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This paper proposed a novel approach to measure track irregularity by using a multipoint chord reference
(MCR) system. In Part I of this study, the theory and methodology were introduced and the performance
in the spatial domain were analyzed through theoretical proofs. The current paper analyzes the perfor-
mance of an MCR system in the wavelength domain based on numerical approaches regarding two
aspects: transfer function (TF) and false track geometry (FTG) in wavelength domain (FWD). To address
the short wavelength performance of an MCR system, the minimummeasurable wavelength (MMW) was
analyzed according to the TF of different MCR systems. The numerical results are consistent with the the-
oretical value of MMW. Numerical experiments based on Fourier transform were conducted to analyze
the FWD for a given MCR system. Critical wavelength (CW) is proposed to quantify the long wavelength
performance. Moreover, the influences of the order, configuration, and length of rail on the performance
of FWD are considered for different MCR systems. The main results suggest that (1) a higher order leads
to better system performance in the wavelength domain, smaller MMW, and larger CW. (2) In addition,
the sparse configurations have a significant influence on the FTG for the short wavelengths below 1.5 m.
(3) The magnitude of FTG increases rapidly with 1.91 power of the wavelength. (4) The magnitude of FTG
for a long wavelength increases with 1.5 power of the rail length, whereas those of short and intermedi-
ate wavelengths drop with �0.562 and �0.647 powers of rail length, respectively. (5) CW increases with
the increasing order of the MCR system or with the increase in the length of rail to be measured. The
MMW, FWD, and CW proposed in this paper are essential tools, which can be used to predict and opti-
mize the performance of an MCR system.

� 2019 Published by Elsevier Ltd.
1. Introduction

In Part I of this study, a unified framework of a multipoint chord
reference system (MCR system) was introduced with definitions on
n-ordered MCR(n) systems, standard sampling interval (SSI), MCR
(n, m) system, minimum measurable wavelength (MMW), and sta-
bility. Mathematical models were established based on sensor
fusion and least square optimization techniques. The error prop-
erty in spatial domain was studied using the error amplification
factor (EAF), which can be used to quantify the error accumulation
characteristics of MCR systems. Table 1 describes the terminolo-
gies, variables, and operators used in this paper.
The current paper focuses on the performance of MCR systems
in the wavelength domain. The main methodology used in this
study is based on numerical simulation. We used all the defini-
tions, terminologies, and symbols of an MCR system as stated in
the previous paper (Part I). Note that the whole framework of an
MCR system is newly established, the error accumulation charac-
teristics in wavelength domain are completely blank, except for
those used in our previous publication [1] in which we studied
the error theory of the mid-chord offset (MCO) system, a special
case of MCR(1, 1) system, in both spatial and wavelength domains.

In this study, the performance of an MCR system in the wave-
length domain was analyzed based on two aspects: transfer func-
tion (TF) and false track geometry (FTG) in wavelength domain
(FWD).

TF is widely used to study the performance of various rail-
irregularity-measurement techniques, such as the inertial refer-
ence method [2,3], MCO system [1,4–6] or other chord-based
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Table 1
Terminologies, variables, and operators.

Terminology Explanation

MCR system Multipoint chord reference system
MCO system Mid-chord offset method
SSI Standard sampling interval
EP Equidistance point that divides a chord by equal length segmentations
ith-EP The ith equidistance point that divides a chord by ratio of i : nþ 1� ið Þ
FTG False track geometry
MMW Minimum measurable wavelength
EAF Error amplification factor
FWD False track geometry in wavelength domain
CW Critical wavelength
PSD Power spectral density
Variable Denotation
l; L Lengths of track section and reference chord, respectively.
n Order of an MCR(n) system.
DLs ¼ L= nþ 1ð Þ, standard sampling interval (SSI) of an MCR(n) system.
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ 1;n½ �� �

, an increasing sequence that specifies the configuration of an MCR(n) system.
N ¼ nþ 1ð Þ � l=Lþ 1; the number of discretized segments of a rail section by SSI.
y ¼ y0; y1; � � � ; yNð ÞT ; discretization off xð Þ.
Jk Matrix with size m � n with Jk i; jð Þ ¼ 1; j ¼ ki

0; j–ki

�
ki ¼ i= nþ 1ð Þ � 1; ratio of two parts divided by the ith EP.

ki
� ¼ �1� ki ¼ �i= nþ 1ð Þ.
M ¼ kI �1� kð Þ½ � with k ¼ k1; k1; � � � ; knð ÞT , the measurement matrix of the MCR system.
Mk ¼ kk Jk � 1þ kkð Þ½ �; the measurement matrix.
Aki

=

kki 0 � � � 1 � � � 0 kki
�

kki 0 � � � 1 � � � 0 kki
�

. .
. . .

. . .
. . .

. . .
.

kki 0 � � � 1 � � � 0 kki
�

26666664

37777775, each row containing the ith row of Mk.

H ¼ h0;h1; � � � ;hN�n�1½ �; the integrated measured chord versine matrix.
F yð Þ ¼ y0; y1; � � � ; yN�n�1½ �; the matrix contains the track geometry to be measured.

H
�
and Hk

� The measured chord versine matrix containing measurement error

E and Ek Measurement error matrix.

h
�
i

0

¼ h
�
i;0; h

�
i;1; � � � ; h

�
i;N�n�1

� �T

is the transpose of the ith row of H
�
.

y� ¼ AM H þ Eð Þ; the least square estimation of y.
y ¼ y � y� ¼ AM Eð Þ; the false track geometry (FTG).
Y and Y� The Fourier transform of discretized rail irregularity sequences y andy�

w Represents wavelength coordinate, generally used as subscript.
p Represents spatial coordinate, generally used as subscript.
Yw and Y�

w The values of Y and Y� at given wavelength w.

Y The FTG in wavelength domain.

Yw The value of Y at given wavelength w.
T ¼ Abs Y�

Y

� �
; the transfer function.

P� and P Are the power spectrum densities (PSDs) of y and y� .

Aw ¼ Amp Yw

� 	
hw ¼ Ang Yw

� 	
Amax ¼ Max

w�l
Aw

� 	
Amin ¼ Mean

w<1:5L
Aw

� 	
Amid and P The two parameters of power exponent function for the description of the intermediate wavelengths
Wc Critical wavelength
f wd w;Mk; l; Lð Þ FWD function with respect to w;Mk; l, and L.
Operator Denotation
E �ð Þ Mathematical expectation of a random variable.
Var �ð Þ Variance of a random variable.
Mean �ð Þ Mean value of a vector or sequence.
Std �ð Þ Standard deviation of a vector or sequence.
Max �ð Þ Maximal value of a vector or sequence.
Amp �ð Þ Modulus of complex number.
Ang �ð Þ Angle of complex number.
AM Xð Þ ¼ Pn

i¼1Ai
TAi

� 	�1
�Pn

i¼1Ai
T xi

0� �
; the restoration operator of MCR system, wherexi

0
is the transpose of the ith row of matrix X.
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methods [7–9]. In general, TF of a measurement system is defined
in the wavelength domain. TF = 1 indicates a good performance.
When TF at some wavelength is less or larger than 1, the measured
magnitude at that wavelength is reduced or enlarged, respectively.
In particular, TF = 0 at some wavelength implies that the waveform
at that wavelength cannot be measured.

FTG [1] refers to the measurement error term generated from
the noise of sensors during the restoration process of an MCR



196 Y. Wang et al. /Measurement 138 (2019) 194–205
system. When not counting the sensor error, the magnitude of FTG
is zero, indicating that the measurement result is absolutely accu-
rate. When the sensor error is considered, the characteristics of
FWD are key for analyzing the performance of an MCR system in
the wavelength domain.

The contributions of the current paper are summarized as
follows.

A numerical experiment of the measurement process is pro-
posed in Section 4 to estimate the transfer function of a given
MCR system.
A numerical experiment based on Fourier transform is intro-
duced in Section 5.2 to analyze FWD.
The FWD function containing four parameters is proposed in
Section 5.3 to describe the FWD.
The critical wavelength (CW) is defined in Section 5.4 to quan-
tify the performance the MCR system.
The influence of the major factors on the performance of FWD
for different MCR systems are analyzed in Section 6.

2. Fundamentals of an MCR system

2.1. Brief introduction to an MCR system

This section gives a brief introduction on MCR systems. The
measurement principle of an n-ordered MCR system is illustrated
in Fig. 1. A chord formed between two points on the rail, repre-

sented as the straight line AC
�
, behaves as a reference, and the read-

out of each sensor at the related EP of the chord is the distance (on
normal direction) between the EP and rail to be measured. Table 1
describes the terminologies, variables, and operators used in this
paper.

Somemain concepts of an MCR system are presented as follows.
For more details, please refer to Part I paper.

MCR(n) with order n: As illustrated in Fig. 1, an n-ordered MCR
is defined as a chord-based measurement system with all sensors
mounted at the EPs of a chord. The ith EP is the point dividing
the chord at a ratio of i : nþ 1� ið Þ.
Fig. 1. Measurement principle of the MCR system with order n. A chord length of L is
SSI of MCR(n): the SSI is defined as

DLs ¼ 1
nþ 1

� L; ð1Þ

where L is the length of the reference chord. It indicates that for a
higher order of MCR(n), the SSI DLs is smaller (the sampling fre-
quency is higher). Furthermore, in this study, the high- and low-
frequency samplings were considered if the sampling intervals
were DL < DLs and DL > DLs, respectively.

MCR(n, m) system: An MCR(n, m) is defined as an n-ordered
MCR system with m sensors mounted on the EPs of a chord. n rep-
resents the order andm represents the number of sensors. The con-
figuration of the sensor layout (hereafter termed as configuration)
is specified by an increasing sequence k ¼ kiji ¼ 0;1; � � � ;m;f
ki 2 Nþ \ 1;n½ �g.

MMW: the MMW is defined as the minimal wavelength that
can be measured through an MCR system. For an MCR(n) system
with full configuration, the MMW is 2L/(n + 1) for the sampling
interval of DL � DLs.

2.2. Measurement model

The measurement model of an MCR(n, m) system with configu-
ration specified by k is given as

H
�
k ¼ Mk � F yð Þ þ E; ð2Þ

where y ¼ y0; y1; � � � ; yNð ÞT is the discretized sequence of rail irregu-

larity to be measured and N ¼ l=DLs. H
�
k is the measured chord ver-

sine matrix and F yð Þ is a matrix generated by y and is given as

F yð Þ ¼

y0 y1 yN�n�1

y1 y2 � � � yN�n

..

. ..
. ..

.

ynþ1 ynþ2 yN

266664
377775 ð3Þ

Mk is the measurement matrix given as

Mk ¼ kk Jk � 1þ kkð Þ½ �; ð4Þ
divided into n + 1 equal length segments, and the sensors are mounted as the EPs.
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where kk ¼ kk1 ; kk2 ; � � � ; kkm
� �

with

kki ¼
ki

nþ 1
� 1; ð5Þ

and Jk is a matrix of size m � n:

Jk i; jð Þ ¼ 1; j ¼ ki
0; j–ki

�
; i ¼ 1; � � � ;m; j ¼ 1; � � � ;n: ð6Þ
2.3. Restoration model

Given an MCR(n,m) system with measurement matrix specified
by Mk, the restoration of the original waveform can be achieved

from the measured chord versine matrix H
�
k by using the following

model:

y� ¼ AMk
H
�
k

� 	
¼

Xm
i¼1

Aki
TAki

 !�1

�
Xn
i¼1

Aki
T h

�
ki

0
 �
; ð7Þ

where h
�
ki

0

is the transpose of the ith row of the measured chord ver-

sine matrix H
�
, and

Aki ¼

kki 0 � � � 1 � � � 0 kki
�

kki 0 � � � 1 � � � 0 kki
�

. .
. . .

. . .
. . .

. . .
.

kki 0 � � � 1 � � � 0 kki
�

266666664

377777775 ; ð8Þ

where kki
�

¼ �1� kki . Each row of Akicontains the ith row of Mk. IfPm
i¼1Aki

TAki is not invertible, then the Moore–Penrose pseudo-
inverse [10] is used.

3. Transfer function of the MCR system

3.1. Numerical simulation of the measurement process

A numerical simulation of the measurement process was
designed and conducted, as illustrated in Fig. 2. The simulation
process is detailed in Appendix A. The track geometry irregularity
used in the simulation can be practically measured or numerically
generated. In this study, the track-geometry irregularity was gen-
erated based on the sixth-grade track irregularity of the PSD of
U.S. railways [11].

3.2. Restoration of the original waveform

The most important advantage of the simulation process is that
the precision of sensors can be easily adjusted as required. As a
result, the error accumulation property of the MCR system in the
wavelength domain can be analyzed.
Fig. 2. Numerical simulation of
By simulating the measurement process proposed in Sec-
tion 4.1, we can obtain the measured chord versine matrix,
based on which the restoration model given in Section 3.3 is
used to calculate the restored waveform, namely the final mea-
surement result.

Consider a case in which a 500-m rail longitudinal profile is
generated numerically; the profile is measured using the MCR
(19) system with a 1-m-long chord. In this case, no sensor error
is included, namely E e2

� � ¼ r2 ¼ 0. The results are illustrated in
Fig. 3. As shown, the measured waveform is almost but not com-
pletely the same as the original waveform. The enlarged view of
the waveform shows that some details regarding short wave-
lengths are lost. The loss of details is caused by the MMW of a
given order MCR system. For the MCR(19) system, the MMW is
2L= 19þ 1ð Þ ¼ 0:1 m, implying that the MCR(19) system cannot
measure the wavelengths below 0.1 m.

3.3. TF

The TF was used to analyze the property of MCR systems, and it
is defined as

T ¼ Amp
Y�

Y


 �
; ð10Þ

where, Amp �ð Þ is used to obtain modulus of a complex number;Y
and Y� denote the Fourier transforms of the discretized rail irregu-
larity sequences y and y�, respectively. y and y� denote the original
and MCR-measured rail irregularities. Y�

w and Yw at wavelength w
are given as

Y�
w ¼

XN�1

p¼0

y�p � e�2pi�pN�1w ð11Þ

Yw ¼
XN�1

p¼0

yp � e�2pi�pN�1w; ð12Þ

where p represents spatial coordinate along the rail and w repre-
sents wavelength relating to frequency domain. The relationship
between y� and y can be described as

y� ¼ AMk
Mk � F yð Þ þ Eð Þ ¼ y þAMk

Eð Þ: ð13Þ
To ensure the significance of TF T given in Eq. (10), an interpo-

lation of y� is necessary to ensure it shares the same length and
sampling interval of y. A TF close to 1 indicates a good performance
at the corresponding wavelength, and vice versa. Particularly,
when TF closes to 0, the components around that wavelengths can-
not be measured by the MCR system.

However, instead of estimating the TF according to the defini-
tion given in Eq. (10), this paper uses a lesser noisy approach as

T ¼
ffiffiffiffiffi
P�

P

r
; ð14Þ
the measurement process.



Fig. 3. Comparison between the original waveform and measured result using the MCR(19) system based on simulation.

Table 2
The MWW and wavelengths when TF = 0.75.

MCR system MWW (m) Wavelengths (m) when TF = 0.75

MCR(4) 0.4 0.3948
MCR(9) 0.2 0.1974
MCR(19) 0.1 0.1063
MCR(29) 0.0667 0.0707
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where P� and P are the PSDs of y and y�, respectively, and are
defined as

P� ¼ 1
N

Amp Y�ð Þð Þ2;P ¼ 1
N

Amp Yð Þð Þ2: ð15Þ

Again, we will not use this definition for computation. Several
methods exist for the estimation of PSD, for example, periodogram
[12] and Welch’s method [12,13]. In this paper, we used Burg’s
estimator [13].

3.4. TF of the MCR system with different orders

This section presents the analysis of the TF of the MCR system
with different orders. Four MCR(n) systems were considered with
orders n ¼4, 9, 19, and 29. The simulation results are illustrated
in Fig. 4. The track-geometry irregularity waveform used in the
simulation is the same as in the case illustrated in Fig. 3.

Fig. 4(a) shows the PSDs of the original and measured wave-
forms. Note that the fluctuation around the short wavelengths (less
than 1 m) is affected by the interpolation of measured data to
ensure its length is the same with that of the original waveform.
Fig. 4(b) shows the TF of the four MCR systems. As shown, with
the increasing orders of the MCR system, the TF shows a good per-
formance around shorter wavelengths.

Moreover, the theoretical MMW and wavelengths (m) for
TF > 0.75 are listed in Table 2. The simulated results are almost
the same as the theoretical MMW except for a slight difference.

The TF performance shows that the measurement can be taken
as absolutely accurate beyond the MMWwhen no sensor errors are
considered. According to Eq. (13), the final measurement result is a
Fig. 4. Simulation result using MCR system with orders of 4, 9, 19, and 29. (a)
linear combination of the real value and an error term; thus, the
remainder of the problem is how the error term performs in the
wavelength domain.
4. FTG and FWD function

4.1. FWD

According to restoration model given in Section 3.3, the final
measurement result y� is obtained as

y� ¼ AM H þ Eð Þ ¼ y þAM Eð Þ ¼ y þ y : ð16Þ

Here, the measurement error or the error term mentioned in
Section 4.3 is termed FTG y ¼ y0; y1; � � � ; yNð ÞT , which is defined as

y ¼ y� � y: ð17Þ
Assuming that we are measuring an absolute straight rail, the

magnitude of the track irregularity is zero. As a result, the theoret-
ical chord versine values are all zeros, that is, H ¼ 0. However, for a
PSDs of the original and measured waveforms. (b) TF of the MCR systems.



Fig. 5. Probability distribution of Aw at different wavelengths based on the MCR(19)
system. The red curve represents the average value at each wavelength. The colors
represent the probability distribution at each wavelength. The sections represented
with white-dashed lines (a)–(c) are illustrated in Fig. 6. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of
this article.)
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real measurement instrument, the sensors measure the chord ver-
sine values with a degree of uncertainty, E–0. Further, the real
measured chord versine matrix is described as

H
�
¼ H þ E ¼ E: ð18Þ
Therefore,

y ¼ AM Eð Þ: ð19Þ
In this study, we defined the EAF to analyze the error property

in the spatial domain and analyze the FWD.
Given a matrix with sensor error as

E ¼

e1;0
e2;0

..

.

en�1;0

en;0

e1;1
e2;1

..

.

en�1;1

en;1

� � �
. .
.

� � �

e1;N�n�2

e2;N�n�2

..

.

en�1;N�n�2

ehn;N�n�2

e1;N�n�1

e2;N�n�1

..

.

en;N�n�1

en;N�n�1

266666664

377777775: ð20Þ

Assuming that error term E is purely white noise with zero
mean and variance r2,

E eið Þ ¼ 0; E eiej
� � ¼ r2; i ¼ j

0; i–j

(
: ð21Þ

Moreover, by focusing on Y in wavelength domain,

Yw ¼
XN�1

p¼0

yp � e�2pi�pN�1w ¼ Aw � ei�hw ; ð22Þ

where i is the unit imaginary number with i2 ¼ �1; p represents
spatial coordinate along the rail; w represents the wavelength

related to frequency domain; and Aw and hw are the amplitude

and phase of Yw, respectively.

Aw ¼ Amp Yw

� 	
; hw ¼ Ang Yw

� 	
ð23Þ

Thereafter, we use Aw to define the FTG in wavelength domain
(FWD) to describe the error property with respect to different
wavelengths.

The spatial domain and wavelength domain for track geometry
are similar to the time domain and frequency domain for time ser-
ies, respectively. For a better understanding, we can imagine the
EAF is similar to the standard deviation of False Track Geometry
(FTG), while the FWD is similar to the Power Spectrum Density
(PSD) of FTG.

4.2. Numerical experiment for FWD

The analytical analysis of the properties of Aw and hw is consid-
erably challenging. Instead, in this study, numerical experiments

were used to reveal the properties of Aw and hw. The numerical
experiment is given in Appendix B.

Consider a case in which a 1-m-long chord is used to measure a
100-m rail section. The MCR(19) system with full configuration is

used in this case. The probability distribution of Aw at different
wavelengths based on the MCR(19) system is shown in Fig. 5. As
shown, the magnitude gain of the long wavelength is large and
as the wavelength decreases, the magnitude drops quickly until
the wavelength is below 1.5 m, where the magnitude remains
small with a slight fluctuation. The red-colored curve represents
the average value at each wavelength.

The probability distributions of Aw at 100, 10, and 1 m are illus-
trated in Fig. 6. All of these probability distributions are similar to
v2-distribution. Both the average value and standard deviation are
larger for the long wavelengths than for the short wavelengths. The

average and standard deviation of Aw at different wavelengths are
illustrated in Fig. 7(a). Fig. 7(b) shows that the ratio between the

average and the standard deviation of Aw is close to a constant
1.9. Owing to this constant ratio, we only need to present the aver-
age value at each wavelength.

E Aw

� 	
Std Aw

� 	 ¼ constant 	 1:9: ð24Þ

For phase Yw, hw obeys a uniform distribution in �p;p½ � for dif-
ferent MCR systems. Hereafter, the emphasis is on the property of

Aw only.

4.3. FWD function

This section proposes a FWD function to describe Aw versus

wavelength w. The Aw is currently divided into three parts: long,
intermediate, and short wavelengths.

On the one hand, the magnitudes of wavelengths longer than
100 m tend to remain unchanged. A magnitude longer than the
length of rail (100 m in this case) is denoted as Amax. The longer
the rail length, the larger is Amax. On the other hand, for wave-
lengths shorter than 1.5 m, the magnitude remains low. We denote
the magnitude lower than 1.5 times of the chord length (1.5 m in
this case) as Amin. Numerically, Amax and Amin are estimated as
follows:

Amax ¼ Max
w�l

Aw

� 	
ð25Þ

Amin ¼ Mean
w<1:5L

Aw

� 	
ð26Þ

As for the intermediate wavelengths (1:5L < w < l), the magni-
tude is approximate to a linear function with dual logarithmic
coordinate, indicating that the magnitude gain can be described
as a power exponent function. Through power exponent fitting,
the behavior of the intermediate wavelengths can be obtained.
Two parameters are introduced, including coefficient Amid and
exponent P. Amid determines the overall amplitude and P shows
the steepness of the slope of the black line in Fig. 8.

As a result, the general form of the FWD function, denoted as
f wd w;Mk; l; Lð Þ, can be described as a piecewise function:



Fig. 6. Probability distribution of Awat 100, 10, and 1 m wavelengths with respect to (a), (b), and (c) sections in Fig. 5.

Fig. 7. Average and standard deviation of the magnitude gain. The average of the ‘‘average to standard deviation ratio” is approximately 1.9.

Fig. 8. FWD function f wd for the MCR(19) system with full configuration. The chord
and rail lengths are 1 and 100 m. Here, CW = 18 m.
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f wd w;Mk; l; Lð Þ ¼
Amax; jw � l

Amid �wP; j1:5L < w < l

Amin; jw � 1:5L

8><>: ð27Þ

The four parameters in the brackets indicate that the FWD func-
tion is influenced only by w;Mk; l, and L. Amid and P are coefficients
of a power exponent function for the intermediate wavelengths. In
the case presented in Fig. 8, the FWD function is given as

f wd w;Mk;100;1ð Þ ¼
77:5; jw � 100

3:9� 10�3 �w1:91; j1:5 < w < 100

7� 10�3; jw � 1:5

8><>: ð28Þ

The FWD function given in Eq. (28) indicates that the FTG
mainly contains a long-wavelength error term, such as the final
measurement error of 100-m wavelength, which is 77.5 times
the amplified measurement error of the sensor. A longer wave-
length contains larger error, and for wavelengths below 18 m,
the expected magnitude of error is less than the measurement
error of sensor. Especially for wavelength less than 1.5 m, the final
measurement error is reduced to 7� 10�3 of the measurement
error of the sensor, indicating that the MCR systems with high
order can be relatively efficient for measuring short-wavelength
rail irregularity, such as corrugation.

Note that smaller values of Amax, Amin, and Amid indicate a smaller
FTG and better MCR system performance with a given length of
chord and rail section to be measured.
4.4. CW

For an MCR system with given order and configuration, we
define the CW as the wavelength where the FWD function is r:

f wd Wc;Mk; l; Lð Þ ¼ r; ð29Þ

where r ¼ 1 is the standard deviation of the white noise generated
by the sensor. Note that CW is influenced by four factors: (1) the
order, (2) configuration, (3) length of reference chord, and (4) length
of rail to be measured.

CW is a critical value indicating that the wavelengths below Wc

can achieve a measurement precision even better than the sensor
precision. The measurement error accumulates for the wave-
lengths above Wc , while that of the wavelengths below Wc is
reduced. CW can be considered as a representation of the measure-
ment performance in the wavelength domain for a given MCR sys-
tem. The larger the CW, the better is the performance of the MCR
system.
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5. Main factors for FWD

5.1. Main factors

This section analyzes the influence of the main factors on the
performance of FWD functions for different MCR systems. The five
parameters, Amax, Amin, Amid, P, and CW are used as the main tools to
quantify and describe the error property of different MCR systems
in the wavelength domain.

The following three major factors are considered:

Order of the MCR system. In general, a higher order leads to
higher measurement precision and smaller MMW. The topic
of concern is the quantification of the relationship between
the order and measurement precision. This is discussed in
Section 5.2.
Configuration of the MCR system. Sparse configuration can
reduce the total cost as less sensors are used; however, at the
same time, the measurement precision may be lower. Here,
the exact influence of different configurations on the FWD func-
tion must be determined. This is discussed in Section 5.3.
Length of rail to be measured. Measurement error accumu-
lates with the increasing length of rail. For this, the performance
of the measurement error in the wavelength domain must be
analyzed; this analysis is presented in Section 5.4.

5.2. Order of MCR system

This section analyzes the FWD function with respect to the
order of the MCR system. In this section, the full configuration of
MCR systems with orders 1–19 are used as a case study. The
FWD functions of different orders are estimated through numerical
Fig. 9. FWD of an MCR(n) system with full configuration.

Fig. 10. Amax , Amin , Amid , and P versus the order of the
experiments given in Section 5.2, as presented in Fig. 9. The param-
eters of FWD function f wd w;Mk; l; Lð Þ, including Amax, Amin, Amid, and
P, for each curve in Fig. 9 are estimated, and the results are illus-
trated in Fig. 10.

The following results are summarized from Figs. 9–11:

The FWD function of an MCR system with higher order contains
smaller wavelength components, which are related to the
MMW of the MCR system.
The FWD function over the whole wavelength domain
decreases with the increasing order of the MCR system. Coeffi-
cients Amax, Amin, and Amid of the FWD function decrease with
speed as

Amax ¼ 916:6�n�0:81

Amin ¼ 0:094�n�0:87

Amid ¼ 0:047�n�0:83

8><>: ; ð30Þ

where n is order of the MCR system.

Parameter P, namely the slope of each curve in Fig. 9, remains
approximately 1.91 for different orders of the MCR system.
As a result, the f wd w;Mn;100;1ð Þ can be described as

f wd w;Mn;100;1ð Þ ¼
916:6�n�0:81; jw � 100

0:0466�n�0:83 �w1:91; j1:5 < w < 100
0:094�n�0:87; jw � 1:5

8><>: ;

ð31Þ
where subscript n in Mn indicates that the MCR systems are speci-
fied by full configuration.

With the increasing system order, the MMW decreases as
MMW ¼ 2= nþ 1ð Þ and CW shows an increasing trend, that is,
CW ¼ 2:79n0:59 þ 2:54. Both the trends of MMW and CW indi-
cate that a higher order results in better performance of the
MCR system in the wavelength domain.

5.3. Configuration of MCR system

This section analyzes the FWD function regarding the influence
of different configurations of an MCR system. A series of MCR(16,
1) and MCR(16, 2) systems were used in a case study.

The MCR(16, 1) system possesses eight configurations when
considering the symmetric distribution pairs, e.g., configurations
of k ¼ 1 and 16are symmetric. Fig. 12 shows the eight FWDs of
MCR(16) system with sparse configuration for k = {1}, {2}, . . ., {8}.
The sensor was determined to move from the edge to the middle
of the reference chord, and the whole wavelength range above
MCR system. The data is provided in Table A1.



Fig. 11. MMW and CW versus the order of the MCR system. The data is provided in
Table A1.

Fig. 12. FWD of MCR(16) system with sparse configuration. MCR(16, 1) system
with k = {1}, {2}, . . ., {8}.

Fig. 14. MMW and CW for different configurations of MCR system. The data is
provided in Table A2.
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1 m shows a decreasing trend, indicating the reduction in the final
measurement error. The corresponding parameters Amax, Amin, Amid,
and P are presented in Fig. 13. Both Amax and Amid show a decreasing
trend, while P remains approximately 1.91. Note that for the wave-
length below 1.5 m, the FWDs show large fluctuations although
Amin shares a similar value of approximately 4.8E-02. This indicates
that sparse configurations of MCR(n, 1) systems may have signifi-
cant influence on short wavelength components of FWD.

The MMW and CW of MCR(16, 1) systems are presented in
Fig. 14. As shown, the MMW is fixed at 2= 16þ 1ð Þ 	 0:12 m. The
CWs of the eight configurations of MCR(16, 1) show an increasing
trend as the sensor moves toward the middle of chord.
Configura�on Confi

Fig. 13. Amax , Amin , Amid , and P for sparse configurations k = {1}, {2},
Based on all the above-mentioned results, we can draw the fol-
lowing conclusions.

The EPs around the middle of the chord seem more valuable
than those close to the edges with decreases in Amax and Amid

and increase in CW.
The configurations have a significant influence on FTG for the
short wavelengths below 1.5 m.

5.4. Measurement length of rail

This section presents the analysis of the FWD function with
respect to the influence of the length of rail to be measured. The
MCR(9) systems with full and sparse configurations specified by
k = {1, 5} are used as a case study. The considered rail length varies
from 20 to 200 m, with step of 10 m. The FWDs for different rail
lengths are presented in Fig. 15, with parameters Amax, Amin, Amid,
and P given in Figs. 16 and 17 presents MMW and CW.

The following results are summarized based on data Figs. 15–
17. Some insights on those results are explained in the Section 7.

With the increase in rail length, Amax increases for both full and
sparse configurations, while Amin and Amid decrease.

Amax ¼ 0:342�l1:5
Amin ¼ 0:734�l�0:647

Amid ¼ 0:104�l�0:562

8><>: ð32Þ
Parameter P approximates to 1.91 with the increase in the mea-
sured rail length. P is slightly lower than 1.91 when rail length
gura�on Configura�on

. . ., {8} of MCR(16, 1) system. The data is provided in Table A2.



200m 20m

1m

Fig. 15. FWD of the MCR(9) system with full configuration, considering rail length
of 20–200 m at 10-m steps.

Fig. 17. MMW and CW for different rail lengths, as listed in Table A3.
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is 20 m. The decrease of P results from the unstable fitting per-
formance on a small wavelength range of [1.5, 20].
f wd w;Mn; l;1ð Þ can be described as
f wd w;Mn; l;1ð Þ ¼
0:342�l1:5; jw � l

0:104�l�0:562 �w1:91; j1:5 < w < l

0:734�l�0:647
; jw � 1:5

8><>: ; ð33Þ

where subscript n in Mn indicates that the MCR systems are speci-
fied by full configuration.

The MMW retains a value of 2= 9þ 1ð Þ ¼ 0:2 and CW shows an
increasing trend, which can be described as

Wc ¼ 1:26�l0:4 þ 4:672. This indicates that a longer rail length
results in a larger FTG for long wavelengths but facilitates the
short wavelength range (below 1.5L) in becoming more
accurate.

6. Discussion

The use of a high-order MCR system will greatly improve the
measurement precision because high-order MCR system requires
more sensors and a high sampling frequency. Note that by simply
improving the sampling frequency for low-order MCR systems, the
system performance can be significantly enhanced similar to that
when using higher-order MCR systems. However, one major
advantage of using high-order MCR systems is that they can
achieve smaller MMW; this could be essential when dealing with
Fig. 16. Amax , Amin , Amid , and P for the MCR(9) system with full configuration,
short wavelength components in rail irregularity, such as rail
corrugation.

To make a fair comparison between high- and low-order MCR
systems with high sampling frequencies, an MCR(1) system is
taken as a reference. In this system, only one sensor is used and
the sampling interval is 1/(1 + 1) = 0.5 m. Compared to an MCR(n)
system with full configuration, in which n sensors are used and

the sampling interval is 1/(n + 1), the equivalent parameters bAmax,bAmin, and bAmid for MCR(1) system with n times the repeated mea-
surements, each with sampling intervals of 1/(n + 1), are given as

bAmax nð Þ ¼ Amax 1ð Þffiffiffi
n

p �
ffiffiffiffiffiffiffi
nþ1
2

q ; bAmin nð Þ ¼ Amin 1ð Þffiffiffi
n

p �
ffiffiffiffiffiffiffi
nþ1
2

q ; bAmid nð Þ ¼ Amid 1ð Þffiffiffi
n

p �
ffiffiffiffiffiffiffi
nþ1
2

q ;

ð34Þ

where the number in the brackets refers to the order; bAmax, bAmin, andbAmid are the equivalent parameters with respect to Amax, Amin, and

Amid, respectively. The comparisons between bAi nð Þ and Ai nð Þ are
illustrated in Fig. 18. As shown, parameters Amax and Amid of the
MCR(n) system are slightly larger than the equivalent parametersbAmax and bAmid, respectively, indicating that the performance in
wavelengths above 1.5L is not as good as that of the MCR(1) system
with high-frequency sampling. For the short wavelength below
1.5L, the difference can be ignored. From this point of view, we
can conclude that the high-order MCR system can achieve a signif-
icant improvement in short wavelengths by sacrificing a small
amount of precision in long wavelengths compared to the low-
order MCR system with high frequency sampling.

Furthermore, in the spatial domain, we found that the
magnitude of FTG increases with rail length, indicating that error
considering rail lengths of 20–200 m. The data is provided in Table A3.



Fig. 18. Comparison of parameters Amax , Amin; and Amid between high-order MCR(n) and MCR(1) systems with high frequency sampling.
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accumulates gradually with rail length. However, in the wave-
length domain, only the magnitude of long wavelength compo-
nents increases rapidly, while that of the short wavelength
components get more accurate with longer rail length. Actually,
this phenomenon is quite similar to the inertial drift phenomenon
of inertial navigation system [14], where the error grows with time
(if no additional information is used to correct the error). Both MCR
systems and inertial navigation system are relative measurement
techniques, which measure the microcosmic information to restore
the macroscopic structure. In this process, the error accumulates
gradually with distance or time.

7. Conclusion

This study analyzed the performance of an MCR system in
the wavelength domain according to two aspects: (1) the TF
and (2) FWD. Numerical simulations were used throughout this
study.

The MMWs were analyzed according to the performance of the
TFs of MCR systems with different orders. The simulation results
are consistent with the theoretical values of MMW denoted as 2/
(n + 1).

To analyze FWD, a numerical experiment based on Fourier
transform was proposed, through which the FWD curve for a given
MCR system could be obtained. Furthermore, to describe the FWD
curve, the FWD function was defined using a piecewise function
including two linear functions and a power exponent function.
The FWD function comprises four parameters, Amax, Amin, Amid, and
P, which are of utmost importance for the description of the
FWD curve. Particularly, the CW was proposed to quantify the per-
formance the MCR system. A larger CW indicates a better perfor-
mance of an MCR system.

Furthermore, the influence of the major factors on the perfor-
mance of FWD for different MCR systems was analyzed. Three
major factors, that is, the order, configuration, and length of the rail
were also measured. The quantification of the performance of FWD
was based on parameters Amax, Amin, Amid, and P of FWD functions as
well as MMW and CW. The main results are as follows:

A higher order results in a better performance of the MCR sys-
tem in the wavelength domain, smaller MMW, and larger CW.
Coefficients Amax, Amin; and Amid of the FWD function are propor-
tional to n�0:81, n�0:87, and n�0:83, respectively.
The magnitude of FTG increases rapidly with the increase of the
wavelength with speed w1:91.
For the same ordered MCR systems, the MMW remains constant
as 2= nþ 1ð Þ. The sparse configurations have a significant influ-
ence on the FTG for the short wavelengths below 1.5 m.
When measuring longer lengths of rail sections, the magnitude
of FTG for long wavelengths increases in speed proportional to
l1:5. However, coefficients Amin and Amid decrease with speeds

l�0:562 and l�0:647, respectively.
CW increases with the increasing order of the MCR system or
with the increasing length of rail to be measured.
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Appendix A. Simulation of measurement process

The steps for the simulation of measurement process are as
follows.

(1) Initialization: An irregular rail with length l and track-
geometry irregularity waveform is generated based on the
sixth-grade track-irregularity of the U.S. PSDs. The rail is dis-
cretized by a sufficiently small interval (1 mm in this study),

and a reference chord (line AB
�

in Fig. 2) with length L is con-
sidered. m sensors are mounted on the EPs of the chord with
the layout specified by sequence
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ 1;n½ �� �

. Then, the precision
of the sensor is specified, assuming white noise
asE eð Þ ¼ 0; E e2

� � ¼ r2.
(2) Move the chord on the rail: one end of the reference chord

(point A in Fig. 2) is placed on the rail. The other end (point B
in Fig. 2) is determined by searching for the nearest point on
the rail with a fixed distance L.

(3) Measure the chord versine: The ith sensor is iterated at the
kith EP, the nearest point is searched on the rail at the nor-
mal direction, the distance between the EP and searched
point is measured, and the versine values of the measured
chord are recorded.

(4) Move on: End A of the reference chord is moved to the next
point on the rail with a given sampling interval DL; the steps
are repeated from Step (2) until the end of the rail is reached.

(5) Output: after moving the chord, the measured chord versine
values are output in a matrix form, with each row containing
the readouts from one sensor, as shown in Eq. (9).



Table A2
Amax , Amin , Amid , P, MMW, and CW for sparse configurations k = {1}, {2}, . . ., {8} of MCR
(16, 1) system.

Configuration
k

Amid P Amax Amin MMW
(m)

CW
(m)
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H ¼

hk1 ;0 � � � hk1 ;N�n�1

hk2 ;0 � � � hk2 ;N�n�1

..

. . .
. ..

.

hkm ;0 � � � hkm ;N�n�1

266664
377775; ð9Þ
{1} 6.63E�02 1.913 1105.1 4.52E�02 0.12 4.19
{2} 3.60E�02 1.903 587.4 4.85E�02 0.12 5.80
{3} 2.56E�02 1.906 416.3 4.81E�02 0.12 6.93
{4} 2.02E�02 1.916 337.4 4.73E�02 0.12 7.75
where subscript i of hi;j indicates the serial number of sensor.
{5} 1.75E�02 1.913 282.3 5.04E�02 0.12 8.37
{6} 1.78E�02 1.872 264.0 4.82E�02 0.12 8.76
{7} 1.76E�02 1.857 255.6 4.92E�02 0.12 9.09
{8} 1.65E�02 1.867 235.5 4.77E�02 0.12 9.19

Table A3
Amax , Amin , Amid , P, MMW, and CW for full configurations of MCR(9) system considering
rail lengths of 20–200 m.

Length
of rail (m)

Amid P Amax Amin MMW
(m)

CW
(m)

20 2.09E�02 1.761 14.2 3.33E�02 0.20 8.95
30 1.54E�02 1.846 26.0 2.67E�02 0.20 9.58
40 1.27E�02 1.885 40.3 2.29E�02 0.20 10.13
50 1.12E�02 1.897 55.1 2.04E�02 0.20 10.62
60 1.01E�02 1.907 73.1 1.85E�02 0.20 11.08
70 9.26E�03 1.913 92.4 1.71E�02 0.20 11.51
80 8.66E�03 1.916 114.9 1.60E�02 0.20 11.96
90 8.14E�03 1.914 136.2 1.50E�02 0.20 12.35
100 7.75E�03 1.915 156.4 1.42E�02 0.20 12.65
110 7.42E�03 1.914 186.3 1.36E�02 0.20 12.96
120 7.08E�03 1.914 209.2 1.30E�02 0.20 13.29
130 6.73E�03 1.919 235.2 1.25E�02 0.20 13.50
140 6.51E�03 1.917 270.4 1.20E�02 0.20 13.78
150 6.29E�03 1.918 293.2 1.16E�02 0.20 14.11
160 6.10E�03 1.917 326.0 1.12E�02 0.20 14.29
170 5.89E�03 1.921 351.7 1.09E�02 0.20 14.52
180 5.71E�03 1.921 392.5 1.06E�02 0.20 14.70
190 5.52E�03 1.920 401.9 1.03E�02 0.20 14.85
200 5.40E�03 1.919 438.1 1.00E�02 0.20 15.17
Appendix B. Numerical experiment for FWD

The steps of the numerical experiment can be described as
follows.

(1) Initialization: Specify chord length L, rail length l to be mea-
sured, MCR(n, m) system with order n, and configuration of
the MCR(n, m) system according to sequence
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ 1;n½ �� �

;
(2) Generate the sensor error matrix E: Generate sensor error

matrix E by using white noise such
thatE eð Þ ¼ 0; E e2

� � ¼ r2 ¼ 1.
(3) Calculate y: for a given sensor error matrix E, calculate FTG

y according to Eq.19.

(4) Calculate Y , Aw, and hw: for a given FTG y, calculate FWD Y

according to Eq. (22), and then amplitude Aw as well as phase

hw are obtained according to Eq. (23).
(5) Steps (2–4) are repeated sufficient times: Repeat Steps 2–4

sufficient times; each time, sensor error matrix E is newly
generated according to Step 1. Here, sufficient times implies
that there should be sufficient samples of y, and thus the

properties of Aw and hw can be determined with statistical
significance.

(6) Estimate the distribution of Aw and hw: Estimate the distri-

bution of Aw and hw based on the samples obtained in Step
(5).
Appendix C. Influence of order, configuration, and length of rail.
Table A1
Amax , Amin , Amid , P, MMW, and CW versus different orders of MCR systems with full
configurations.

Order n Amid P Amax Amin MMW (m) CW (m)

1 4.19E�02 1.896 817.2 8.76E�02 1.00 5.33
2 2.63E�02 1.909 536.8 5.13E�02 0.67 6.73
3 1.94E�02 1.916 402.4 3.70E�02 0.50 7.85
4 1.55E�02 1.917 321.8 2.91E�02 0.40 8.81
5 1.29E�02 1.918 265.4 2.41E�02 0.33 9.68
6 1.10E�02 1.917 228.7 2.05E�02 0.29 10.51
7 9.64E�03 1.916 195.6 1.79E�02 0.25 11.24
8 8.57E�03 1.916 177.2 1.58E�02 0.22 11.98
9 7.78E�03 1.914 160.0 1.42E�02 0.20 12.64
10 7.02E�03 1.916 143.4 1.29E�02 0.18 13.25
11 6.44E�03 1.917 130.6 1.18E�02 0.17 13.85
12 5.97E�03 1.915 122.6 1.09E�02 0.15 14.54
13 5.57E�03 1.914 117.3 1.01E�02 0.14 15.05
14 5.18E�03 1.916 106.2 9.45E�03 0.13 15.58
15 4.89E�03 1.911 98.9 8.86E�03 0.13 16.16
16 4.62E�03 1.916 96.6 8.33E�03 0.12 16.70
17 4.37E�03 1.914 92.3 7.86E�03 0.11 17.21
18 4.12E�03 1.910 83.3 7.45E�03 0.11 17.64
19 3.92E�03 1.910 77.5 7.08E�03 0.10 18.16
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