feature vector ϕit(s) by using (16), where it = 1, 2, ...,Nt. Then we can construct the feature vector of375

the Nt tilings as
ϕ(s) =

[
ϕT

1 (s) ϕT
2 (s) · · · ϕT

Nt
(s)

]T
(17)

Besides, the multiple tilings need to be offset by different amounts, in order to extract the features
more accurately. The offsets of the tilings for state coding are randomly selected from [0,∆v] and
[0,∆p]. The legal offsets of the tilings for state coding form a set

∆offset
s =

{
(voffset

it , poffset
it )

∣∣∣ voffset
it ∈ U(0,∆v), poffset

it ∈ U(0,∆p), it = 1, 2, ...,Nt

}
(18)

The action coding also follows the rules in (15)–(17), but the set of the offsets are specified. When380

the tile’s size is ∆M × ∆M, the set of the tiling offsets are

∆offset
a =

{
(∆M − it, it)

∣∣∣ ∆M = Ml
max − Ml

min + 1, it = 1, 2, ...,Nt

}
(19)

where, Ml
max and Ml

min are the upper and lower bound of locomotive notches, respectively. Each tiling
for action coding consists of NM1 × NM2 uniform gridlike tiles.

Notably, in the following sections, to distinguish the Nt for action from state, we let N s
t and Na

t
denote the number of tilings for state coding and action coding, respectively.385

From this section we can see, the problem in this paper has continuous state space and large
action space. Table-lookup Q-learning suffers from low convergence rate, large memory space, and
noises. Hence, we propose a novel nonlinear function approximator, DSQ-network, to improve the
efficiency of solving the peoblem, reduce the required memory space and denoise the action-value
function. DSQ-network can enhance the parameter sharing of state-action pairs, denoise the action-390

value function, and have higher accuracy than the linear function approximator. Unlike the existing
Q-network that outputs the value of each action independently, DSQ-network enhances the parameter
sharing of actions by tile coding.

Notably, it is common to use the features of states and actions as the inputs of function approxi-
mator, but it is the first time to use the state features and action features as separated switch layers, and395

insert the action features between the hidden layer and output layer of a feedforward neural network.
DSQ-network is specially for the large action space where adjacent actions share similarities.
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Figure 6: The computation framework of the optimal control of multiple electric locomotives in a heavy-haul freight train
using DSQ-network.

Fig.6 shows the computation framework for using DSQ-network to learn the optimal control s-
trategies of multiple electric locomotives in a heavy-haul freight train. The computation framework400

mainly includes: firstly, when encountering a state s, the agent selects an action a by using ε-greedy
policy and Q(ϕ(s),ϕ(a); θ), for all a ∈ A(s). Secondly, the state transition (s, a, r, s′) is calculated by
using the freight train simulator in the environment, where parallel explorations are performed simul-
taneously, in order to generate the episodes fast. The starting states of all the episodes are selected
randomly from the state space, and the terminal states locate at Pm. Thirdly, the state transitions are405

stored independently in the experience replay memory D, and randomly selected for updating the
online network parameter vector θ. θ is updated using the stochastic gradient descent method. The
target network parameter vector θ̂ is copied periodically from θ.

The pseudo code of the algorithm is presented as follows.
Algorithm: DSQ-nework for optimal control of electric locomotives in a heavy-haul train410

Main Inputs:
• Environment: train marshalling, gradients of ramps, speed restrictions.
• Tile Coding: tile length along velocity dimension ∆v, tile length along position dimension ∆p,

tile length along notch dimension ∆M, number of tilings for state coding N s
t , number of tiles along

velocity dimension Nv, number of tiles along position dimension Np, number of tilings for action415

coding Na
t , number of tiles along notch 1 dimension NM1 , number of tiles along notch 2 dimension

NM2 .
• Function approximation: learning rate α, discount factor γ, activation function h(·), number of

hidden layers, number of nodes in each hidden layer.
• Training configuration: simulation step ∆t, state transition step ∆T , the maximum number of420

state transition steps, the size of experience relay memory, the update frequency of target network,
sampling batch−size.

Initialize:
• action-value function Q with random weights θ.
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• target action-value function Q̂ with weights θ̂.425

• experience replay memory D.
• simulation environment (env), random initial state s = (v, p) and action a = (M1,M2) for each

episode in the parallel exploration pool.
For step = 1: the maximum number of state transition steps, do

For each of the parallel exploration episodes, do430

With probability ε randomly select a legal action a = (M1,M2),
otherwise select a = arg maxa Q(ϕ(v, p),ϕ(M1,M2); θ).
Execute action a in env for ∆T , then observe the new state s′ = (v′, p′), and read v̂l, f̂l

and f̂c during the period from s to s′.
Store transition (v, p,M1,M2, r, v′, p′) in D.435

If (p′, v′) is the terminate state, do
Randomly initialize state s = (v, p) and action a = (M1,M2) .
End If

End For
For −in range(batch−size), do440

Select a transition (v, p,N1,N2, r, v′, p′) randomly from D.
Calculate the state feature vectors ϕ(v, p), ϕ(v′, p′) and action feature vector ϕ(M1,M2).
In particular, calculate ϕ(M′

1,M
′
2) for all the actions in set A(s′).

Set the target value,

y =


r, if (v′, p′) is the terminal state.

r + γ max
(M′1,M

′
2)

Q̂(ϕ(v′, p′),ϕ(M′
1,M

′
2); θ̂) (20)

Perform stochastic gradient descent using445

θ ← θ + α
[
y − Q(ϕ(v, p),ϕ(M1,M2); θ)

]
∇θQ(ϕ(v, p),ϕ(M1,M2); θ) (21)

Reset θ̂ = θ every C state transition steps.
End For

End For

7. Numerical experiment

This section demonstrates DSQ-network by numerical experiments in MATLAB. Based on the450

results, we investigate 1) the influences of ramps and speed restrictions on the optimal policy for the
control of multiple electric locomotives in a heavy-haul freight train, and 2) the inter-dependent and
inter-conditioned relationships of velocity, energy consumption and coupler force.

In the numerical experiments, the heavy-haul freight train consists of two HXD3B electric loco-
motives and 200 wagons, where the two locomotives respectively locate at the head and end of the455

train. Each locomotive weighs 150 tons, and each wagon weighs 70 tons. Hence, we can obtain that
the total weight of the heavy-haul freight train is14300 tons. The length of the train is 2.45km. The
traction and regenerative braking characteristics of HXD3B locomotive are used, as shown in Figs.2
and 3. The parameters for the implementation of DSQ-network are given in Table.1.
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Table 1: Parameters for the implementation of DSQ-network

Parameter Value

Tile length along velocity dimension ∆v 40km/h
Tile length along position dimension ∆p 4km

Number of tiles along velocity dimension Nv 4
Number of tiles along position dimension Np 11

Number of tilings for state coding N s
t 30

Tile length along notch 1 dimension, ∆M1 7
Tile length along notch 2 dimension, ∆M2 7

Number of tiles along Notch 1 dimension, NM1 2
Number of tiles along Notch 2 dimension, NM2 2

Number of tilings for action coding Na
t 25

Lower bound of locomotive notch’s change rate ∆Ml
min –1

Upper bound of locomotive notch’s change rate ∆Ml
max 1

Lower bound of locomotive notch Ml
min –12

Upper bound of locomotive notch Ml
max 12

Discount factor γ 0.95
Learning rate α 10−5

Exploration Probability ε Decrease from 0.5 to 0.1,
and be linear with the state transition steps.

Number of hidden layers in DSQ-network 1
Number of nodes in each hidden layer 256

Activation function h(·) Rectified linear unit
Number of parallel episodes 32

State transition step ∆T 10 seconds
Simulation step ∆t 0.1 seconds

The maximum number of state transition steps 10000
The size of experience replay memory 16000 state transitions
The update frequency of target network Every 20 state transition steps

sampling batch−size 900 state transitions
The maximum velocity of locomotive Vm 120km/h

The lowest permitted velocity V lim
L 15km/h

Energy efficiency ratio of electric traction drive system ηt 0.9
Energy efficiency ratio of regenerative braking system ηb 0.8

The reward weight of coupler force µc 2 × 10−6

The reward weight of energy consumption µe 7.5 × 10−6

The reward weight of velocity µv 0.3
Parameters of the penalty signals for explorations beyond V lim

H or V lim
L µh = 1, µl = 1

c1 =0.05, c2=3, c3=3, c4=10
c5=0.05, c6=6, c7=3, c8 =10

7.1. Influences of ramps and speed restrictions460

Four cases are used to investigate the influences of ramps and speed restrictions on the optimal
policy for the control of multiple electric locomotives in a heavy-haul freight train, including case 1
(Ramp 1/Speed restriction 1), case 2 (Ramp 2/Speed restriction 1), case 3 (Ramp 1/Speed restriction
2), and case 4 (Ramp 2/Speed restriction 2). The data of Ramp 1 and Ramp 2 are shown in Tables.2,
and Speed restriction 1 and Speed restriction 2 are given in Table.3.465

Fig.7 shows the changes of the approximated optimal action values with the increase of state
transition steps in cases 1–4. It can be found that the approximated optimal action values converge at
around 2000 state transition steps in all of the four cases.

Figs.8–11 show the dynamic performance of heavy-haul freight train in cases 1–4 when the opti-
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Table 2: Gradients of Ramps

Ramp 1 Ramp 2

Mileage Gradient Mileage Gradient

0km – 5km 0‰ 0km – 5km 2.5‰
5km – 12km –4‰ 5km – 10km 5‰
12km –15km 4‰ 10km –15km –2.5‰
15km – 25km –4‰ 15km – 21km 2.5‰
25km – 28km 4‰ 21km – 24km –5‰
28km – 37km –4‰ 24km – 32km 5‰
37km – 38km 0‰ 32km – 38km 2.5‰
38km – 40km 0‰ 38km – 40km 0‰

Table 3: Speed restriction

Speed restriction 1 Speed restriction 2

Mileage V lim
H Mileage V lim

H

0km – 8km 70km/h 0km – 8km 85km/h

8km – 20km 85km/h 8km – 16km 65km/h

20km – 28km 75km/h 16km – 32km 90km/h

28km – 40km 95km/h 32km – 40km 70km/h
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Figure 7: The changes of the approximated optimal action value for cases 1-4 with state transition steps. (The data is the
average of optimal action values of 42 states.)

mal policies that are learned from 10000 state transition steps are followed, respectively. The com-470

putation time of cases 1-4 is respectively 6449 seconds, 6538 seconds, 6471 seconds, 6558 second-
s(CPU/I5 4210H(2CPUs×2.9GHz), RAM/8GB, MATLAB R2016b). Here the episode that follows
the optimal policy is called exploited episode. Each figure has four subfigures showing the changes
of the locomotive velocities, the locomotive notches, the maximum and minimum coupler forces, and
the energy consumption with the increase of mileage. Notably, in the first subfigure, the length of the475

train is considered, so there is a position difference between the two locomotives, while in the other
three subfigures, the horizontal coordinate is the position of locomotive #1.

From Fig.8 we can see, firstly, regenerative braking is utilized to keep the train from exceeding the
speed restrictions, because case 1 has three longer downhill sections and two shorter uphill sections,
where the gravitational potential energy is converted into kinetic energy, increasing the train velocity.480

Secondly, the rear locomotive gives lower notches than the head locomotive between 15km and 25km,
because there is a downhill-uphill connection where the heavy-haul freight train suffers from com-
pressive coupler forces. When the rear locomotive provides larger regenerative braking force than the
head locomotive, the freight train can be stretched, and the coupler forces are reduced. Conversely,
between 30km and 40km, after the operation on an uphill-downhill connection that makes the train485

stretch, the rear locomotive gives higher notch than the head locomotive, to make the train compres-
sive and reduce the stretching coupler forces. Compared with case 1, case 2 has longer uphill sections
and shorter downhill sections. It can be found from Fig.9 that the difference between the locomo-
tive notches is much smaller than that in Fig.8, especially on the downhill-uphill connections and
the uphill-downhill connections. The reason is that the acceleration of the heavy-haul freight train490

on long uphill sections requires both locomotives provide large traction forces, otherwise the train
will decelerate, and the agent will receive a bad reward due to low velocity. Besides, according to
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Figure 8: The dynamic performance of heavy-haul freight
train under the optimal policy: Case 1.(The first subfigure
considers the position difference between the two locomo-
tives, while in the other three subfigures, the horizontal co-
ordinate is the position of the locomotive #1.)
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Figure 9: The dynamic performance of heavy-haul freight
train under the optimal policy: Case 2.(The first subfigure
considers the position difference between the two locomo-
tives, while in the other three subfigures, the horizontal co-
ordinate is the position of the locomotive #1.)

the traction characteristics of HXD3B locomotive, a small difference between the notches of different
locomotives may result in a situation where the force of one locomotive is large, while the force of
the other locomotive is zero. Consequently, the heavy-haul freight train cannot pass the long uphill495

sections due to lack of traction force. Moreover, in case 2, the total energy consumption is 18067.77
MJ and the average coupler force (the average of the absolute value of coupler force rewards in the
exploited episode) is 283.81kN, while those of case 1 are –2719.17 MJ and 212.60kN, respectively.
It is found that on the long uphill sections, the energy consumption rewards have greater influences
on the action-value function than the coupler force rewards.500

Cases 3 and 4 use the same ramps as cases 1 and 2, respectively, and a lower average speed restric-
tion. In case 3, the operation time, energy consumption and the average coupler force are respectively
2321.7s, -3911.58MJ and 276.40kN, while those for case 1 are respectively 2211.9s, –2719.17MJ,
and 212.60kN. Naturally, the decrease of average speed restriction results in more operation time and
less energy consumption. However, it is interesting to find that the average coupler force increases.505

From Fig.10 we can see, a sharp coupler force happens when the train encounters a dramatic increase
of speed restriction at 16km, from 65km/h to 90km/h. This is because the penalty signal disappears
with the increase of speed restriction, and the velocity reward encourages higher velocity. Since the
acceleration of wagons depends on the coupler force, a sharp increase of velocity will lead to an in-
crease of coupler force. Moreover, the uphill-downhill connection at 15km and the downhill-uphill510

connection at 12km also exacerbate the longitudinal in-train impulse.
In case 4, the operation time, energy consumption and average coupler force are respectively

2406.6s, 17896.15MJ and 351.42kN, while those for case 2 are respectively 2463.2s, 18067.77MJ,
and 283.81kN. Firstly, it is interesting to find that the operation time decreases with the drop of
average speed restriction. This is because there exists a 16km long section with speed restriction of515
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Figure 10: The dynamic performance of heavy-haul freight
train under the optimal policy: Case 3.(The first subfigure
considers the position difference between the two locomo-
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Figure 11: The dynamic performance of heavy-haul freight
train under the optimal policy: Case 4.(The first subfigure
considers the position difference between the two locomo-
tives, while in the other three subfigures, the horizontal co-
ordinate is the position of the locomotive #1.)

90km/h in case 4, which is longer than the 12km section with speed restriction of 95km/h in case 2,
giving more time for the heavy-haul freight train to run at a velocity close to the highest permitted
velocity. Compared with downhill section, the acceleration on uphill section is much lower. For
uphill sections where the speed restriction decreases, and the section with high speed restriction is
short, the heavy-haul freight train always decelerates before reaching the highest permitted velocity.520

Consequently, although the average speed restriction in case 4 is lower than that in case 2, the average
velocity of the train is higher, resulting in less operation time. Secondly, the energy consumption
in case 4 is lower than that in case 2. It is because the speed restriction in case 2 increases when
the heavy-haul freight train runs on the long uphill sections at 0km–10km and 25km–34km, and the
acceleration on long uphill sections requires large traction force and consumes considerable energy,525

while in case 4, the speed restriction decreases at 0km–10km and 25km–34km, so the required traction
force is much lower, resulting in less energy consumption. Thirdly, the average coupler force in case
4 is higher than that in case 2. From Fig.11 we can see, in case 4, there is an uphill section at
15km–21km, and the speed restriction increases, so the acceleration of wagons requires large coupler
force, while in case 2(Fig.9), the speed restriction decreases, the required tractive force for wagons is530

smaller, so the coupler force is between 15km and 21km is much smaller than that in case 4.

7.2. Influences of reward weights
The following tests investigate the inter-dependent and inter-conditioned relationships between

velocity, energy consumption and coupler force by changing the reward weights µv, µe and µc. Seven
Groups of reward weights are used in each of the four cases in 7.1. Here we use Ci/W j to denote the535

case that uses the jth group of weights in case i in 7.1, where i=1, 2,· · · , 4 and j=1, 2,· · · , 7. The
reward weights in the tests are defined as µv = Kv∆µv, µe = Ke∆µe and µc = Kc∆µc, where Kv, Ke and
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Kc are non-negative integers, and ∆µv, ∆µe and ∆µc are the units for changing the reward weights. The
reward weights in 7.1 are used as the units for changing the reward weights, so we have ∆µv = 0.3,
∆µe = 7.5 × 10−6, ∆µc = 2 × 10−6. Table.4 shows the seven groups of Kv, Ke and Kc in the tests.540

Table 4: The operation time, total energy consumption and coupler force of 28 cases using reward weights µv = Kv∆µv,
µe = Ke∆µe, µc = Kc∆µc. (Ci/W j denotes the case that uses the jth group of weights in case i in 7.1, where i=1, 2,· · · , 4
and j=1, 2,· · · , 7. Percentage* is the increasing rate compared with the case that uses the first Group of weights, Average
coupler force* is the average of the absolute value of coupler force rewards in the exploited episode.)

Case Weight coefficients Operation time Total energy consumption Average coupler force*

Value(s) Percentage* Value(MJ) Percentage* Value(kN) Percentage*

C1/W1 Kv = 1 Ke = 0 Kc = 0 2136.4 0% -1954.69 0% 445.55 0%
C1/W2 Kv = 1 Ke = 0 Kc = 1 2069.0 -3.2% -1784.72 +8.7% 342.09 -23.2%
C1/W3 Kv = 1 Ke = 1 Kc = 0 2181.3 +2.1% -2484.13 -27.1% 317.46 -28.7%
C1/W4 Kv = 1 Ke = 1 Kc = 1 2211.9 +3.5% -2719.17 -39.1% 212.60 -52.3%
C1/W5 Kv = 1 Ke = 1 Kc = 2 2234.8 +4.6% -1534.69 +21.5% 191.95 -56.9%
C1/W6 Kv = 1 Ke = 2 Kc = 1 2217.5 +3.8% -2347.61 -20.1% 196.74 -55.8 %
C1/W7 Kv = 1 Ke = 2 Kc = 2 2426.0 +13.6% -3195.73 -63.5% 210.63 -52.7%

C2/W1 Kv = 1 Ke = 0 Kc = 0 2138.5 0% 20688.94 0% 401.24 0%
C2/W2 Kv = 1 Ke = 0 Kc = 1 2150.6 +0.6% 20879.05 +0.9% 341.73 -14.8%
C2/W3 Kv = 1 Ke = 1 Kc = 0 2274.5 +6.4% 19601.10 -5.3% 431.43 +7.5%
C2/W4 Kv = 1 Ke = 1 Kc = 1 2463.2 +15.2% 18067.77 -12.7% 283.81 -29.3%
C2/W5 Kv = 1 Ke = 1 Kc = 2 2427.4 +13.5% 18849.24 -8.9% 294.35 -26.6%
C2/W6 Kv = 1 Ke = 2 Kc = 1 3886.9 +81.8% 16921.34 -18.2% 304.62 -24.1%
C2/W7 Kv = 1 Ke = 2 Kc = 2 4384.6 +105.0% 16475.85 -20.4% 376.71 -6.1%

C3/W1 Kv = 1 Ke = 0 Kc = 0 2198.2 0% -2626.57 0% 402.18 0%
C3/W2 Kv = 1 Ke = 0 Kc = 1 2280.0 +3.7% -3392.74 -29.2% 287.61 -28.5%
C3/W3 Kv = 1 Ke = 1 Kc = 0 2420.5 +10.1% -4488.07 -70.9% 292.49 -27.3%
C3/W4 Kv = 1 Ke = 1 Kc = 1 2321.7 +5.6% -3911.58 -48.9% 276.40 -31.3%
C3/W5 Kv = 1 Ke = 1 Kc = 2 2336.0 +6.2% -3707.63 -41.2% 280.25 -30.3%
C3/W6 Kv = 1 Ke = 2 Kc = 1 2432.8 +10.7% -4403.79 -67.7% 249.54 -38.0%
C3/W7 Kv = 1 Ke = 2 Kc = 2 2511.6 +14.3% -4160.48 -58.4% 177.36 -55.9%

C4/W1 Kv = 1 Ke = 0 Kc = 0 2231.0 0% 19318.06 0% 506.03 0%
C4/W2 Kv = 1 Ke = 0 Kc = 1 2250.5 +0.9% 18958.48 -1.9% 397.72 -21.4%
C4/W3 Kv = 1 Ke = 1 Kc = 0 2349.1 +5.3% 17796.91 -7.9% 507.54 +0.3%
C4/W4 Kv = 1 Ke = 1 Kc = 1 2406.6 +7.9% 17896.15 -7.4% 351.42 -30.6%
C4/W5 Kv = 1 Ke = 1 Kc = 2 3367.6 +50.9% 16858.95 -12.7% 283.04 -44.1%
C4/W6 Kv = 1 Ke = 2 Kc = 1 3842.7 +72.2% 16571.13 -14.2% 323.42 -36.1%
C4/W7 Kv = 1 Ke = 2 Kc = 2 4625.1 +107.3% 16262.65 -15.8% 302.36 -40.2%

Table.4 shows the train operation time, total energy consumption, and average coupler force in the
28 cases when the seven groups of reward weights are used. Besides, the increasing rates of W2-W7
compared with W1 are presented in the form of percentages. Table.5 shows the computation time of
the 28 cases.

The velocity reward weight µv mainly influences the train operation time and energy consumption,545

since with the increase of velocity, the operation time gets shorter and the velocity reward shows an
upward trend, but the energy consumption reward decreases. Firstly, the operation time in W1–W7
shows an upward trend with the decrease of the ratio of Kv to the sum of Kv, Ke and Kc. Significant
increases of operation time happen in C2 and C4, where the operation time of W7 increases respec-
tively by 105% and 107.3% compared with W1. Secondly, in C1–C4, with the increase of operation550
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Table 5: The computation time of the 28 cases at 103 and 104 state transition steps. (The numerical experiments are
performed in MATLAB R2016b. Computer configuration: CPU/I5 4210H(2CPUs×2.9GHz), RAM/8GB, MATLAB
R2016b)

C1 C2 C3 C4
CPU time (seconds) CPU time (seconds) CPU time (seconds) CPU time (seconds)

103 steps 104 steps 103 steps 104 steps 103 steps 104 steps 103 steps 104 steps

W1 654 6535 647 6467 636 6356 642 6416
W2 648 6481 627 6266 623 6234 645 6449
W3 643 6427 640 6396 644 6441 625 6247
W4 645 6449 654 6538 647 6471 656 6558
W5 624 6240 640 6397 622 6218 678 6775
W6 644 6438 638 6377 640 6396 641 6411
W7 640 6404 625 6254 632 6320 640 6403

time, the energy consumption shows an evident downward tendency, although some fluctuations ex-
ist, where the energy consumption of W7 is respectively 1241.04MJ, 4213.09MJ, 1533.91MJ and
3055.41MJ less than W1.

The energy consumption reward weight µe shows different influences on the operation time, en-
ergy consumption and coupler force. Firstly, with the same µv and µc, W2 and W4 of C1–C4 show555

that the energy consumption decreases with the increase of µe. A significant decrease of energy con-
sumption happens in C1, where the energy consumption of W4 decreases by 39.1% compared with
W1, while W2 increases by 8.7%. This relationship can also be seen from the results of W5 and W7
of C1–C4, and W4 and W6 of C2–C4. Secondly, the increase of µe can reduce the coupler force,
which can be found by comparing the performance of W2, W4 and W6 of C1, C3 and C4, respec-560

tively. The changes of the average coupler force are respectively 342.09kN→212.60kN→196.74kN,
287.61kN→276.40kN→249.54kN, and 397.72kN→351.42kN→323.42kN in C1,C3 and C4. This is
because the increase of µe requires lower energy consumption, resulting in a decrease of velocity and
an increase of operation time. Besides, the velocities of wagons are directly controlled by the forces of
couplers connected to them, and the mechanical resistance and aerodynamic drag of wagons decrease565

when the velocities decrease. Therefore, the lower velocities can lead to smaller coupler forces.
The coupler force reward weight µc can influence the coupler force and energy consumption.

Firstly, with the same µv and µe, the coupler force shows a downward trend with the increase of µc.
This trend can be found by comparing the coupler force of W1–W2 of C1–C4, W3–W5 of C1 and C4,
W3–W4 of C2–C3, W3 and W5 of C2–C3, W6–W7 of C3–C4. The largest change of coupler force570

happens in W3–W5 of C4, where the average coupler force decreases from 507.54kN to 283.04kN,
and the increasing rate compared with W1 decreases from +0.3% to −44.1%. Secondly, it is found
that the increase of µc leads to higher energy consumption in W3–W5 of C3, where the change of
energy consumption is -4488.07MJ→-3911.58MJ→-3707.63MJ, and the increasing rate compared
with W1 is -70.9%→-48.9%→-41.2%. This trend can also be found from W1–W2 and W4–W5 of575

C1, W1–W2 of C2, W3–W5 and W6–W7 of C3, W3–W4 of C4. The reasons for the change of
coupler force and energy consumption are: firstly, the differences of locomotive forces can counteract
the coupler force caused by ramps, and therefore the in-train impulse is reduced. Secondly, compared
with the same locomotive forces, different locomotive forces consume extra energy, because the force
from one locomotive also counteract that of the other locomotive.580
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8. Discussion and insights

8.1. The high-dimensional output of DSQ-network
The control of multiple electric locomotives in a heavy-haul freight train is formulated as a RL

problem that has continuous state space and large action space, and the adjacent actions’ influences
on the states share similarities. When the length of the rail line is 40 km, DSQ-network converges585

around 2000 state transition steps, while in our test of the table-lookup Q-learning, the action values
converge only when the length of the rail line is not greater than 3 km. For a rail line with a length
of 3 km, the table-lookup Q-learning starts to converge around 7.5 × 105 state transition steps, much
slower than DSQ-network. This is because, for Q-learning, the action values are stored in a high-
dimensional table, and updated independently during the learning process. Hence, the agent can only590

learn the knowledge about the state-action pairs that have been visited. However, for DSQ-network,
the elements in feature vectors and the weights of neural network are shared by different state-action
pairs. Each update of Q(s, a; θ) is based on only one state transition (s, a, r, s′), but it can change
the values of many other state-action pairs, including those state-action pairs that have never been
visited. Sharing of elements in feature vectors and the weights of neural network makes it possible to595

generalize the limited experiences to large state-action space, and denoises the action-value function.

Mileage(km)

Figure 12: Visualization of the high-dimensional output of the DSQ-network: Case 1 in 7.1. (The upper figure: The
estimated optimal action values for all states. The lower figures: the estimated action-value function for four states which
are randomly selected from the exploited velocity-position trajectory, after 104 state transition steps.)

With the contour maps, Figs.12–15 show the high-dimensional output of DSQ-network in cases
1-4 in 7.1, respectively. In each figure, the upper subfigure shows the estimated optimal action values
of all the states, and the four lower subfigures respectively show the estimated action-value function of
four states which are randomly selected from the exploited velocity-position trajectories in Figs.8–11.600

When the heavy-haul freight train encounters a state, ε-greedy policy is used to select an action from
all the legal locomotive notch pairs, so the velocity-position trajectories always escape from the blue
areas (low values) to the yellow areas (high values). The action-value function provides guidance for
selecting locomotive notches at arbitrary states in the state space, rather than the specified states.
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Mileage(km)

Figure 13: Visualization of the high-dimensional output of the DSQ-network: Case 2 in 7.1. (The upper figure: The
estimated optimal action values for all states. The lower figures: the estimated action-value function for four states which
are randomly selected from the exploited velocity-position trajectory, after 104 state transition steps.)

Mileage(km)

Figure 14: Visualization of the high-dimensional output of the DSQ-network: Case 3 in 7.1. (The upper figure: The
estimated optimal action values for all states. The lower figures: the estimated action-value function for four states which
are randomly selected from the exploited velocity-position trajectory, after 104 state transition steps.)

The ramps and speed restrictions do have influences on the efficiency and accuracy of DSQ-605

network. DSQ-network shows the most excellent performance in case 2, which can be found from the
convergence trajectories of the estimated optimal action values (Fig.7) and the contour maps showing
the estimated optimal action values and action-value function (Figs.12–15). In Fig.7, after 2000 state
transition steps, the estimated optimal action values in case 2 tend to converge, while those in cases 1,3
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Mileage(km)

Figure 15: Visualization of the high-dimensional output of the DSQ-network: Case 4 in 7.1. (The upper figure: The
estimated optimal action values for all states. The lower figures: the estimated action-value function for four states which
are randomly selected from the exploited velocity-position trajectory, after 104 state transition steps.)

and 4 still show fluctuations. This is because: firstly, on long uphill sections, the heavy-haul freight610

train can accelerate only if the both locomotives provide large traction forces. Besides, compared
with case 4, the average speed restriction of case 2 is higher, so the agent has less probability to
explore the state space beyond the highest permitted velocity due to lack of tractive force, resulting in
an increase of the sampled data from the state space below the highest permitted velocity. Secondly,
in case 2, optimal locomotive notch pair is located at the corner of the action space, and value of615

a notch pair decreases monotonously with the increase of its distance from the optimal notch pairs
in the action space. Therefore, the optimal notch pairs can be distinguished from the other notch
pairs efficiently and accurately. Moreover, from the upper subfigures of Figs.12–15 we can see, the
difference between the maximum and minimum of the optimal action values in case 2 is much smaller
than those in cases 1,3 and 4. This is because: the agent in cases 1,3 and 4 explores the space beyond620

the highest permitted velocity more frequently than that in case 2, which produces low-value rewards,
resulting in the large difference between the maximum and minimum of the optimal action values.

8.2. Comparison between DSQ-network and DQN
On the one hand, DSQ-network and DQN share some common points: 1) Both methods use the

principles of Q-learning to update the action-value function; 2) Both methods use feedforward neural625

network to approximate the action-value function. On the other hand, the application scenarios of
DSQ-network and DQN are different. DSQ-network is designed for RL problems that have continu-
ous state space, large action space, and the influences of adjacent actions on states share similarities.
Particularly, tile coding is used to construct the features of actions, so that DSQ-network is able to
handle high-dimensional action space. In contrast, DQN is suited for dealing with large and high-630

dimensional state space, such as image and time series. However, DQN outputs the values of each
action independently, so that it is difficult for DQN to learn the relationship between adjacent actions
in a high-dimensional action space.
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9. Conclusion and further study

This paper has proposed a novel RL approach to achieve the optimal control of multiple electric635

locomotives in a heavy-haul freight train. A novel nonlinear function approximator, named DSQ-
network, has been proposed for fast approximation of the action-value function. DSQ-network can
optimize the heavy-haul freight train’s performance in velocity, energy consumption and coupler
force, without any prior knowledge of train dynamics and pre-designed velocity profiles. Besides,
we have discussed the influences of ramps and speed restrictions on the optimal policy for the control640

of electric locomotives, and the inter-dependent and inter-conditioned relationships between multiple
objectives. Moreover, DSQ-network converges much faster, and uses much less storage space than
the table-lookup Q-learning when the problem has continuous state space, large action space, and the
adjacent actions’ influences on states share similarities. Although encoding the state space and action
space is common, DSQ-network changes the way of using state and action features, and is extremely645

suitable for the problem in our paper. DSQ-network can also be used for intelligent control of cars,
trucks, and some robots which have large or even continuous action space.
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