
Measurement 138 (2019) 240–255
Contents lists available at ScienceDirect

Measurement

journal homepage: www.elsevier .com/locate /measurement
Multipoint chord reference system for track irregularity: Part I – Theory
and methodology
https://doi.org/10.1016/j.measurement.2019.01.080
0263-2241/� 2019 Published by Elsevier Ltd.

⇑ Corresponding author at: School of Civil Engineering, Southwest Jiaotong
University, Chengdu, China.

E-mail address: chenrong@home.swjtu.edu.cn (R. Chen).
Yuan Wang a,b,d, Huiyue Tang c,d, Ping Wang a,b, Xiang Liu d, Rong Chen a,b,⇑
a School of Civil Engineering, Southwest Jiaotong University, Chengdu, China
bKey Laboratory of High-speed Railway Engineering, Ministry of Education, Chengdu, China
c School of Electrical Engineering, Southwest Jiaotong University, Chengdu, China
dDepartment of Civil and Environmental Engineering, Rutgers, The State University of New Jersey, NJ, USA

a r t i c l e i n f o a b s t r a c t
Article history:
Received 23 June 2018
Received in revised form 23 January 2019
Accepted 26 January 2019
Available online 4 February 2019

Keywords:
Multipoint chord reference system, sensor
fusion
Least square optimization
Track irregularity
Rail corrugation
Error amplification factor
This paper proposes a novel approach to measure track irregularity by using a multipoint chord reference
(MCR) system. This paper is the first part presenting the theoretical proofs and methodology for analyzing
the system performance in a spatial domain. Part II will study the performance in wavelength domain
through numerical approaches. In this paper, a unified framework of the MCR system is introduced with
a series of definitions. Mathematical models are established based on sensor fusion and least square opti-
mization techniques. The error theory of the MCR system is discussed and the error amplification factor
(EAF) is defined to quantify the error accumulation characteristics of the MCR system in the spatial
domain. The stability of the MCR system was analyzed and propositions are put forward to reveal the
basic relationship between the minimum measurable wavelength and different configurations. In partic-
ular, the MCR(n, 1) system was studied, for which propositions were put forward to describe the relation-
ship between the EAF and stability of the MCR system. The MCR system has significant advantages over
some current techniques for track irregularity measurement, such as single point chord method as well as
gyroscope- and accelerometer-based techniques. The MCR system enables us to use low-cost sensors to
achieve the same or even higher precision as the currently used techniques by increasing the number of
sensors and sampling frequency. This system can be especially useful to measure track irregularities with
short wavelengths, such as rail corrugation. Although the MCR system is mostly used in the railway engi-
neering field, it can be applied to any field in which an irregular surface or curve is required to be
measured.

� 2019 Published by Elsevier Ltd.
1. Introduction

1.1. Background

The efficient and fast detection of track geometry irregularity,
especially short wavelength irregularity such as rail corrugation
[1–4], is of crucial importance to the smooth running, safety, and
maintenance of both high-speed railway and urban railway transit
[5–10].

Our previous publication [4] presented a detailed study on the
error theory of the mid-chord offset method (MCO method). In this
paper, we extend the single-point measurement method (a single
sensor on the middle of a reference chord) to a multipoint chord
measurement method, namely the multipoint chord reference sys-
tem (MCR system). We integrate the whole family of such chord-
based measurement systems into one unified framework, namely
the framework of the MCR system. This system has superior per-
formance over currently used chord methods for the measurement
of track irregularity, especially for short wavelength components,
such as rail corrugation. The MCR system provides an approach
to enhance the final precision and measure smaller wavelengths
by adding more sensors or increasing the measurement frequency.
It can also be used to reduce the measurement cost by using low
precision sensors.

The measurement process of a chord-based system can be
described in general as the referential use of a chord formed
between two points on the rail and the measurement of the dis-
tance between this reference chord and a third position on the rail
[4,5,9–13]. As mentioned in [4], according to a long existing mis-
conception, the measured distance between the rail and reference
chord (namely, the chord versine value) is considered as an
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approximating description of track geometry irregularity. This
paper, again, emphasizes on the correction of this misconception
by stating that the measured versine values are only signals storing
the micro information of the track geometry to be measured and
should not be used directly to describe the irregularity of track
geometry. By using proper models and theoretical analyses, the
original track geometry curve can almost perfectly be recon-
structed based on the measured versine values [4].

1.2. Brief review of track irregularity measurement

Refs. [4,5,8,9] provide a detailed overview of the measurement
techniques for track irregularity, in particular, for the measure-
ment of medium or long wavelengths. This paper mainly focuses
on measuring short-wavelength irregularity because for the mea-
surement of short wavelengths, the inertial-reference measure-
ment system [5] becomes useless. The MCO system [4] is also
impractical for the measurement of short wavelengths. The meth-
ods that can be used for short wavelength measurement include
(1) asymmetric three-point chord (ATC) system [5,14,15], (2)
acceleration-based technique [5,9,16–20], and (3) indirect mea-
surement, such as the use of noise [5,9,17] or axlebox acceleration
[21–24]. A detailed introduction regarding acceleration-based
technique and indirect measurement can be found in [1,5,16–18].
In the following text, we focus only on a chord-based system.

Initially, the MCO system was widely used [4,10–13], in which
the reference chord, generally with a length of approximately
1 m, moves along the rail propelled by a trolley or vehicle to
achieve a continuous measurement of rail geometry. Later,
researchers found a drawback in the measurement process, during
which the two ends of the reference chord always changed along
the rail, leading to a variation (ranging from 0 to 2) of the ampli-
tude transfer function [4,5,9–13]. For the MCO system, the zero
points of amplitude repeat periodically, making it impossible for
Fig. 1. Organization and relation between Part I and II studies. The main dependency re
letter indicates that the arrow lines should be combined.
those wavelengths to be measured, even by using a stronger
model. As a countermeasure, the ATC system [14,15] was proposed
as the transfer function was enhanced owing to the special distri-
bution of zero points. However, as the phase of the ATC system is
distorted [5,9,14,15], the restoration of the original waveform
(known as the decoloring process [5]) becomes difficult and
involves a long and complicated infinite impulse response filter-
designing process [15]. Other filter-based approaches, such as
deconvolution [25], particle filter [26], and adaptive Kalman filter-
ing [27] have also been used to improve the performance of chord-
based systems.

According to our knowledge, none of the current chord-based
techniques considers a chord system with multiple measured
points on the reference chord. Although Mao et al. [28] proposed
a four-point chord method, the main contribution is the linear
assembling of the measured versine values to improve the transfer
function (zeros points), and then using Fourier Transform to realize
the decoloring process. The principle used in [28] is conventional
and the value of the measured data is far from fully functional.

1.3. Organization and relation between the studies in parts I and II

This study of the MCR system is divided into two parts, as pre-
sented in Fig. 1. Part I presents some basic definitions, essential
models, and a case study of the MCR(n, 1) system. This part also
focuses on the system performance in the spatial domain, and
the methodology in use is mainly based on theoretical analysis.
Part II provides definitions of some components in the wavelength
domain, such as the transfer function and critical wavelength, and
is focused on the performance in the wavelength domain, and the
methodology in use is mainly based on numerical analysis.

The two parts are separated into two studies but are related.
The organization and relation between Parts I and II are illustrated
in Fig. 1. The main dependency relationships are highlighted by
lationships are highlighted by black arrow lines with circled letters A–E. The same
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black arrow lines, with circled letters A–E. The same letter indi-
cates that the arrow lines should be combined.
1.4. Contributions of this paper

The contributions of this paper (Part I) are summarized as
follows:

� We propose a unified framework of the MCR system, with a ser-
ies of definitions on MCR(n) systems with order n, standard
sampling interval (SSI), MCR(n, m) system, and minimum mea-
surable wavelength (MMW).

� Mathematical models are established based on sensor fusion
and least square optimization techniques.

� The error theory of the MCR system is presented and the error
amplification factor (EAF) is defined to quantify the error accu-
mulation characteristics of MCR systems.

� The stability of the MCR system is defined and propositions are
expressed to reveal the basic relationship between MMW and
different sparse configurations.

� In particular, the MCR(n, 1) system is studied, where proposi-
tions are put forward to describe the relationship between the
EAF and stability of the MCR system.

� The MCR system showed significant advantages over some
current techniques for track geometry: for example,
gyroscope- and accelerometer-based techniques. It enables us
to use low-cost sensors to achieve the same or even higher
precision by increasing the number of sensors and amount of
sampling frequency. The MCR system can be especially useful
for measuring track geometry irregularities with short wave-
lengths, such as corrugation.

2. Terminologies, variables, and operators

Table 1 describes the terminologies, variables, and operators
used in this paper.

3. Unified framework for the MCR system

3.1. MCR system and its derived forms

This paper proposes a series of MCR systems with a unified
framework. The measurement principle of an MCR system with
order n is illustrated in Fig. 2. A chord formed between two points
on the rail, as the straight line AC, acts as a reference and the read-
out of each sensor at the related EP of the chord is the distance (on
normal direction) between the EP and rail to be measured. For the
convenience of description of MCR systems, definitions to some
basic terminologies are given as follows.

Then, the definition of the order of the MCR system is given as

Definition 1: MCR(n) with order n. As illustrated in Fig. 2, an n-
order MCR is defined as a chord-based measurement system with
all sensors mounted at the EPs of a chord. The ith EP is the point
dividing the chord with ratio i : ðnþ 1� iÞ.

The sampling interval of a chord reference measurement repre-
sents the length of moving step of the chord between two readouts
of the sensors mounted on the chord. Particularly, for a given order
of the MCR(n) system, the SSI is defined as

Definition 2: SSI of MCR(n). For MCR(n), the SSI is defined as

DLs ¼ 1
nþ 1

� L; ð1Þ
where L is the length of the reference chord. For a higher order of
MCR(n), the SSI, DLs, is smaller (the sampling frequency is higher).
Furthermore, in this study high– and low-frequency samplings
were considered if the sampling interval was DL < DLs and
DL > DLs, respectively.
Definition 3: MCR(n, m) system. An MCR(n, m) is defined as an n-
order MCR system with m sensors mounted at the EPs of a chord.
The configuration of the sensor layout (hereafter named as config-
uration for short) is specified by an increasing sequence
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

.
In particular, MCR(n, n), (default MCR(n)) is termed the full

configuration of an MCR system with order n, and MCR(n, m),
where m < n, is a sparse configuration. Among all the sparse
configurations, MCR(n, 1) is known as the conventional three-point
chord method [4,5,11–14], and when a single sensor exists at the
middle of a chord, the method is called the MCO method [4].

There exist a series of derived MCR systems. Assume that each
EP cannot be simultaneously occupied by two sensors, then there
are n!=ðm! � ðn�mÞ!Þconfigurations for MCR(n, m) systems, e.g.,
there are 120 configurations for MCR(10, 5).
Definition 4: MMW. The MMW is defined as the minimal wave-
length that can be measured by an MCR system. The smaller the
MMW, the better is the MCR system.

The ability to measure shorter wavelengths of track irregularity
is of great importance in the application of rail measurement
because such irregularities, including corrugation, result in a
considerable amount of damage to both rail and trains compared
to those resulting from long wavelength components. Moreover,
the magnitude of short wavelength is smaller and more challeng-
ing to measure.

According to the Nyquist–Shannon sampling theorem [30], the
following proposition can be given:

Proposition 1:. For an MCR(n) system with full configuration,
given the sampling interval DL � DLs,

MMW ¼ 2DLs ¼ 2L
nþ 1

ð2Þ

Proposition 1 indicates that MMW depends mainly on the order
of an MCR system. That is, when the sampling interval is less than
the SSI (DLs), MMW of an MCR(n) system equals 2DLs. The increas-
ing of sampling frequency will not improve the MMW. The proof of
Proposition 1 is given in Appendix A.
3.2. Measurement model

This section discusses the measurement model of the MCR sys-
tem, and the full configuration of an MCR(n) system with
DLs ¼ L=ðnþ 1Þ. The measurement system MCR(n, m) can be
derived accordingly.

Fig. 2(a) shows the macrograph of the measurement of the
whole track section. The versine is measured with respect to a ref-
erence chord mounted on the rail, where the displacement sensor
is fixed at the EP of the chord.

The track section, with length l, is discretized into N segments,
each with length DLs. Thus, the number of segments holds the rela-
tion N ¼ l=DLs. The track geometry irregularity f ðxÞ to be measured
is then discretized into y ¼ y0; y1; � � � ; yNð ÞT .



Table 1
Terminologies, variables, and operators.

Terminology Explanation

MCR system Multipoint Chord Reference System
MCO system Mid-Chord Offset method
SSI Standard sampling interval
EP Equidistance point that divides a chord by equal length segmentations
MMW Minimum Measurable Wavelength
FTG False Track Geometry
ith-EP The ith equidistance point which divides a chord by ratio of i : nþ 1� ið Þ
FTG False Track Geometry
EAF Error Amplification Factor

Variable Denotation

l; L length of track section and reference chord, respectively.
n order of an MCR(n) system.
DLs ¼ L=ðnþ 1Þ, Standard Sampling Interval (SSI) of MCR(n) system.
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

, an increasing sequence that specifies the configuration of an MCR(n) system.
N ¼ nþ 1ð Þ � l=Lþ 1, the number of discretized segments of a rail section by SSI.
f xð Þ continuous description of track geometry to be measured.
y ¼ y0; y1; � � � ; yNð ÞT . The discretization off xð Þ.
yi ¼ yi; yiþ1; � � � ; ynþi

� �T , a sample of y covered by the reference chord with length l.
hi ¼ h1;i;h2;i; � � � ;hn;i

� �T , the measured chord versine vector relates to yi.
ki ¼ i=ðnþ 1Þ � 1, the ratio of the two parts divided by the ith-EP.
ki ¼ �1� ki ¼ �i=ðnþ 1Þ.
kk ¼ kk1 ; kk2 ; � � � ; kkm

� �
.

M ¼ ½k I �1� kð Þ� with k ¼ k1; k1; � � � ; knð ÞT , the measurement matrix of MCR system.
H ¼ h0;h1; � � � ;hN�n�1½ �, the integrated measured chord versine matrix.
F yð Þ ¼ y0 ; y1; � � � ; yN�n�1½ �, the matrix contains the track geometry to be measured.
Hk;MkandFkðyÞ assembled with the partial rows of H, M and FðyÞ with the indexes specified by k.
M�

k ¼ kk Ik � 1þ kkð Þ½ �.
HandHk the measured chord versine matrix containing measurement error.
EandEk the measurement error matrix.
Ai

Aki ¼

kki 0 � � � 1 � � � 0 kki
kki 0 � � � 1 � � � 0 kki
. .
. . .

. . .
. . .

. . .
. . .

.

kki 0 � � � 1 � � � 0 kki

2
66664

3
77775 , with each row containing the ith row of M.

hi

0

¼ hi;0; hi;1; � � � ; hi;N�n�1

n oT
is transpose of the ith row of H.

hki

0

¼ hki ;0; hki ;1; � � � ;hki ;N�n�1

� �T
, is the transpose of the ith row vector of Hk .z jð Þ

U

¼
A1
A2

..

.

An

2
664

3
775 � y �

h1

0

h2

0

..

.

hn

0

2
666664

3
777775, the error vector described by the versine vectors hi

0
.

Uk the version of U with sparse configuration.
y� ¼ AM H þ Eð Þ, the least square estimation of y.

y
� ¼ y � y� ¼ AM Eð Þ, the False Track Geometry (FTG).

y
�
p ¼PnðN�nÞ

i¼1 Dpi � vec Eð Þi , the ith value of y
�
.

D ¼ BA1
T BA2

T � � � BAn
T

h i
.

p an index refers to position on the rail to be measured.
B ¼ Pn

i¼1Ai
TAi

� ��1
, if
Pn

i¼1Ai
TAi is invertible.

EAFp M; lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPnðN�nÞ

i¼1 Dpi
2

q
, the EAF at location p with given M and length of rail l to be measured.

ni ¼ Li=DLs 2 Nþ , the occupied shares of the ith segment with respect to SSI DLs.
Li the length of the ith segment divided by the sensors with a given configuration k.
d ¼ GCD n0;n1; � � � ;nmð Þ, the greatest common divisor of n0;n1; � � � ; and nm .
n

0 ¼ nþ 1ð Þ=d� 1, the order of a degraded MCR(n, m) systems when d > 1.

k
0 ¼ k=d, the configuration of a degraded MCR(n, m) systems when d > 1.

z nð Þ represents a row vector containing n zeros
Jk a matrix with size of m-by-n withJk i; jð Þ ¼ 1; j ¼ ki

0; j–ki

	

Operator Denotation

Eð�Þ mathematical expectation of a random variable
Varð�Þ variance of a random variable
GCDð�; �; � � � � ; �Þ greatest common divisor
AM Xð Þ ¼ Pn

i¼1Ai
TAi

� ��1
�Pn

i¼1Ai
T xi

0� �
,the restoration operator of MCR system, where xi

0 is transpose of the ith row of matrix X.

ceil �ð Þ The smallest integer larger than a given real number

XT the transpose of X.
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Fig. 2. Measurement principle of the MCR system with order n. Chord length L is divided into n+1 equal length segments, and the sensors are mounted at the EPs.
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For a given length of the measured chord L, there exists a basic
relation between the ratio l=L (the ratio between the lengths of the
track section and reference chord) and number of segments N.

N ¼ nþ 1ð Þ l
L

ð3Þ

The reference chord moves along the rail, with two ends
attached on the rail, as illustrated in Fig. 2(b). At the beginning

point, chord length L covers y0 ¼ y0; y1; � � � ; ynþ1

� �T . The n sensors
then measure the normal offset from the EP to rail, and we obtain

h0 ¼ h1;0;h2;0; � � � ;hn;0ð ÞT . Each hi;0 is defines as

hi;0 ¼ yi þ ki � y0 þ ki � ynþ1; i ¼ 1;2; ::;n ð4Þ

where ki and ki are the ratios

ki ¼ i
nþ 1

� 1 and ki ¼ �1� ki ¼ � i
nþ 1

;

respectively. Eq. (4) can be written in the matrix form:

h0 ¼ M � y0 ð5Þ
Matrix M is the essential measurement matrix that transforms

the target to be measured into measured versine values and is pre-
sented as

M ¼

k1 1 k1
k2 1 k2

..

. . .
. ..

.

kn 1 kn

2
66664

3
77775 ð6Þ

The size of M is n	 nþ 2ð Þ, and it can be rewritten as
M ¼ ½k I �1� kð Þ�, with k ¼ k1; k1; � � � ; knð ÞT .

Similarly, when the reference chord moves to location, DLs � i,
chord length L covers yi ¼ yi; yiþ1; � � � ; ynþi

� �T , the n sensors measure
the normal offset from the EP to the rail, and we obtain

hi ¼ h1;i;h2;i; � � � ;hn;i
� �T . Thus, we get

hi ¼ M � yi ; i ¼ 0;1; . . . ;N � n: ð7Þ
The whole measurement process can be integrated as Eq. (8).

H ¼ M � F yð Þ ; ð8Þ
where
F yð Þ ¼

y0
y1

..

.

ynþ1

y1
y2

..

.

ynþ2

� � �

yN�n�1

yN�n

..

.

yN

2
66664

3
77775 ð9Þ

H ¼

h1;0

h2;0

..

.

hn;0

h1;1

h2;1

..

.

hn;1

� � �

h1;N�n�1

h2;N�n�1

..

.

hn;N�n�1

2
66664

3
77775 ð10Þ

Note that when applying an MCR(n) system on a given rail
geometry (described as N + 1 discrete value), we can obtain
n	 ðN � n� 1Þ equations. The measurement of y is unknown
beforehand, implying that FðyÞ is unknown; however, we can
obtain versine matrix H. Eq. (8) holds the essential relationship
between y and H. Section 3.3 presents the restoration model that
can estimate y by fusing the versine matrix measured from multi-
ple sensors.

For the MCR(n, m) system with the configuration of
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

, the measurement equation
can be written as

Hk ¼ Mk � F yð Þ; ð11Þ
where Hk and Mk represent the partial rows of H and M, respec-
tively, with the indexes specified by k.

As the reference chord moves along the rail, the sensors mea-
sure the normal offset between the EPs of the chord and rail with
a degree of uncertainty, namely, an error term. Considering the
error term, Eqs. (8) and (11) can be rewritten as

H ¼ H þ E ¼ M � FðyÞ þ E ð12Þ

Hk ¼ Hk þ Ek ¼ Mk � F yð Þ þ Ek; ð13Þ
where E is the measurement error of sensor readouts.

E ¼

e1;0
e2;0

..

.

en�1;0

en;0

e1;1
e2;1

..

.

en�1;1

en;1

� � �
. .
.

� � �

e1;N�n�2

e2;N�n�2

..

.

en�1;N�n�2

ehn;N�n�2

e1;N�n�1

e2;N�n�1

..

.

en;N�n�1

en;N�n�1

2
66666664

3
77777775

ð14Þ



Y. Wang et al. /Measurement 138 (2019) 240–255 245
3.3. Restoration model

This section presents the restoration model of the MCR(n) sys-
tems. The restoration process is the reverse of the measurement
process.

The restoration model can be described as an optimization
model to find the best value of vector y to minimize the total error
toward the measured versine matrix H based on Eq. (8), as
expressed in Eq. (15).

min
y

k 1
2
M � FðyÞ � H k

2

ð15Þ

As FðyÞ is an inner-coupled matrix, the optimization model of
Eq. (15) is actually a constrained least squares problem. By decou-
pling FðyÞ, Eq. (15) is transformed into an unconstrained least
squares problem, as presented in Eq. (16).

min E ¼ 1
2U

2

U ¼

A1

A2

..

.

An

2
66664

3
77775 � y �

h0
1

h0
2

..

.

h0
n

2
666664

3
777775

8>>>>>>>><
>>>>>>>>:

; ð16Þ

where h0
j ¼ hi;0; hi;1; . . .hi;N�n�1

n oT
is the transpose of the ith row of

H, and

Ai ¼

ki 0 � � � 1 � � � 0 ki
ki 0 � � � 1 � � � 0 ki

. .
. . .

. . .
. . .

. . .
.

ki 0 � � � 1 � � � 0 ki

2
66664

3
77775 ð17Þ

where each row of Aicontains the ith row of M. Appendix B proves
that Eq. (15) can be equivalent to Eq. (16). The optimal solution of
Eq. (16) is equivalent to the linear equation of Eq. (18).

Xn
i¼1

Ai
TAi

 !
� y� ¼

Xn
i¼1

Ai
Thi

0
ð18Þ

When
Pn

i¼1Ai
TAi is invertible, the optimal solution of y� can be

obtained by

y� ¼
Xn
i¼1

Ai
TAi

 !�1

�
Xn
i¼1

Ai
Thi

0
: ð19Þ

If
Pm

i¼1Aki
TAki is not invertible, then the Moore–Penrose pseudo-

inverse [29] is used.
Similarly, the optimization model for an MCR(n,m) system with

configuration specified by k ¼ kiji ¼ 0; 1; . . . ;m; ki 2 Nþ \ 1;n½ �� �
is

given as

min
y

1
2
Mk � Fk yð Þ � H2

k: ð20Þ

Similarly, Eq. (20) can also be equivalent to the following Eqs.
(21)–(23):

min E ¼ 1
2U

2
k

Uk ¼

Ak1

Ak2

..

.

Akm

2
66664

3
77775 � y�

h0
k1

h0
k2

..

.

h0
km

2
6666664

3
7777775

8>>>>>>>>><
>>>>>>>>>:

ð21Þ
Xm
i¼1

AT
ki
Aki

 !
� y� ¼

Xm
i¼1

AT
ki
h0
ki

ð22Þ

y� ¼
Xm
i¼1

AT
ki
Aki

 !�1

�
Xm
i¼1

AT
ki
h0
ki

ð23Þ

If
Pm

i¼1Aki
TAki is not invertible, then the Moore–Penrose pseudo-

inverse [29] is used.

3.4. Boundary conditions

Another problem concerning the uniqueness of the solution for
the estimation of y� can be described as the following proposition.

Proposition 2:. Given an MCR(n, m) system, when no measure-
ment errors are included from sensors, two track geometry
sequences y and y� share the same chord versine matrix H if and
only if the following condition is satisfied:

y � y� ¼ a � xþ b; ð24Þ
where x is a vector of the position along the rail, and a and b are the
arbitrary real numbers.

The proof of Proposition 2 is given in Appendix A.
Proposition 2 indicates that the measured track geometry may

be linear compared to the rail track geometry. To deal with the
uniqueness of the solution of the restoration model, additional
constrains or boundary conditions are proposed in this paper:

y0 ¼ yN ¼ 0 ð25Þ

Boundary condition Eq. (25) is applied to model Eq. (16) by
removing the first and last columns of Eq. (17). The boundary con-
dition Eq. (25) can be understood as using a line with two ends
fixed at the beginning and end of the rail as a reference to describe
the track geometry to be measured. Actually, the values of y0 and
yN can be other values, but the final measured result would be
equivalent to this double zeros case according to Proposition 2.
As a result, to make the performance of different MCR systems to
be easily compared and interpreted, we use y0 ¼ yN ¼ 0 as the
default boundary condition thereafter.

4. Error theory of MCR system in the spatial domain

4.1. Error sensitivity of the model

This section presents the analysis of the influence of error term
E on the restoration performance of measured targets.

First, it should be noted that the measured value H is a linear
combination of real versine matrixH and error term E according
to Eq. (12). Define a restoration operatorAM �ð Þ for a given measure-
ment matrix M as

AM Hð Þ ¼
Xn
i¼1

Ai
TAi

 !�1

�
Xn
i¼1

Ai
T hi

0� �
; ð26Þ

where hi
0
is the transpose of the ith row of H and Ai is derived from

the ith row of measurement matrix M according to Eq. (17). IfPm
i¼1Aki

TAki is not invertible, the Moore–Penrose pseudo-inverse is
used.

AM �ð Þ is a linear operator, and by using Eq. (12), we get

y� ¼ AM H þ Eð Þ ¼ y þAM Eð Þ ¼ y þ y
�
: ð27Þ
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This indicates that the restored (measured) track-geometry
irregularity is a linear combination of its true value and a false

track geometry (FTG) y
�
induced by error term E.

This is similar to defining restoration operator AMk
with given

measurement matrix Mkfor the MCR(n, m) system with the config-
uration of k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

. As a result, the
property of operator AM �ð Þ (or AMk

) is key to the performance of
MCR systems.

4.2. Eaf

This section proposes an important index to address the error
propagation characteristics of AM �ð Þ. According to Eq. (27), the final

measurement error yields y
� ¼ y � y� ¼ AM Eð Þ, indicating that

when the measurement error of each sensor, that is, E ¼ 0, is

ignored and we get y
� ¼ AM Eð Þ ¼ 0, the MCR system is absolutely

accurate for the measurement task. However, there always exist
errors during the measuring process regardless of the sensors used.
In practice, the error variance denoted as VarðEÞ can range from
1 mm to 0.5 mm. Restoration operator AM �ð Þ holds the key to sensor

precision VarðEÞ and final measurement error y
�
.

AM Eð Þ ¼
Xn
i¼1

Ai
TAi

 !�1

�
Xn
i¼1

Ai
Tei ð28Þ

Matrix B and vectorization operator vec �ð Þ are defined as

B �
Xn
i¼1

Ai
TAi

 !
¼ I; vec Xð Þ ¼

x1
x2
..
.

xn

8>>><
>>>:

9>>>=
>>>;
; ð29Þ

where I is an identity matrix and xi is the transpose of the ith row of
X.

y
� ¼ AM Eð Þ ¼ B �

Xn
i¼1

Ai
Tei ¼ BA1

T
; BA2

T
; � � � BAn

T
h i

� vec Eð Þ

ð30Þ
Matrix D is defined as

D ¼ BA1
T BA2

T � � � BAn
T

h i
; ð31Þ

and we get

y
� ¼ AM Eð Þ ¼ D � vec Eð Þ: ð32Þ
Here we notice that AM Eð Þ is the product of two parts: matrix D,
depending only on measurement matrix M and vec Eð Þ, which is
the error of sensors.

By observing the pth element of y
�
,

y
�
p ¼

XnðN�nÞ

i¼1

Dpi � vec Eð Þi: ð33Þ

Error term E is assumed purely as white noise with zero-mean
and variance r2:

E eið Þ ¼ 0; E eiej
� � ¼ r2; i ¼ j

0; i–j
:

(

Furthermore, the evaluation of E y
�
p

� �
and Var y

�
p

� �
yields

E y
�
p

� �
¼ E

XnðN�nÞ

i¼1

Dpi � vec Eð Þi
 !

¼
XnðN�nÞ

i¼1

Dpi � E vec Eð Þi
� � ¼ 0 ð34Þ
Var y
�
p

� �
¼ E y

�
p � E y

�
p

� �h i2
 �
¼ E

XnðN�nÞ

i¼1

Dpi � vec Eð Þi
 !2

0
@

1
A

¼ r2 �
XnðN�nÞ

i¼1

Dpi
2 ð35Þ

As a result, we define the EAF as

EAFp M; lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnðN�nÞ

i¼1

Dpi
2

vuut ð36Þ

Note that subscript p of EAFp M; lð Þ indicates the position coordi-
nate along the rail to be measured. M and l in the bracket indicate
that EAFp only depends on the measurement matrix and length of
rail section to be measured. EAF is an important index that can be
used to predict the variance of the final measurement error with a
given condition of sensor precision, MCR(n, m) system configura-
tion, and length of the section to be measured.

A general EAF for MCR(n, m) is defined as follows:

Definition 5:. EAF of the MCR(n, m) system with configuration
specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

is defined as

EAFp Mk; lð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXnðN�nÞ

i¼1

Dpi
2

vuut ; ð37Þ

where

D ¼ BkAk1
T BkAk2

T � � � BkAkm
T

h i
ð38Þ

Bk �
Xm
i¼1

Aki
TAki

 !
¼ I ð39Þ

Moreover, each Aki is derived from the ith row of Mk according
to Eq. (17). Subscript p represents the position at pDLs, l is the
length of rail section to be measured, and N is the total number
of the discretized rail segment, given by Eq. (3).

For given length l of rail section, by using a high-order MCR sys-
temwith more sensors, the EAFp M; lð Þ is significantly reduced, indi-
cating that the performance of the MCR system can be enhanced by
increasing the order and number of sensors.

4.3. Basic characteristics of EAF

Two typical cases are illustrated in Fig. 3, and Fig. 3(a) shows
the EAF of the MCR(20) system with full configuration. The EAF
curve is symmetrical with two zero points at the two ends and a
maximal point at the middle. This indicates that the accumulation
of error is maximized at the middle of the rail section and is min-
imized when it is close to the two ends. It is because the boundary
condition of y0 ¼ yN ¼ 0 is applied. Notably, different boundary
conditions will change the shape of the EAF curve, but as long as
the same type of boundary condition is used, the maximal value
of EAF can still be used to describe and compare the performance
of different MCR systems.

For the MCR(20, 10) system, as the sparse configuration is

asymmetrically given as k ¼ ð1;2; � � � ;10ÞT , the EAF curve is also
asymmetrical but still with two zero points at the two ends. The
maximal point does not locate at the middle but is slightly offset
to the right. It is an interesting phenomenon, which shows the
influence of asymmetrical configuration of MCR(n, m) on the EAF
curve.

Moreover, the maximal value of EAF in Fig. 3(a) is less than that
of Fig. 3(b), indicating that the performance of the full configura-



Fig. 3. Illustration of the EAF of (a) the MCR(20) system with full configuration and (b) the MCR(20, 10) system with sparse configuration specified by k ¼ ð1;2; � � � ;10ÞT . The
maximal EAF of the two systems are 39.6 and 64.4, respectively.
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tion is better than that of a sparse configuration under the same
order. This is consistent with the fact that full configuration
requires more sensors than a sparse configuration.

5. Stability and MMW of MCR systems

5.1. MCR systems with sparse configuration

In application, we always desire to obtain a higher precision
with less number of sensors. For MCR(n, m) systems, a higher pre-
cision can be achieved by using the so-called sparse configuration.
We find that we can use less number of sensors but with better lay-
out of the mounting positions or by increasing the order of the
MCR system, and we can achieve the same or even higher mea-
surement precision. However, with a more sparse configuration,
especially when m is much less than n, the MCR(n, m) system
may become unstable, and simultaneously, the MMW increases
more than 2L=ðnþ 1Þwith the SSI. This section addresses the issues
of the instability of the MCR(n, m) system and the degradation of
MMW. For this, we provide the condition for the stability of the
MCR(n, m) as well as the final MMW.

Before introducing the stability problem, we provide more
details on the notations of a sparse configuration with respect to
the mounting positions of sensors.

As illustrated in Fig. 4, an MCR(n, m) system is represented
by a sparse configuration specified by k ¼ kiji ¼ 0;1; � � � ;m;f
ki 2 Nþ\ ½1;n�g. The m sensors, assuming no overlapping, divide
the reference chord into m+1 segments. According to Definition
1, the kith sensor is mounted at the kith-EP. The length of the seg-
ment between kith-EP and kiþ1th-EP is denoted as Li. The relation
between ni and Liin Fig. 4 is given as

ni ¼ Li
DLs

2 Nþ; ð40Þ
Fig. 4. Illustration of a sparse configuration
where ni can be understood as the occupied share of the ith seg-
ment with respect to SSI DLs. In addition, there exists a basic con-
straint such that

Xm
i¼0

Li ¼ L;)
Xm
i¼0

ni ¼ nþ 1 ð41Þ

Eq. (41) can be defined as m points dividing a line into m+1
parts by the sum of each parts and obtaining the total length. For
full configuration, that is, m = n, we get ni ¼ 1.

5.2. Final MMW of MCR systems with sparse configuration

In general, a smaller sampling interval can achieve higher sam-
pling frequency, and potentially be used to measure shorter
wavelengths.

A major benefit of using an MCR system is that it can measure
shorter wavelengths, thus achieving a smaller MMW.

However, it is worth noting that by using a higher order MCR
systems with proper configuration, we can achieve a smaller
MMW even with a larger sampling interval, that is, DL > DLs. Here,
proper configuration implies that for an MCR(n, m) system with a
given order n and sensor number m, the configurations play an
important role in the MMW, especially when m is considerably
smaller than n, namely more sparse configuration.

The MMW depends on not only the order of an MCR(n, m) sys-
tem but also the specific configuration. The final MMW of an MCR
(n, m) system is given by the following proposition.

Proposition 3:. Given an MCR(n, m) system with a sparse config-
uration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

, and
given the condition of SSI, DLs ¼ L=ðnþ 1Þ,

MMW ¼ 2dDLs ¼ 2dL
nþ 1ð Þ ; ð42Þ
specified by k for an MCR(n, m) system.
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where d ¼ GCD n0;n1; � � � ; nmð Þ is the operator for the greatest com-
mon divisor of niji ¼ 1;2; � � � ;mf g. The proof of Proposition 3 is
given in Appendix A.
5.3. Stability of MCR systems

Based on Proposition 3, the stability of an MCR system is
defined as

Definition 6:. An MCR(n, m) system is defined as stable if
MMW ¼ 2DLs with sampling interval DL � DLs, and unstable
otherwise.

The condition for an MCR(n, m) system to be unstable is given
as follows:

Proposition 4:. Given an MCR(n, m) system with a sparse config-
uration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

, the
MCR(n, m) system is unstable if it meets the following condition

A. d ¼ GCD n0;n1; � � � ;nmð Þ > 1
B. The given MCR(n, m) is equivalent to d-degraded MCR(n’, m)

systems with n0 ¼ ðnþ 1Þ=d� 1 and configuration specified

by k
0 ¼ k=d.

where GCD n0;n1; � � � ; nmð Þ refers to the greatest common divisor of
n0;n1; � � � ; nm. In fact, conditions A and B in Proposition 4 are equiv-
alent. The proof of Proposition 4 is given in Appendix A.
6. MCR(n, 1) system

6.1. Stability

This section presents the analysis of the stability of the MCR(n,
1) system with respect to different orders and configurations.

The MCR(n, 1) system refers to a series of n-order MCR systems
with the most sparse configuration, which contains only one sen-
Fig. 5. Configurations of MCR(11, 1) system performance. The black curves represent t
curves represent the measured result, considering 2 mm sensor uncertainty. The red curv
sor on the reference chord; thus, the MCR(n, 1) system can be more
delicate compared to MCR(n, m) systems with m > 1. As mentioned
in Section 3.1, MCR(n, 1) is known as the conventional three-point
chord method [4,5,11–14], and when the single sensor is at the
middle of a chord, the system is called an MCO method
[4,11–13]. Note that by using the unified framework proposed in
Section 3, this study dealt with the measurement and restoration
processes in a relatively different manner.

An MCR(n, 1) system possesses ceilððnþ 1Þ=2Þ different
configurations when considering symmetric distribution, e.g.,
configurations of k ¼ 1 andk ¼ nare symmetric to each other.
Figs. 5–7 illustrate the performance of an MCR(n, 1) system consid-
ering different configurations based on numerical analysis. The
black curve in the figure represents a target track geometry from
track inspection car. The measurement process is simulated
according to Eq. (8), following the restoration process based on
the equations given in Section 3.3.

Fig. 5 shows six configurations of the performance of MCR(11,
1) systems. Apparently, the configurations with k = 2, 3, 4, and 6
are unstable. Furthermore, Fig. 6 enlarges the right-bottom figure
of Fig. 5. The red dotted line (similar with red shade) represents
the original result of MCR(11, 1). The figure shows that the mea-
sured result is a mixture of the six curves of the degraded MCR
(1, 1) systems, and the data points seem to jump up and down,
as represented by the red-shaded region.

Fig. 7 shows six configurations of MCR(12, 1) system perfor-
mance. In contrast to those in Fig. 5, all six configurations show a
stable pattern. The difference between the performances of the
two examples can be explained by the following proposition.

Proposition 5:. An MCR(n, 1) system is stable for all configura-
tions 8k 2 1;2; � � � ;nf g if and only if nþ 1 is a prime number.

The proof of Proposition 5 is given in Appendix A.

6.2. Eaf

This section presents the analysis of the stability of the MCR(n, 1)
system, and two cases are discussed to illustrate the relation
he measurement target, namely the track-geometry irregularity sample. The blue
es represent the difference between the measurement target and measured result.



Fig. 6. Degradation of MCR(11, 1) systems with configuration specified by k ¼ 6. The red dotted line (similar to the red shaded region) is the original result of MCR(11, 1),
which is the same as the Fig. 5(f).

Fig. 7. Six configurations of MCR(12, 1) system performance. Each configuration witnesses a stable pattern, and an edge error can be observed.

Fig. 8. EAFs of MCR(40, 1) systems with respect to different configurations.
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between an unstable MCR(n, 1) system and its degraded MCR(n’, 1)
system. The EAF was used to reveal the different characteristics
between the stable and unstable MCR(n, 1) systems.
First, the EAFs of the three groups of MCR(n, 1) systems were
calculated according to Eq. (37), as illustrated in Figs. 8–10. Fig. 8
shows the MCR(40, 1) systems with configurations of k = 1, 2, . . .,



Fig. 9. EAFs of MCR(39, 1) systems with respect to different configurations. When k = 4, 5, 8, 10, 12, 14, 15, 16, 18, and 20, the maximal EAFs show an unusual increasing
trend, and these configurations are all unstable according to Proposition 3.

Fig. 10. EAFs of MCR(n, 1) systems of order n ¼ 1;3; � � � ;39, with the configuration k ¼ ðnþ 1Þ=2 ¼ 1;2; � � � ;20, respectively.
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20. The maximal EAFs show a monotonously decreasing trend with
the increase of configuration number k up to 20. Fig. 9 shows that
for MCR(39, 1) systems, when k = 4, 5, 8, 10, 12, 14, 15, 16, 18, and
20, the maximal EAFs shows an unusual increasing trend; these
configurations are all unstable according to Proposition 4. Fig. 10
shows a series of MCR(n, 1) systems for order n ¼ 1;3; � � � ;39 with
configuration k ¼ ðnþ 1Þ=2 ¼ 1;2; � � � ;20, respectively. The maxi-
mal EAFs are almost identical to each other and the value is
approximately 822.6. Recalling from our previous publication [4],
the EAF of the MCO-systems under the same condition (1 m length
chord to measure a 100 m rail) is just the same value.

Based on the above-mentioned three cases, we can draw the
following conclusion (Proposition 6).

Proposition 6:. Given an unstable MCR(n, m) system with
configuration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �
and d ¼ GCD n0;n1; � � � ;nmð Þ > 1, then the EAF of this MCR(n, m)
equals to the EAF of the degraded MCR(n

0
, m) system, where

n
0 ¼ ðnþ 1Þ=d� 1 and configuration k

0 ¼ k=d.

The proof of Proposition 6 is given in Appendix A.

7. Discussion

This paper does not aim at proposing a single measurement
technique but introducing a whole MCR framework with a series
of MCR systems as well as the tools to quantify and compare the
performance of different configurations. Several definitions and
propositions are given to present the basic theory for the measure-
ment principle of MCR systems. However, it is still not enough for
fully understanding MCR systems. The following points have not
been covered by this paper and are a topic of interest for future
study.
� EAF quantifies the error accumulation characteristics of MCR
systems with different orders and configurations in the spatial
domain. The measurement performance in frequency domain
(or wavelength domain) remains unclear.

� The performances of high- and low-frequency sampling com-
pared to that of standard sampling are of interest as they pro-
vide an additional parameter to control the measurement
precision by increasing or decreasing the sampling frequency.
This could offer a trade-off between measurement precision
and hardware cost.

� Sections 4.3 and 6.2 show that the sparse configuration is of
essential importance to the performance of an MCR system. This
raises new queries: what is the best configuration of a MCR(n,
m) system? Can we achieve higher precision with smaller num-
ber of sensors? What could be the limitation in precision of an
MCR(n,m) system? This results in an optimization problem with
respect to the many sparse configurations.

Note that the measurement chord is always divided into an
integer number of segments with a given order of an MCR system.
Actually, there exist several configurations in which a sensor can
be mounted at a point dividing a chord by a ratio, which is an irra-
tional number. These kinds of configurations are beyond the
framework of the MCR system proposed in this paper. Neverthe-
less, the impracticality of the configurations with precisely irra-
tional ratio divisions is immaterial because even the installation
error of the measurement equipment may be much larger than
the accuracy of an irrational number with several digits after the
decimal point.

The significant advantages of the MCR system over some cur-
rently used techniques for track geometry, such as the single-
point chord method [4,5,11–14], gyroscope-based techniques
[31], and accelerometer-based techniques [32] are summarized
as follows.
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� The MCR system enables us to use low-cost sensors to achieve
the same or even higher precision by increasing the number
sensors and sampling frequency.

� We can achieve batter precision by adding sensors and improv-
ing the configurations without significantly increasing the hard-
ware cost. In contrast, for techniques such as gyroscope-based
techniques, adding an additional gyroscope may double the cost
and the precision may not be enhanced significantly.

� The MCR system can measure smaller MMW; this is the most
powerful advantage over many current techniques. The high-
order MCR(n, m) systems are particularly useful for measuring
rail corrugations, whose wavelengths may even reach several
millimeters.

8. Conclusion

A unified framework of MCR systems is introduced with defini-
tions of n-ordered MCR(n) systems, SSI, MCR(n, m) system, and
MMW.

Mathematical models were established to describe the mea-
surement and restoration processes as well as some necessary
boundary conditions. The error theory of an MCR system is pro-
vided in Section 4 and the EAF is defined to quantify the error accu-
mulation characteristics of MCR systems.

In addition to the error theory, Section 5 introduces another
important characteristic about the stability and MMW of MCR sys-
tems. The stability of MCR system is defined and propositions are
given to reveal the basic relationship between MMW and different
sparse configurations.

Section 6 discusses the MCR(n, 1) system in particular, for
which Proposition 6 was put forward to describe the relationship
between the EAF and MCR system stability.

Although the MCR system in this paper is focused on the field of
railway engineering, it can be applied to any similar application
scenarios where an irregular surface or curve needs to be mea-
sured. The numerical and experimental verification of MCR sys-
tems is considerably challenging and requires considerable
amount of effort. This will be addressed in our further works.
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Fig. A1. The upper figure illustrates a standard sampling with DL ¼ DLs , and the lower fig
measurement sequence with different starting points.
Appendix A:. Proof of Proposition 1–6

Proposition 1:. For an MCR(n) system with full configuration,
given the sampling interval DL � DLs,

MMW ¼ 2DLs ¼ 2L
nþ 1

ð2Þ

Proof of Proposition 1:
First, according to the Nyquist–Shannon sampling theorem [30],

a perfect reconstruction of a signal is guaranteed possible for band-
limit B < Fs=2 for given sample rate Fs. Here, for an MCR(n) system
with full configuration, given DL ¼ DLs (here, Fs ¼ 1=DL ¼ 1=DLs),
the reconstructed track geometry curve is guaranteed possible for
band-limitB < Fs=2 ¼ 1=ð2DLsÞ. In wavelength domain, according
to the definition 4, we get

MMW ¼ min
1
B


 �
¼ 2DLs ðA1Þ

The use of definition 2 (Eq. (1)) yields

MMW ¼ 2DLs ¼ 2L
nþ 1

:

The remainder of the problem is to prove that improving sam-
ple rate Fs (decreasing the sampling interval for DL < DLs) will not
result in a larger band-limit B (or will not decrease MMW) (See
Fig. A1).

For sampling interval DL ¼ DLs, through the measurement
process using an MCR system, we obtain an SSI of

ys ¼ y0; y1; � � � ; yN; � � �ð ÞT . For sequence ys we can achieve
MMW ¼ 2DLs ¼ 2L=ðnþ 1Þ.

Given a sampling interval DL ¼ DLs=s, where s > 1, the mea-
surement process using the MCR system yields a sampling
sequence that is s times the number of ys, denoted as

ys ¼ y0; y1; � � � ; ys; ysþ1; � � � ; � � � ; yNs; yNsþ1; � � �
� �T .

Furthermore, when s is an integer, as illustrated in Fig. A1,
sequence ys can be changed into s independent sequences

ys;iji ¼ 0;1; � � � ; s� 1; ys;i ¼ yi; ysþi; � � � ; yN�sþi; � � �
� �Tn o

ðA2Þ

This implies that each ys;i is independently measured without
any connection. We know that the measurement of ys;i is equiva-
lent to an MCR system with a SSI but with different starting points.
That is, ys is actually equivalent to s independent measurements
with DL ¼ DLs with different starting points. As a result, this kind
of s-times repeated measurement can improve the measurement
precision but will not improve MMW.
ure illustrates that for DL ¼ DLs=s, where s > 1 is an integer. Different colors indicate
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When s is not an integer, ys can be transformed into a sequence
with an integer multiple number of ys through interpolation. Note
that the interpolation will not improve the MMW as it brings no
additional information, instead it only changes the formation of
sequence ys.
Proposition 2:. Given an MCR(n, m) system, when no measure-
ment errors from sensors are included, two track geometry
sequences y and y� share the same chord versine matrix H if and
only if the following condition is satisfied.

y � y� ¼ a � xþ b; ð24Þ
where x is a vector of the position along the rail and a and b are the
arbitrary real numbers.

Proof of Proposition 2:
Proof of sufficiency: Assuming that sequences y and y� share

chord versine matrix H, prove that y � y� can be expressed as the
form of a � xþ b.

According to the given condition and by using Eq. (8), we get

H ¼ M � F yð Þ ¼ M � F y�ð Þ ðA3Þ
According to Eq. (9), F yð Þ is a matrix generated by a given

sequence y and is a linear operator; thus, we get

M � F yð Þ �M � F y�ð Þ ¼ M � F y � y�ð Þ ¼ 0 ðA4Þ
Based on the definition of ki, M � F xð Þ ¼ 0 is satisfied when x is a

linear function. As a result, there exist coefficients a and b such that

y � y� ¼ a � xþ b;

x ¼ ð1;2; � � � ;NÞT

Proof of necessity: Given y� ¼ y þ a � xþ b and the correspond-
ing chord versine matrix of y is H, prove that H is also the chord
versine matrix of y�.

According to the given condition and by using Eq. (8), we get

H ¼ M � F yð Þ ¼ M � F y� � a � x� bð Þ
¼ M � F y�ð Þ �M � F a � xþ bð Þ ðA5Þ
Based on the definition of kiand by using Eq. (4), we get

M � F a � xþ bð Þ ¼ 0; ðA6Þ
and then

M � F y�ð Þ ¼ H

Thus, Proposition 2 is proved.
Proposition 3:. Given an MCR(n, m) system with a sparse config-
uration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

and
given the condition of SSI, DLs ¼ L=ðnþ 1Þ,

MMW ¼ 2dDLs ¼ 2dL
nþ 1ð Þ ; ð42Þ

where d ¼ GCD n0; n1; � � � ;nmð Þ is an operator for greatest common
divisor of niji ¼ 1;2; � � � ;mf g.

Proof of Proposition 3:
The condition of d ¼ GCD n0;n1; � � � ;nmð Þ ¼ 1 can be proved

similarly by using Proposition 1. Then, we should only focus on the
cognition of d > 1.

First, the measurement matrix Mk of MCR (n, m) system with
sparse configuration specified by k is given by partial rows of M
with the indexes specified by k.

Mk ¼ kk Jk � 1þ kkð Þ½ � ; ðA7Þ
where kk ¼ kk1 ; kk2 ; � � � ; kkm

� �
, and Jk is a matrix with size of m 	 n, as
Jk i; jð Þ ¼ 1; j ¼ ki
0; j–ki

	
; i ¼ 1; � � � ;m; j ¼ 1; � � � ;n ðA8Þ

By expanding Eq. (11), we get

kk Jk �ð1þ kkÞ½ � �

y0
y1

..

.

ynþ1

y1
y2

..

.

ynþ2

� � �

yN�n�1

yN�n

..

.

yN

2
66664

3
77775

¼

hk1 ;0 � � � hk1 ;N�n�1

hk2 ;0 � � � hk2 ;N�n�1

..

. . .
. ..

.

hkm ;0 � � � hkm ;N�n�1

2
66664

3
77775

ðA9Þ

The above equation is equivalent to

kk Im �ð1þ kkÞ½ � �

y0
yk1

..

.

ykm
ynþ1

y1
yk1þ1

..

.

ykmþ1

ynþ2

� � �

yN�n�1

yk1þN�n�1

..

.

ykmþN�n�1

yN

2
6666664

3
7777775

¼

hk1 ;0 � � � hk1 ;N�n�1

hk2 ;0 � � � hk2 ;N�n�1

..

. . .
. ..

.

hkm ;0 � � � hkm ;N�n�1

2
66664

3
77775

ðA10Þ

where Im is an identity matrix with size m.
With the given integer d > 1, the above equation can be

separated into d parts:

kk Ik � 1þ kkð Þ½ � �

yi
yk1þi

..

.

ykmþi

ynþi

ydþi

yk1þdþi

..

.

ykmþdþi

ynþdþi

� � �

yTdþi

yk1þTdþi

..

.

ykmþTdþi

ynþTdþi

2
66666664

3
77777775

¼

hk1 ;i � � � hk1 ;Tdþi

hk2 ;i � � � hk2 ;Tdþi

..

. . .
. ..

.

hkm ;i � � � hkm ;Tdþi

2
66664

3
77775; i ¼ 0; � � � ;d� 1

ðA11Þ

where T is an integer satisfying

nþ Tdþ d� 1 ¼ N ðA12Þ
Simple notationsM�

k, Fi yð Þ; and Hi are introduced as

M�
k ¼ kk Ik � 1þ kkð Þ½ � ðA13Þ

Fi yð Þ ¼

yi
yk1þi

..

.

ykmþi

ynþi

ydþi

yk1þdþi

..

.

ykmþdþi

ynþdþi

� � �

yTdþi

yk1þTdþi

..

.

ykmþTdþi

ynþTdþi

2
66666664

3
77777775
; i ¼ 0; � � � ;d� 1

ðA14Þ

Hi ¼

hk1 ;i � � � hk1 ;Tdþi

hk2 ;i � � � hk2 ;Tdþi

..

. . .
. ..

.

hkm ;i � � � hkm ;Tdþi

2
66664

3
77775; i ¼ 0; � � � ; d� 1 ðA15Þ

We get
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M�
k � Fi yð Þ ¼ Hi; i ¼ 0; � � � ;d� 1 ðA16Þ
Denote d number of sets, Si, i ¼ 0; � � � ; d� 1, each containing all

the elements inside Fi yð Þ. By using condition
d ¼ GCD n0;n1; � � � ;nmð Þ > 1, we found that the d equations
(M�

k � Fi yð Þ ¼ Hi; i ¼ 0; � � � ; d� 1) are independent as the intersec-
tion of any two sets from Siji ¼ 0;1; � � � ; d� 1f g is an empty set.

Considering that each Si is also an equidistant sampling
sequence from y, it can be treated as a new measurement by the
degraded MCR(n’, m) system with a sampling interval of DLs � d.
The order of an MCR system becomes n

0 ¼ ðnþ 1Þ=d� 1 and the

configuration is specified by an increasing sequence of k
0 ¼ k=d.

As a result, the MMW is given by

MMW ¼ 2dDLs ¼ 2dL
nþ 1ð Þ ð42Þ

Thus, we proved Proposition 3.
Proposition 4:. Given an MCR(n, m) system with a sparse config-
uration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

, the
MCR(n, m) system is unstable if it meets the following condition

C. d ¼ GCD n0;n1; � � � ;nmð Þ > 1
D. The given MCR(n, m) is equivalent to d degraded MCR(n’, m)

systems with n0 ¼ nþ 1ð Þ=d� 1 and configuration specified

by k
0 ¼ k=d.

Proposition 4 can be proved using Proposition 3 and Definition
6. To avoid repetition, it is not described here.

Proposition 5:. AnMCR(n, 1) system is stable for all configurations
8k 2 1;2; � � � ;nf g if and only if nþ 1 is a prime number.

Proof of Proposition 5:
Proof of sufficiency. We used reduction to absurdity to prove

it. Assuming nþ 1 is not a prime number and the MCR(n, 1) system
is still stable for all configurations 8k 2 1;2; � � � ;nf g. As nþ 1 is not
a prime number, we can find two integers a > 1 and b > 1
satisfying

nþ 1 ¼ a � b: ðA17Þ
Asb is an integer greater than 1, we can find two positive inte-

gers b1 and b2 satisfying

nþ 1 ¼ a � b ¼ a � b1 þ b2ð Þ: ðA18Þ
Then, construct an MCR(n, 1) system with configuration given

by k ¼ a � b1, which divides a reference chord in two with shares
of a � b1 and a � b2.

Finally, d ¼ GCD a � b1; a � b2ð Þ 
 a > 1, which conflicts with
Proposition 4.

Proof of necessity. Again, we use reduction to absurdity to
prove it. Assume that nþ 1 is a prime number and there exists
configuration k for MCR(n, 1) system, which is unstable. Denote the
two shares of chord divided by k as n0 and n1 satisfying

nþ 1 ¼ n0 þ n1 ðA19Þ
As the MCR(n, 1) system is unstable, we get

d ¼ GCD n0;n1ð Þ > 1 ðA20Þ
This implies that we can find two integers a > 1 and b > 1 sat-

isfying n0 ¼ d � a and n1 ¼ d � b, respectively, thus yielding

nþ 1 ¼ n0 þ n1 ¼ d � aþ d � b ¼ d � ðaþ bÞ ðA21Þ
This conflicts with the assumption that nþ 1 is a prime number

as d and aþ b are both factors of nþ 1 and are>1.
Thus, we proved Proposition 5.
Proposition 6:. Given an unstable MCR(n, m) system with config-
uration specified by k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

and
d ¼ GCD n0;n1; � � � ;nmð Þ > 1, then the EAF of this MCR(n, m) equals
the EAF of the degraded MCR(n0 , m) system, where

n0 ¼ ðnþ 1Þ=d� 1 and configuration k
0 ¼ k=d.

Proof of Proposition 6:
Note: The variables with the’ symbol represent variables for a

degraded MCR system with respect to the original MCR system.
According to Proposition 4, when d ¼ GCD n0;n1ð Þ > 1, the MCR

(n, m) system is unstable and degrades to MCR(n’, m) with

n
0 ¼ nþ 1ð Þ=d� 1 and configuration specified by k

0 ¼ k=d. By
observing and comparing the sparse structures of Aki and A

k
0
i

according to Eq. (17), we obtain the following relationship:

Aki l; jð Þ ¼
0;mod j; dð Þ–1

A
k
0
i

l�1
d ; j�1

d

� �
;mod j;dð Þ ¼ 1

(
;8l 2 1;N � n½ � ðA22Þ

where Aki ðl; jÞ in Eq. (A21) represents the lth row vector of Aki begin-
ning from the lth column to the end of the lth row (This is the same
for Ak

0
i
).

Define matrixes Ak and Ak
0 as

Ak ¼
Xm
i¼1

AT
ki
Aki ; Ak0 ¼

Xm
i¼1

AT
k
0
i
A

k
0
i

ðA23Þ

Structures Ak and Ak0 show that

Ak i; jð Þ ¼
0; mod i; dð Þ–1 or mod j; dð Þ–1

Ak0
i�1
d ; j�1

d

� �
; mod i;dð Þ ¼ 1 and mod j;dð Þ ¼ 1

(
; ðA24Þ

where Akði; jÞ represents the element at ith row and jth column of Ak

(similarly for Ak
0 ). Moreover, Eq. (39) can be used to verify that

Bk i; jð Þ ¼
0 ; mod i;dð Þ–1 or mod j;dð Þ–1

Bk0
i�1
d ; j�1

d

� �
; mod i;dð Þ ¼ 1 and mod j;dð Þ ¼ 1

(
ðA25Þ

Recalling the definition of EAF (Definition 5) given by Eq. (37)

and by using Eq. (38), EAFp Mk; lð Þ2 can be rewritten as

EAFp Mk; lð Þ2 ¼
Xm N�nð Þ

i¼1

D2
pi ¼

Xm
i¼1

XN�n

j¼1

BT
k;p � Aki ;j

� �2
; ðA26Þ

where BT
k;p denotes the transpose of the pth column vector of Bk and

Aki ;j represents the jth column vector of Aki . Further, it should be
noted that the implication of Aki ;j is different from that of Aki l; jð Þ
used in Eq. (A21).

Finally, by using Eqs. (A21)–(A24), Eq. (25) yields

EAFp Mk; lð Þ2 ¼
Xm
i¼1

XN�n

j¼1

BT
k;p � Aki ;j

� �2

¼
Xm
i¼1

XN�nð Þ=d

j¼1

BT
k0 ;p�1

d
� A

k
0
i ;j

� �2
¼ EAFp�1

d
Mk0 ; lð Þ2 ðA27Þ
Appendix B:. Equivalence of the two optimization models

In Section 3.3, the optimization model of an MCR(n, m) system
with configuration specified by
k ¼ kiji ¼ 0;1; � � � ;m; ki 2 Nþ \ ½1;n�� �

is given as

min
y

1
2
k Mk � F yð Þ � Hk k2; ð15Þ
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where

F yð Þ ¼

y0

y1

..

.

ynþ1

y1

y2

..

.

ynþ2

� � �

yN�n�1

yN�n

..

.

yN

2
66666664

3
77777775

ð9Þ

Mk ¼ kk Jk �ð1þ kkÞ½ �; ðA7Þ
where kk ¼ kk1 ; kk2 ; � � � ; kkm

� �
with

kki ¼
ki

nþ 1
� 1

and Jk is a matrix with size m 	 n:

Jk i; jð Þ ¼ 1; j ¼ ki
0; j–ki

	
; i ¼ 1; � � � ;m; j ¼ 1; � � � ;n ðA8Þ

The expansion of Eq. (11) yields

kk Jk �ð1þ kkÞ½ � �

y0

y1

..

.

ynþ1

y1

y2

..

.

ynþ2

� � �

yN�n�1

yN�n

..

.

yN

2
66666664

3
77777775

¼

hk1 ;0 � � � hk1 ;N�n�1

hk2 ;0 � � � hk2 ;N�n�1

..

. . .
. ..

.

hkm ;0 � � � hkm ;N�n�1

2
666666664

3
777777775

ðA9Þ

For each measured hki ;j, we have

Mk ið Þ �

yj
yjþ1

..

.

ynþjþ1

2
66664

3
77775 ¼ hki ;j; ðA28Þ

where Mk ið Þ ¼ kki Jk ið Þ �ð1þ kki Þ
� 

is the ith row of Mk and Jk ið Þ
is the ith row of Jk. By extending Eq. (B1) by adding zeros to Mk ið Þ;

z jð Þ Mk ið Þ z N � n� j� 2ð Þ½ � �

y0
y1

..

.

yN

2
66664

3
77775

¼ hki ;j; j ¼ 0; � � � ;N � n� 1; i ¼ 1; � � � ;m;

ðA29Þ

where z nð Þ represents a row vector containing n zeros. By integrat-
ing Eq. (B2) into a matrix form, we get

Ak1

Ak2

..

.

Akm

2
66664

3
77775 � y ¼

hk1

0

hk2

0

..

.

hkm

0

2
66666664

3
77777775
; ðA30Þ

where h0
ki
¼ hki ;0;hki ;1; . . .hki ;N�n�1

n oT
is the transpose of the ith row

vector of Hk and

Aki jð Þ ¼ z jð Þ Mk ið Þ z N � n� j� 2ð Þ½ � ðA31Þ
or

Aki ¼

kki 0 � � � 1 � � � 0 kki
kki 0 � � � 1 � � � 0 kki

. .
. . .

. . .
. . .

. . .
.

kki 0 � � � 1 � � � 0 kki

2
666664

3
777775 ð17Þ

Finally, the restoration model can also be described as the
model for finding the best value of vector y to minimize the total
error of Eq. (B2), as presented in Eq. (20).

min E ¼ 1
2U

2
k

Uk ¼

Ak1

Ak2

..

.

Akm

2
66664

3
77775 � y�

h0
k1

h0
k2

..

.

h0
km

2
6666664

3
7777775

8>>>>>>>>><
>>>>>>>>>:

ð21Þ
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